Two-Round
Stateless Deterministic
Two-Party Schnorr Signatures
from Pseudorandom Correlation Functions

Yashvanth Kondi ~ Claudio Orlandi =~ Lawrence Roy

/ AARHUS
¥ UNIVERSITY

viO

Cryptographic Keys: Valuable Targets

Single point of failure

Cryptographic Keys: Valuable Targets

Single point of failure

Cryptographic Keys: Valuable Targets

Single point of failure

Threshold Signatures

Threshold Signatures

This Work

e Derandomized Two-party Schnorr Signing w. resilience to state
resets

o Conceptual insight: Just as PRFs derandomize plain signing,
Pseudorandom Correlation Functions natively derandomize
distributed signing

o Two constructions, useful tradeofls relative to prior work

e Bonus (not explored in this talk): two-round signing w. standard
assumptions

Schnorr Key Generation

SchnorrKeyGen((G, G, q) :
sk « 7 g
PK =sk-G
output (sk, PK)

: Public Key: exposed to the outside world
secret key: kept private

Schnorr Signing

SchnorrKeyGen(G, G, g) : SchnorrSign(sk, m) :
sk« Z, k2,
PK =sk-G § R=k-G
: NONCE
OU.tpU.t (Sk, PK) One-tilme use € — H(R”m)
' s =k—sk-e (mod g)
o = (5, R)
output o

Verifying a signature: 5 - G — R—e - PK

Distributing Schnorr Signing

SchnorrSign(sk, m) :
k «— Z
1 Any linear secret sharing
R=k-G
Linear function of £k, sk € = H(RHM)

E to distribut ith t
asy to distribute with mos c—=k—sk-.e
natural (i.e. linear) secret

sharing schemes o= (s,R)

output o

EdDSA

o Edwards-curve Digital Signature Algorithm
e Devised by Bernstein, Duif, Lange, Schwabe, and Yang in 2011

e Variant of Schnorr’s signature instantiated with careful
choice of parameters

e Widely deployed, and increasing in use

EdDSA 1is a little different...

o (Distributed) KeyGeneration of EADSA is identical to Schnorr

o EdDSA signing involves some non-linearity

SchnorrSign(sk, m) :

k<—Zq
R=k-G

e = H(R||m)
s=k—sk-e
o= (s,R)

output o

EdDSA 1is a little different...

o (Distributed) KeyGeneration of EADSA is identical to Schnorr

o EdDSA signing involves some non-linearity

SchnorrSign(sk, m) : -~ EdDSASign(sk, m) :
k2, '
R=k-G ;
e = H(R||m) e = H(R||m)
s=k—sk-e s=k—sk-e
o= (s,R) o = (5, R)

output o output o

EdDSA 1is a little different...

o (Distributed) KeyGeneration of EADSA is identical to Schnorr

o EdDSA signing involves some non-linearity

SchnorrSign(sk, m) : -~ EdDSASign(sk, m) :
k<27, . = F(sk, m)
R=k-G R=k-G
e = H(R||m) e = H(R||m)
s=k—sk-e s=k—sk-e
o= (s,R) o = (5, R)

output o output o

EdDSA 1is a little different...

o (Distributed) KeyGeneration of EADSA is identical to Schnorr

Pseudorandom
o EdDSA signing involves some non-linearity Function
SchnorrSign(sk, m) : EdDSASign(sk, m) : Painful to
k< Z, k = F(sk,m) — distribute
R=k-G R=k-G
e = H(R||m) e = H(R||m)
s=k—sk-e s=k—sk-e
o= (s,R) o = (5, R)

output o output o

Why does EADSA have non-linear signing?

o Each Schnorr signature requires a fresh, one-time nonce (k, R)

e Security is extremely sensitive to the distribution of k&

Boneh Venkatesan 96 |[Howgrave-Graham Smart 01][Bleichenbacher 00]
Aranha Novaes Takahashi Tibouchi Yarom 20][Albrecht Heninger 21]

e Major concern in practice: "true” randomness is a scarce resource
- Errors in implementation
- Poorly seeded Random Number Generators

- eg. Sony Playstation hack, Bitcoin theft via repeated nonces

Stateful PRNG?

o Simple derandomization: keep counter, use PRF¢4(counter)
Fresh state = fresh nonce, but Reused state = repeated nonce

o Stale state hard to detect in crypto API context

e State reuse can be accidental, or maliciously triggered
- think of stale snapshots in VMs, power supply interrupts, etc.

o “State continuity” is non-trivial even with trusted hardware

e Ideally, signing should be stateless

Stateless Derandomization

e Just as simple:
- During keygen: sd « {0,1}"
- To sign m: k = PRF(sd, m)

o Classic idea [M’Raihi Naccache Pointcheval Vaudenay 98] [Wigley 97]
[Barwood 97] that is employed by EADSA

e Undetectable outside the system
= Verification is unchanged

o Stateless derandomized threshold Schnorr signing?

Threshold Setting: Simple Attempt

ska skg gﬁi
kpn < Z, kg < Z,
Ry=kn-G Rg = kg - G
R=R),+ Rye————— R=R,+ Ry
e = H(R||m) e = H(R||m)
Sxn =k, —skp - € sg = kg —skg - €

S = Sp + Sg > 5§ = 5, + 5p

A A

Threshold Setting: Simple Attempt

@ il
SkA SkB < ammeemn\
Like plain signing,

this is the only ka < £ ke < 24
randomized step Ko =ka- G Rg=kg-G

R=R\+Rg+——————+ R=R,+Ry

Threshold Setting: Simple Attempt

SkA SdA SdB SkB L’m

Like plain signing,
this is the only ka < £ ke < 24
randomized step Ko =ka- G Rg=kg-G

R=R\+Rg+——————+ R=R,+Ry

Threshold Setting: Simple Attempt

ska sda sdg skg L’m

Like plain signing,
this is the only
randomized step Ko =ka- G Rg=kg-G

R=R,+Ry+———+» R=R,+R;

Threshold Setting: Simple Attempt

@) ska sda sdg skg {\c’m

Like plain signing,
this is the only
randomized step Ko =ka- G Rg=kg-G

R=R,+Ry+———+» R=R,+R;

Threshold Setting: Simple Attempt

@ ska sda sdg Sks&%

Like plain signing,
this is the only
randomized step Ra =ka- G

Sign same m again These stay the same

ing: Simple Attempt

SkA SdA SdB SkB L’m

Threshold Se 1

Like plain signing,
this is the only
randomized step Ra =ka- G

Sign same m again

This changes

ing: Simple Attempt

ska Sda sdg skg L’m

Threshold Se t)

Like plain signing,
this is the only
randomized step Ra =ka- G

7 collects Sign same m again

This changes

These stay the same

sg = kg — skg - €

> — _ . prF
SB—kB SkB e

Ry =k-G

2 linear combinations of R* =R + Rg+———— R* =R+ Ry

honest party's 2 secrets
[Maxwell Poelstra Seurin Wuille 19]

Threshold Setting: Take 2

SkA SdA SdB SkB L’m

ky = F(sd,, m) kg = F(sdg, m)
Ry=k,-G R.=ks-G
R=R,+Ry+——————+ R=R, + Ry

Need to verify this
is done correctly

Threshold Setting: Take 2

SkA SdA SdB SkB L’m

Com(sdy)
Com(sdg)

Ry=ky+G Ry=ky-G
R=Ry+Rye———» R=R, +R,

Need to verify this
is done correctly

Threshold Setting: Take 2

SkA SdA SdB SkB L"m

Com(sdp)
Com(sdg)
Need to verity this
— F _
is done correctly K (sda, m) kg = F(sdg, m)
, g

Threshold Setting: Take 2

SkA SdA SdB SkB L’m

Com(sdp)
Com(sdg)
Need to verity this
— F _
is done correctly Kn (sdp, m) kg = F(sdg, m)
7, . R, consistent with Com(sdp)
. Ry

75 . Ry consistent with Com(sdp)

Threshold Setting: Take 2

7a - R, consistent with Com(sda)
75 . Ry consistent with Com(sdg)

e This "GMW-style” approach was taken in (the only) previous works
[Nick Ruffing Seurin Wuille 20][Garillot K Mohassel Nikolaenko 21]

o The statement to be proven in ZK is non-trivial: Ry, = F(sda,m) - G

Threshold Setting: Take 2

7a - R, consistent with Com(sda)
75 . Ry consistent with Com(sdg)

e This "GMW-style” approach was taken in (the only) previous works
[Nick Ruffing Seurin Wuille 20][Garillot K Mohassel Nikolaenko 21]

o The statement to be proven in ZK is non-trivial: R, = F(sda,m) - G

PRF evaluation Exponentiation

- [NRSW 20]: Custom arithmetic PRF + Bulletproofs
- |GKMN 21]: Standardized PRF (eg. AES) + Garbled Circuits

[s there a more "native” approach?

e Proving correct evaluation of F is inherently bottlenecked by
circuit complexity of PRFs

o Ideally, we would like to avoid such non-blackbox use of crypto

e Central question in this paper:

This work: a qualified “yes”

Our Results

e Main construction: blackbox use of Pseudorandom Correlation
Function (PCF) for Vector Oblivious Linear Evaluation (VOLE) in Z

- Simple stateless derandomization pattern
- PCFs are increasingly general, but it's not Oblivious Transfer
e T'wo concrete instantiations:

1. Covert security from any PRF

2. Full malicious security from Paillier

Pseudorandom Correlation Functions
[Boyle Couteau Gilboa Ishai Kohl Scholl 20]

For a correlation %

7 ¥
sda =4 setup sdg
one-time
unbounded
Ve o = PCF(sd,, x) X V.5 = PCF(sdg, x)

(yx,A’ yx,B) c ?

Pseudorandom Correlation Functions
[Boyle Couteau Gilboa Ishai Kohl Scholl 20]

For a correlation %

Complexity of ‘¥
determines ¥
efficiency of PCF sd, setup sdg
one-time
unbounded
Ve o = PCF(sd,, x) X V.5 = PCF(sdg, x)

(yx,A’ yx,B) c ?

"Good enough” Correlation for Schnorr

- simple enough for reasonably efficient PCFs
- powerful enough to build what we want

?\%OLE) ((k, w = Ak +)), (A,ﬁ))

"Good enough” Correlation for Schnorr

private nonce MAC on nonce

Yvoie : ((kw=Ak+), (A,)
MAC verification key

-\

"Good enough” Correlation for Schnorr

private nonce MAC on nonce

Yvoie : ((kw=Ak+), (A,)
MAC verification key

Verity MAC in exponent

"Good enough” Correlation for Schnorr

private nonce MAC on nonce

voe | ((kow=Ak+p), (A,)
MAC verification key

Need to
guess A to

subvert the

check

Verity MAC in exponent

PCF for ?éOLE

o First construction: adapted from SoftSpoken VOLE [Roy22]
(originally used for OT Extensmn)

(-

{kp SdA\{kA}

k=%, PRF.(x) p=2; (i—A) - PRF(x)

PCF for ?\%OLE

o First construction: adapted from SoftSpoken VOLE [Roy22]
(originally used for OT Extensmn)

.

{kp SdA\{kA}

k = %, PRF, (x) S =%, (i—A) - PRF. (0

W = Zi - PRFki(X) A € poly(x) = only covert security
(eg. 271¥ soundness)

Fully Secure PCF for ?\%OLE

e Unclear how to strengthen the SoftSpoken VOLE construction

o [Orlandi Scholl Yakoubov 21]: Elegant VOLE PCF from Paillier,
supports A € exp(k)

o Unfortunately, [OSY21] gives VOLE in the ring Z

(V is a biprime of factorization unknown to verifier)

« We need to “translate” VOLE in Zy to Z,

This turns out to be quite non-trivial, borrowed ideas from
[0OSY21, Roy Singh 21]

S
C
C
U
I
C
ly
T
I
a
Il
S
lati
Il
g
Yo
\/
O
L
E
— Y1
\/
O
L
E

A
N
L]

\/
O
LE
=\

k
W
= A
k
|
p
(m
0
d
N
)
A
v

Securely Translating ?VOLE ?\/QLE

Public M s.t. g| M

AN L]

VOLE =

kyw= Ak+ [(mod N) A, p
Derive k; , k.« k, M+ k, =k

IKNP-style “correction word”

i P =+ A(Mk,,)
((k109 W) (A ﬁ)) = ?VOLE

Securely Translating

VOLE - ?VOLE

Public M s.t. g| M

AN
VOLE
k,w= Ak+ f (mod N)
IKNP-style “correction word” T

hi

N+p =w

=\

A, p

p'=p+ AMk;

Securely Translating ?VOLE

Public M s.t. g| M

AN
VOLE

k,w= Ak+# (mod N)

IKNP-style “correction word” T
However, deriving a correct i
correlation isn’t enough; we AP+ B

need reset resilience as well

YvoLe

B =

=\

A, p

B+ AME

Securely Translating ?VOLE

Public M s.t. g| M

AN
VOLE

k,w= Ak+# (mod N)

IKNP-style “correction word” T

However, deriving a correct i

correlation isn’t enough; we)
AklO + ﬁ - W

need reset resilience as well

Same kj, (mod g) V valid i

YvoLe

B =

=\

A, p

B+ AME

Securely Translating ?VOLE

Public M s.t. g| M

AN
VOLE

k,w= Ak+# (mod N)

IKNP-style “correction word” T

However, deriving a correct i

correlation isn’t enough; we)
AklO + ﬁ - W

need reset resilience as well

Same kj, (mod g) V valid i small

YvoLe

B =

=\

A, p

B+ AME

Securely Translating VOLE — ?\/OLE

Public M s.t. g| M

—

VOLE =

kyw= Ak+ [(mod N) A, p

Check modulo auxiliary biprime Similar to [DF02]

gk g™ (mod N)
IKNP-style “correction word” -_

K) — K
However, deriving a correct hi ﬁ o ﬁ T A(Mkhz

correlation isn’t enough; we -
need reset resilience as well AklO T ﬁ — W

: 7 ~
g’ (g")* = g" (mod N)

Same klo (m()d q) VYV valid k;zki small Sound assuming Strong RSA

Signing Efficiency: PCF Overhead

o Covert construction only adds a single G element, comparable to semi-honest
signing for reasonable deterrence

o Fully secure Paillier-based construction for 256-bit curve, this work (PCF) in
comparison with [NRSW20] (Bulletproofs) and [GKMN21] (Garbled Circuits)

- 1451 bytes (including correction word+check)

Bandwidth: PCF < Bulletproofs << Garbled Circuits
0.5KB 1KB 100s of KB

- [188ms to prove and verity

Computation: Garbled Circuits < PCF < Bulletproofs

tens of ms 188ms 950ms

Instantiating # g,

o PCFs are defined with a trusted dealer, no standard setup protocol
- This model may be enough for some applications [ANOSS22]

o Setup protocol for covert PCF is straightforward via OT

o Setup for Paillier PCF has to generate biprimes N, N
- Prover knows factorization of NV i
- Verifier can know factorization of N

o Each party could potentially choose its own modulus and prove well-
formedness.
We do not explore this further in this work as we focus on signing

In Conclusion

o We give a new approach to stateless deterministic 2P-Schnorr
signing based on PCFs: towards blackbox use of cryptography
o Two instantiations based on PCFs for VOLE:
- Covert security from PRF-based SoftSpoken VOLE [Roy22]

- Malicious security from Paillier-based [OSY21, RS21]
+ Novel mechanism to translate VOLE from Zy — Z,

+ Interesting tradeofls relative to existing work

Th ank N ! Thanks Eysa
eprint: 2023/216 '

https://eprint.iacr.org/2023/216

