Exploring Decryption Failures of BIKE: New Class of Weak Keys and Key Recovery Attacks

Tianrui Wang¹ Anyu Wang^{2,3} Xiaoyun Wang^{2,3}

¹Institute for Network Sciences and Cyberspace, Tsinghua University, Beijing, China

²Institute for Advanced Study, BNRist, Tsinghua University, Beijing, China

³Zhongguancun Laboratory, Beijing, China

CRYPTO'23 August 22, 2023

Tianrui Wang, Anyu Wang, Xiaoyun Wang

Contents

- 2 Gathering Property and DFR of QC-MDPC
- 3 Decryption failure attack for QC-MDPC

4 Conclusion

Tianrui Wang, Anyu Wang, Xiaoyun Wang

Gathering Property and DFR of QC-MDP

Decryption failure attack for QC-MDPC

Background of Public Cryptology

Post Quantum Algorithms

- In 1994, Shor's algorithm
 - Integer Factorization & Discrete Logarithm
- Current Pub Key Algorithm
- NIST competition
 - Pub Key: Lattice, Code, Multivariable, Symmetric...

Tianrui Wang, Anyu Wang, Xiaoyun Wang

NIST Candidates

NIST Candidates

Candidates in NIST Competition

Class	Code	NIST 2nd	NIST 3rd	NIST 4th
McEliece/Niederreiter	Classic McEliece NTS-KEM			Classic McEliece
Rank-Code Schemes	Rollo RQC	Algebraic attack		
Quasi-Cyclic Schemes	HQC			HQC
LDPC Schemes	LEDACrypt	Weak key		
MDPC Schemes	BIKE			BIKE

Tianrui Wang, Anyu Wang, Xiaoyun Wang

BIKE with QC-MDPC

QC-MDPC

- MDPC(Moderate Density Parity Check) invented in 2013
 - McEliece with MDPC
 - Quasi-Cyclic \rightarrow smaller size & faster speed (BIKE)
- CPA security
 - Private Key: $(h_0, h_1) \in \mathrm{K}(w)$
 - Public Key: $h = h_1 h_0^{-1}$
 - Encryption: $(e_0, e_1) \in \operatorname{E}(t)$, $s = e_0 + e_1 h$
 - Decryption: decoder(sh₀, h₀, h₁)
 - where $\mathcal{R} := \mathbb{F}_2[x]/(x^r-1), y = y_0 + y_1x + \dots + y_{r-1}x^{r-1}$ $\iff \mathbf{y} = (y_0, \dots, y_{r-1})$
 - $K(w) := \{(h_0, h_1) \in \mathcal{R}^2 | w_H(h_0) = w_H(h_1) = w/2\},\ E(t) := \{(e_0, e_1) \in \mathcal{R}^2 | w_H(e_0) + w_H(e_1) = t\}$
- Decoder: $e_0h_0 + e_1h_1 = sh_0 \to (H_0, H_1) \cdot (e_0, e_1)^T = sh_0$

Tianrui Wang, Anyu Wang, Xiaoyun Wang

Bit-Flipping

- Bit-Flipping
 - Flip a position if more parity checks are satisfied, iterate until all set
 - UPC(unsatisfied parity check): UPC(\mathbf{e}, i) = $|Supp(\mathbf{s}) \cap Supp(\mathbf{h}_i)|$ where h_i is the i-th column of \mathbf{H}
- MDPC usage
 - Bit-Flipping has high decryption failure rate
 - Black-Gray-Flip: fine-grained thresholds, check before really flip (used in BIKE)

Tianrui Wang, Anyu Wang, Xiaoyun Wang

Researches on DFR

- High DFR(2⁻³⁰) on small parameters
- No accurate DFR
 - Existing Attacks
 - 2016,Guo: DFR is relevant with distance spectrum of key
 - Distance spectrum: the set of distances between any two 1's in the secret key

RER

error floo

- $\bullet~$ Decryption failure \rightarrow spectrum information \rightarrow key recovery
- Need high DFR to construct distance spectrum model

Tianrui Wang, Anyu Wang, Xiaoyun Wang

BIKE KEM

Application in BIKE

• 128 bit security \rightarrow DFR $< 2^{-128}$

Security Level	r	w	t	Decryption Failure Rate
128-bit	12323	142	134	$2^{-128} \\ 2^{-192} \\ 2^{-256}$
192-bit	24659	206	199	
256-bit	40973	274	264	

 $\bullet\,$ Fujisaki-Okamoto Transform $\rightarrow\,$ CCA security

KEM

- KeyGen ():
 - Randomly generate $h_0, h_1 \in \mathcal{R}$ such that $w_H(h_0) = w_H(h_1) = w/2$.
 - Compute $h = h_1 h_0^{-1} \in \mathcal{R}$.
 - Output (h_0, h_1, σ) as the secret key, and h as the public key.
- Encaps (h):
 - Randomly choose $m \in \{0, 1\}^{256}$.
 - Compute $(e_0, e_1) = \mathbb{H}(m) \in \mathbb{R}^2$ such that $w_H(e_0) + w_H(e_1) = t$.
 - Output the ciphertext $c = (e_0 + e_1h, m \oplus L(e_0, e_1))$, and the shared secret $\mathcal{K} = \mathtt{K}(m, c)$.
- Decaps $((h_0, h_1, \sigma), c)$:
 - Compute $e' = \operatorname{decoder}(c_0h_0, h_0, h_1) \in \mathbb{R}^2$.
 - Compute $m' = c_1 \oplus L(e')$.
 - If e' = H(m') then output K(m', c), else output $K(\sigma, c)$.

Tianrui Wang, Anyu Wang, Xiaoyun Wang

Researches on decoding failure of BIKE

DFR of BIKE

0000000

- Goal: CCA security needs $DFR < 2^{-128}$
- Method: linear fit with experiments (without accuracy theory model)
- Existing Researches
 - Sendrier found weak keys with high DFR
 - Vasseur's classification does not disapprove the IND-CCA security of BIKE
- Questions
 - Are these classes of weak keys exhaustive?
 - A higher lower bound of DFR?

$$\mathsf{DFR}_{\mathsf{avg}} \geq \frac{|W|}{|\mathcal{K}|} \mathsf{DFR}_W$$

Tianrui Wang, Anyu Wang, Xiaoyun Wang

Background

2 Gathering Property and DFR of QC-MDPC

3 Decryption failure attack for QC-MDPC

4 Conclusion

Tianrui Wang, Anyu Wang, Xiaoyun Wang

Contents	Background	Gathering Property and DFR of QC-MDPC	Decryption failure attack for QC-MDPC	Conclusion
O	0000000	○●○○○○		00

Observation

matrix parity check

$$e_0h_0 + e_1h_1 = s
ightarrow (\mathit{rot}(h_0), \mathit{rot}(h_1)) \cdot (e_0, e_1)^T = s$$

• the 1's in h_0 gathering in first m positions \rightarrow UPC(i) is higher when $0 \le i < m \rightarrow$ the first m positions are more likely to be flipped

Iteration	Average UPC of the first m positions	Average UPC of all positions
0	31.3864	26.4111
1	57.2082	42.7164
2	83.5507	56.5557
3	114.588	73.0108
4	148.179	93.1936

Figure 4: Gathering property.

Figure 5: UPC table.

Tianrui Wang, Anyu Wang, Xiaoyun Wang

Gathering Property

Definition (gathering property)

Let m < r be a positive integer and let $\epsilon \ge 0$ be a small integer, then $(y_0, y_1) \in \mathcal{R}^2$ is said to have the (m, ϵ) -gathering property if there exists an integer *a* such that

$$w_H(\mathbf{y}_0^{[a,a+m)}) = w_H(\mathbf{y}_0) - \epsilon.$$

where $\mathcal{R} := \mathbb{F}_2[x]/(x^r-1)$ and $\mathbf{y}^{[a,b)} := (y_a, y_{a+1}, \cdots, y_{b-1})$

Figure 6: Gathering Property

Tianrui Wang, Anyu Wang, Xiaoyun Wang

DFR with gathering property

- Consider error and key with gathering property
 - $\bullet~$ Under BIKE-128 parameters, DFR : $2^{-128} \rightarrow 2^{-10} \sim 2^{-25}$

Tianrui Wang, Anyu Wang, Xiaoyun Wang

Contents Background Gathering Property and DFR of QC-MDPC Decryption failure attack for QC-MDPC 0 0000000 000000

Isomorphism to expand weak keys

Observation

•
$$\phi_i: y(x) \to y(x^i)$$

• $(\mathbf{h_0}, \mathbf{h_1})$ and $(\mathbf{e_0}, \mathbf{e_1})$ cause a failure iff $(\phi_i(\mathbf{h_0}), \phi_i(\mathbf{h_1}))$ and $(\phi_i(\mathbf{e_0}), \phi_i(\mathbf{e_1}))$ cause a failure

• weak key set under isomorphism

$$\mathrm{K}_{m,\epsilon}^{\phi_i}(w) := \{(\phi_i(h_0), \phi_i(h_1)) : (h_0, h_1) \in \mathrm{K}_{m,\epsilon}(w)\}.$$
 (1)

Define weak key set

$$\mathbf{K}_{m,\epsilon}^{\mathrm{union}}(w) := \bigcup_{1 \le i < r/2} \mathbf{K}_{m,\epsilon}^{\phi_i}(w). \tag{2}$$

• Question: size of weak key set?

Tianrui Wang, Anyu Wang, Xiaoyun Wang

Gathering Property and DFR of QC-MDPC 00000● Decryption failure attack for QC-MDPC 000000

Conclusion

Expanded Weak key with high DFR

$$\mathsf{DFR}_{\mathsf{avg}} \geq 2 \cdot \mathsf{DFR}_{(h_0,h_1) \overset{\$}{\leftarrow} \mathsf{K}^{\mathsf{union}}_{m,\epsilon}(w)} \cdot \frac{|\mathsf{K}^{\mathsf{union}}_{m,\epsilon}(w)|}{|\mathsf{K}(w)|} \quad , \qquad (3)$$

- When $(m = 4000, \epsilon = 1)$, DFR_{avg} \geq $2^{-29.33} \cdot 2^{-87.28} = 2^{-116.61}$
- Much higher than 2^{-128}
- CCA security claim? Recovery Attack?

(m, ϵ)	(2900, 1)	(3100, 1)	(3200, 1)	(3400, 1)	(3500, 1)	(3600, 1)	(4000, 1)
N	2996871	5459695	32903584	165860000	214960000	315470000	8745860000
F	16	16	31.5°	25.5*	13.5*	11	13
DFR	-17.52	-18.38	-19.99	-22.63	-23.92	-24.77	-29.33
p	-119.45	-112.76	-109.58	-103.51	-100.62	-97.80	-87.28

Tianrui Wang, Anyu Wang, Xiaoyun Wang

Contents

2 Gathering Property and DFR of QC-MDPC

3 Decryption failure attack for QC-MDPC

4 Conclusion

Tianrui Wang, Anyu Wang, Xiaoyun Wang

Attack Model without ciphertexts reusing

- Principle: $DFR_{weak} >> DFR_{avg}$
- Model
 - $\bullet~1.Construct~ciphertexts:$ for a target T, generate $1/\text{DFR}_{\text{weak}}$ ciphertexts
 - 2.Query: decrypt those ciphertexts. If a failure occurs, jump to 3. Or change a target and return 1.
 - 3.Recover: If T has a decryption failure, T's key is probably a weak one. Try to recover it using ISD with extra information.
- False Positive: decryption failure but not weak key
 - cannot recover false positive cases
 - can measure/estimate the number of false positive

Tianrui Wang, Anyu Wang, Xiaoyun Wang

Key Recovery

Problem

Given $\mathbf{H} \in \mathbb{F}_2^{r \times 2r}$, $\mathbf{s} \in \mathbb{F}_2^r$ and positive integers w, m and $\epsilon \ge 0$, find $\mathbf{e} = (\mathbf{h}_1^T, \mathbf{h}_0^T)^T$ such that $\mathbf{H}\mathbf{e} = \mathbf{s}$, $w_H(\mathbf{h}_0) = w_H(\mathbf{h}_1) = w/2$ and there exists an integer a such that $w_H(\mathbf{h}_0^{[a,a+m)}) = w/2 - \epsilon$.

- Syndrome Decoding with Extra Information
- ISD with Extra Information
- Recover secret key (h_0, h_1)
 - Suppose there exists i s.t. (\$\phi_i^{-1}(h_0)\$, \$\phi_i^{-1}(h_1)\$) has gathering property
 - Try to recover $(\mathbf{h_0}, \mathbf{h_1})$ with any *i*
 - Succeed or fail when the key is a false positive one

Tianrui Wang, Anyu Wang, Xiaoyun Wang

ISD with Extra Information

Background

- Classical ISD
 - Syndrome Decoding *He* = *s*

Gathering Property and DFR of QC-MDPC

- Class: Prange, Stern-Dumer, MMT, BJMM, MO...
- Step: Random Permutation (try to split e into (e_1, e_2) where $w_H(e_1) = w p$, $w_H(e_2) = p$), Gauss Elimination, Column Match, Recover

Decryption failure attack for QC-MDPC

0000000

- ISD with Extra Information
 - Extra Information: $w_H(\mathbf{y}_0^{[a,a+m)}) = w_H(\mathbf{y}_0) \epsilon$
 - Modification:
 - guess beginning index a,
 - gather the *m* positions of y_0 (high weight) in e_1 ,
 - gather the remaining positions of y_0 (low weight) in e_2 ,
 - permute others randomly

Tianrui Wang, Anyu Wang, Xiaoyun Wang

Complexity Analysis

Complexity

Tianrui Wang, Anyu Wang, Xiaoyun Wang

Attack Model with ciphertexts reusing

Ciphertexts Reusing

- BIKE has no multi-target protection
- Preprocess: generate weak ciphertexts with gathering property
- Attack Model
 - $\mathsf{DFR}_{m,\epsilon}$ denotes to the DFR when key and error have (m,ϵ) property
 - 1. generate ciphertexts randomly and collect $1/\textit{DFR}_{m,\epsilon}$ ones with gathering property
 - 2. choose a target T, decrypt those ciphertexts with T's oracle. If a decryption failure occurs, jump to 3. Or change a target and return 2.
 - 3. If T has a decryption failure, T's key is probably a weak one. Try to recover it using ISD with extra information.

Tianrui Wang, Anyu Wang, Xiaoyun Wang

Complexity Analysis

Complexity

Theorem

The complexity $C_{total} = (\mathsf{DFR}_{m,\epsilon} \cdot q_{m,\epsilon})^{-1} + (\mathsf{DFR}_{m,\epsilon} \cdot p_{m,\epsilon})^{-1} + p_{true}^{-1} \cdot T_{ISD},$ where $p_{true} = \mathsf{DFR}_{m,\epsilon} \cdot p_{m,\epsilon} / \mathsf{DFR}_{avg}^{e \sim (m,\epsilon)}$

• when
$$m = 5100, \epsilon = 1$$
,
 $C_{\text{total}} = 2^{98.77}$

• 20 bits advantage

Table 1: Complexity of two models

	Without reusing	With reusing
Total Complexity	2 ^{116.61}	2 ^{98.77}
Targets Number	2 ^{87.28}	2 ^{76.69}
Queries Times	2 ^{29.33}	222.08
Identifying Failures	2 ^{116.61}	2 ^{98.77}
Key Recovery	2 ^{111.96}	2 ^{94.81}
Preprocessing	-	2 ^{97.66}

Summary and Future Work

Summary

- An estimate of DFR based on weak keys
- A decryption failure attack on BIKE
- Solutions for BIKE
 - Estimate DFR more accurate (theoretically or experimentally)
 - Avoid ciphertexts reusing
- Future Work
 - More effective attack with larger m, ϵ (over 2^{30} decryption)
 - $w_H(e_0) = w_H(e_1) = t/2 \rightarrow w_H(e_0) + w_H(e_1) = t$
 - Theoretical model between Gathering Property and Bit-Flipping

Tianrui Wang, Anyu Wang, Xiaoyun Wang

Shanks for your attention!

Q & A

Tianrui Wang, Anyu Wang, Xiaoyun Wang