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This Work
• Derandomized Two-party Schnorr Signing w. resilience to state 

resets 

• Conceptual insight: Just as PRFs derandomize plain signing, 
Pseudorandom Correlation Functions natively derandomize 
distributed signing 

• Two constructions, useful tradeoffs relative to prior work 

• Bonus (not explored in this talk): two-round signing w. standard 
assumptions



Schnorr Key Generation

SchnorrKeyGen(𝔾, G, q) :
𝗌𝗄 ← ℤq

𝖯𝖪 = 𝗌𝗄 ⋅ G
output (𝗌𝗄, 𝖯𝖪)

Public Key: exposed to the outside world
secret key: kept private



NONCE 
One-time use 

value

Verifying a signature: s ⋅ G ?= R−e ⋅ 𝖯𝖪

Schnorr Signing

SchnorrKeyGen(𝔾, G, q) :
𝗌𝗄 ← ℤq

𝖯𝖪 = 𝗌𝗄 ⋅ G
output (𝗌𝗄, 𝖯𝖪)

SchnorrSign(𝗌𝗄, m) :
k ← ℤq

R = k ⋅ G
e = H(R∥m)
s = k − 𝗌𝗄 ⋅ e
σ = (s, R)

output σ

(𝗆𝗈𝖽 q)



Linear function of k, sk 
Easy to distribute with most 

natural (i.e. linear) secret 
sharing schemes

Distributing Schnorr Signing

Any linear secret sharing

SchnorrSign(𝗌𝗄, m) :
k ← ℤq

R = k ⋅ G
e = H(R∥m)
s = k − 𝗌𝗄 ⋅ e
σ = (s, R)

output σ



EdDSA

• Edwards-curve Digital Signature Algorithm 

• Devised by Bernstein, Duif, Lange, Schwabe, and Yang in 2011 

• Variant of Schnorr’s signature instantiated with careful 
choice of parameters 

• Widely deployed, and increasing in use



SchnorrSign(𝗌𝗄, m) :
k ← ℤq

R = k ⋅ G
e = H(R∥m)
s = k − 𝗌𝗄 ⋅ e
σ = (s, R)

output σ

• (Distributed) KeyGeneration of EdDSA is identical to Schnorr 

• EdDSA signing involves some non-linearity

EdDSA is a little different…
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SchnorrSign(𝗌𝗄, m) :
k ← ℤq

R = k ⋅ G
e = H(R∥m)
s = k − 𝗌𝗄 ⋅ e
σ = (s, R)

output σ

EdDSASign(𝗌𝗄, m) :
k = F(𝗌𝗄, m)
R = k ⋅ G
e = H(R∥m)
s = k − 𝗌𝗄 ⋅ e
σ = (s, R)

output σ

• (Distributed) KeyGeneration of EdDSA is identical to Schnorr 

• EdDSA signing involves some non-linearity
Pseudorandom 
Function

EdDSA is a little different…

Painful to 
distribute



Why does EdDSA have non-linear signing?

• Each Schnorr signature requires a fresh, one-time nonce ( ) 

• Security is extremely sensitive to the distribution of  
[Boneh Venkatesan 96][Howgrave-Graham Smart 01][Bleichenbacher 00] 
[Aranha Novaes Takahashi Tibouchi Yarom 20][Albrecht Heninger 21] 

• Major concern in practice: “true” randomness is a scarce resource 
- Errors in implementation 
- Poorly seeded Random Number Generators 
- eg. Sony Playstation hack, Bitcoin theft via repeated nonces 

-

k, R

k



Stateful PRNG?
• Simple derandomization: keep counter, use counter) 

Fresh state  fresh nonce, but Reused state  repeated nonce 

• Stale state hard to detect in crypto API context 

• State reuse can be accidental, or maliciously triggered 
- think of stale snapshots in VMs, power supply interrupts, etc. 

• “State continuity” is non-trivial even with trusted hardware 

• Ideally, signing should be stateless

𝖯𝖱𝖥𝗌𝖽(
⇒ ⇒



• Just as simple: 

- During keygen:  

- To sign :   

• Classic idea [M’Raïhi Naccache Pointcheval Vaudenay 98] [Wigley 97]
[Barwood 97] that is employed by EdDSA 

• Undetectable outside the system 
 Verification is unchanged 

• Stateless derandomized threshold Schnorr signing?

𝗌𝖽 ← {0,1}κ

m k = 𝖯𝖱𝖥(𝗌𝖽, m)

⇒

Stateless Derandomization



Threshold Setting: Simple Attempt

k𝖠

𝗌𝗄𝖠

← ℤq ← ℤq

R𝖠R𝖡

s𝖠 = k𝖠 − 𝗌𝗄𝖠 ⋅ e s𝖡 = k𝖡 − 𝗌𝗄𝖡 ⋅ e

s𝖡

R = R𝖠 + R𝖡 R = R𝖠 + R𝖡

e = H(R∥m) e = H(R∥m)

s = s𝖠 + s𝖡 s = s𝖠 + s𝖡

R𝖠 = k𝖠 ⋅ G R𝖡 = k𝖡 ⋅ G
k𝖡

𝗌𝗄𝖡



k𝖠

𝗌𝗄𝖠

← ℤq ← ℤq

R𝖠R𝖡

s𝖠 = k𝖠 − 𝗌𝗄𝖠 ⋅ e s𝖡 = k𝖡 − 𝗌𝗄𝖡 ⋅ e

s𝖡

R = R𝖠 + R𝖡 R = R𝖠 + R𝖡

e = H(R∥m) e = H(R∥m)

s = s𝖠 + s𝖡 s = s𝖠 + s𝖡

R𝖠 = k𝖠 ⋅ G R𝖡 = k𝖡 ⋅ G
k𝖡

𝗌𝗄𝖡

Threshold Setting: Simple Attempt

Like plain signing, 
this is the only 

randomized step



k𝖠

𝗌𝗄𝖠

← ℤq ← ℤq

R𝖠R𝖡

s𝖠 = k𝖠 − 𝗌𝗄𝖠 ⋅ e s𝖡 = k𝖡 − 𝗌𝗄𝖡 ⋅ e

s𝖡

R = R𝖠 + R𝖡 R = R𝖠 + R𝖡

e = H(R∥m) e = H(R∥m)

s = s𝖠 + s𝖡 s = s𝖠 + s𝖡

R𝖠 = k𝖠 ⋅ G R𝖡 = k𝖡 ⋅ G
k𝖡

𝗌𝖽𝖠 𝗌𝖽𝖡 𝗌𝗄𝖡

Threshold Setting: Simple Attempt

Like plain signing, 
this is the only 

randomized step



R𝖠R𝖡

s𝖠 = k𝖠 − 𝗌𝗄𝖠 ⋅ e s𝖡 = k𝖡 − 𝗌𝗄𝖡 ⋅ e

s𝖡

R = R𝖠 + R𝖡 R = R𝖠 + R𝖡

e = H(R∥m) e = H(R∥m)

s = s𝖠 + s𝖡 s = s𝖠 + s𝖡

s𝖡 = k𝖡 − 𝗌𝗄𝖡 ⋅ e

𝗌𝗄𝖠

k𝖠 k𝖡= F(𝗌𝖽𝖠, m) = F(𝗌𝖽𝖡, m)
R𝖠 = k𝖠 ⋅ G R𝖡 = k𝖡 ⋅ G

𝗌𝖽𝖠 𝗌𝖽𝖡 𝗌𝗄𝖡

Threshold Setting: Simple Attempt

Like plain signing, 
this is the only 

randomized step



R𝖠R𝖡

s𝖠 = k𝖠 − 𝗌𝗄𝖠 ⋅ e s𝖡 = k𝖡 − 𝗌𝗄𝖡 ⋅ e

s𝖡

R = R𝖠 + R𝖡 R = R𝖠 + R𝖡

e = H(R∥m) e = H(R∥m)

s = s𝖠 + s𝖡 s = s𝖠 + s𝖡

s𝖡 = k𝖡 − 𝗌𝗄𝖡 ⋅ e

𝗌𝗄𝖠

k𝖠 k𝖡= F(𝗌𝖽𝖠, m) = F(𝗌𝖽𝖡, m)
R𝖠 = k𝖠 ⋅ G R𝖡 = k𝖡 ⋅ G

𝗌𝖽𝖠 𝗌𝖽𝖡 𝗌𝗄𝖡

Threshold Setting: Simple Attempt

Like plain signing, 
this is the only 

randomized step



R𝖠R𝖡R = R𝖠 + R𝖡 R = R𝖠 + R𝖡

𝗌𝗄𝖠

k𝖠 k𝖡= F(𝗌𝖽𝖠, m) = F(𝗌𝖽𝖡, m)
R𝖠 = k𝖠 ⋅ G R𝖡 = k𝖡 ⋅ G

𝗌𝖽𝖠 𝗌𝖽𝖡 𝗌𝗄𝖡

Threshold Setting: Simple Attempt

Like plain signing, 
this is the only 

randomized step

k𝖡 = F(𝗌𝖽𝖡, m)
R𝖡 = k𝖡 ⋅ G

Sign same  againm These stay the same



R𝖠R𝖡R = R𝖠 + R𝖡 R = R𝖠 + R𝖡

𝗌𝗄𝖠

k𝖠 k𝖡= F(𝗌𝖽𝖠, m) = F(𝗌𝖽𝖡, m)
R𝖠 = k𝖠 ⋅ G R𝖡 = k𝖡 ⋅ G

𝗌𝖽𝖠 𝗌𝖽𝖡 𝗌𝗄𝖡

Threshold Setting: Simple Attempt

Like plain signing, 
this is the only 

randomized step

R𝖡R* = R*𝖠 + R𝖡

k𝖡= F*(𝗌𝖽𝖠, m) = F(𝗌𝖽𝖡, m)
R*𝖠 = k*𝖠 ⋅ G R𝖡 = k𝖡 ⋅ G
k*𝖠

Sign same  againm

R* = R*𝖠 + R𝖡

These stay the same
This changes



R𝖠R𝖡R = R𝖠 + R𝖡 R = R𝖠 + R𝖡

𝗌𝗄𝖠

k𝖠 k𝖡= F(𝗌𝖽𝖠, m) = F(𝗌𝖽𝖡, m)
R𝖠 = k𝖠 ⋅ G R𝖡 = k𝖡 ⋅ G

𝗌𝖽𝖠 𝗌𝖽𝖡 𝗌𝗄𝖡

Threshold Setting: Simple Attempt

Like plain signing, 
this is the only 

randomized step

R𝖡R* = R*𝖠 + R𝖡

k𝖡= F*(𝗌𝖽𝖠, m) = F(𝗌𝖽𝖡, m)
R*𝖠 = k*𝖠 ⋅ G R𝖡 = k𝖡 ⋅ G
k*𝖠

Sign same  againm

R* = R*𝖠 + R𝖡

These stay the same
This changes

s𝖡 = k𝖡 − 𝗌𝗄𝖡 ⋅ e

collects

s*𝖡 = k𝖡 − 𝗌𝗄𝖡 ⋅ e*

2 linear combinations of 
honest party’s 2 secrets
[Maxwell Poelstra Seurin Wuille 19]
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Threshold Setting: Take 2
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• This “GMW-style” approach was taken in (the only) previous works 
[Nick Ruffing Seurin Wuille 20][Garillot K Mohassel Nikolaenko 21] 

• The statement to be proven in ZK is non-trivial: R𝖠 = F(𝗌𝖽𝖠, m) ⋅ G
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π𝖠 : R𝖠 consistent with 𝖢𝗈𝗆(𝗌𝖽𝖠)

π𝖡 : R𝖡 consistent with 𝖢𝗈𝗆(𝗌𝖽𝖡)

ZKP

ZKP

• This “GMW-style” approach was taken in (the only) previous works 
[Nick Ruffing Seurin Wuille 20][Garillot K Mohassel Nikolaenko 21] 

• The statement to be proven in ZK is non-trivial: R𝖠 = F(𝗌𝖽𝖠, m) ⋅ G
PRF evaluation Exponentiation

- [NRSW 20]: Custom arithmetic PRF + Bulletproofs 

- [GKMN 21]: Standardized PRF (eg. AES) + Garbled Circuits

Threshold Setting: Take 2



Is there a more “native” approach?

• Proving correct evaluation of  is inherently bottlenecked by 
circuit complexity of PRFs 

• Ideally, we would like to avoid such non-blackbox use of crypto 

• Central question in this paper:

F

Can we design a distributed, stateless deterministic Schnorr signing 
scheme that makes blackbox use of cryptographic primitives? 

This work: a qualified “yes”



Our Results
• Main construction: blackbox use of Pseudorandom Correlation 

Function ( ) for Vector Oblivious Linear Evaluation (VOLE) in  

- Simple stateless derandomization pattern 

- s are increasingly general, but it’s not Oblivious Transfer 

• Two concrete instantiations: 

1. Covert security from any PRF 

2. Full malicious security from Paillier

𝖯𝖢𝖥 ℤq

𝖯𝖢𝖥



Pseudorandom Correlation Functions
[Boyle Couteau Gilboa Ishai Kohl Scholl 20]

ℱ𝒴
𝗌𝖾𝗍𝗎𝗉𝗌𝖽𝖠 𝗌𝖽𝖡

one-time

unbounded

xyx,𝖠 = 𝖯𝖢𝖥(𝗌𝖽𝖠, x) yx,𝖡 = 𝖯𝖢𝖥(𝗌𝖽𝖡, x)

(yx,𝖠, yx,𝖡) ∈ 𝒴

For a correlation :𝒴



Pseudorandom Correlation Functions
[Boyle Couteau Gilboa Ishai Kohl Scholl 20]

ℱ𝒴
𝗌𝖾𝗍𝗎𝗉𝗌𝖽𝖠 𝗌𝖽𝖡

one-time

unbounded

xyx,𝖠 = 𝖯𝖢𝖥(𝗌𝖽𝖠, x) yx,𝖡 = 𝖯𝖢𝖥(𝗌𝖽𝖡, x)

(yx,𝖠, yx,𝖡) ∈ 𝒴

For a correlation :𝒴Complexity of  
determines 

efficiency of 

𝒴

𝖯𝖢𝖥



“Good enough” Correlation for Schnorr

𝒴Δ
𝖵𝖮𝖫𝖤 : ((k, w = Δk + β), (Δ, β))

- simple enough for reasonably efficient s 
- powerful enough to build what we want

𝖯𝖢𝖥



𝒴Δ
𝖵𝖮𝖫𝖤 : ((k, w = Δk + β), (Δ, β))

private nonce MAC on nonce

MAC verification key

“Good enough” Correlation for Schnorr
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𝒴Δ
𝖵𝖮𝖫𝖤 : ((k, w = Δk + β), (Δ, β))

private nonce MAC on nonce

MAC verification key
R = k ⋅ G

W = w ⋅ G
W ?= Δ ⋅ R + β ⋅ G
Verify MAC in exponent

Need to 
guess  to 
subvert the 

check

Δ

“Good enough” Correlation for Schnorr



 for 𝖯𝖢𝖥 𝒴Δ
𝖵𝖮𝖫𝖤

• First construction: adapted from SoftSpoken VOLE [Roy22] 
(originally used for OT Extension)

ℱ𝒴
𝗌𝖾𝗍𝗎𝗉𝗌𝖽𝖠 : 𝗌𝖽𝖡 :

{k1, ⋯, kη} 𝗌𝖽𝖠∖{kΔ}

𝖯𝖢𝖥(x) :
k = Σi 𝖯𝖱𝖥ki(x)

w = Σi i ⋅ 𝖯𝖱𝖥ki(x)
β = Σi (i−Δ) ⋅ 𝖯𝖱𝖥ki(x)



 for 𝖯𝖢𝖥 𝒴Δ
𝖵𝖮𝖫𝖤

• First construction: adapted from SoftSpoken VOLE [Roy22] 
(originally used for OT Extension)

ℱ𝒴
𝗌𝖾𝗍𝗎𝗉𝗌𝖽𝖠 : 𝗌𝖽𝖡 :

{k1, ⋯, kη} 𝗌𝖽𝖠∖{kΔ}

𝖯𝖢𝖥(x) :
k = Σi 𝖯𝖱𝖥ki(x)

w = Σi i ⋅ 𝖯𝖱𝖥ki(x)
β = Σi (i−Δ) ⋅ 𝖯𝖱𝖥ki(x)

  only covert security 
(eg.  soundness)

Δ ∈ 𝗉𝗈𝗅𝗒(κ) ⇒
2−10



• Unclear how to strengthen the SoftSpoken VOLE construction 

• [Orlandi Scholl Yakoubov 21]: Elegant VOLE  from Paillier, 
supports  

• Unfortunately, [OSY21] gives VOLE in the ring  
(  is a biprime of factorization unknown to verifier) 

• We need to “translate” VOLE in  to  
This turns out to be quite non-trivial, borrowed ideas from 
[OSY21, Roy Singh 21]

𝖯𝖢𝖥
Δ ∈ 𝖾𝗑𝗉(κ)

ℤN
N

ℤN ℤq

Fully Secure  for 𝖯𝖢𝖥 𝒴Δ
𝖵𝖮𝖫𝖤



Securely Translating 𝒴Δ,N
𝖵𝖮𝖫𝖤 → 𝒴Δ,q

𝖵𝖮𝖫𝖤

k, w = Δk + β (mod N) Δ, β

𝒴Δ,N
𝖵𝖮𝖫𝖤



k, w = Δk + β (mod N) Δ, β
Derive  :   klo, khi khiM + klo = k

khi β′ = β + Δ(Mkhi)
((klo, w), (Δ, β′ )) ∈ 𝒴Δ,q

𝖵𝖮𝖫𝖤

Public  s.t. M q |M

𝒴Δ,N
𝖵𝖮𝖫𝖤

IKNP-style “correction word”
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𝖵𝖮𝖫𝖤



k, w = Δk + β (mod N) Δ, β

β′ = β + Δ(Mk*hi)

Public  s.t. M q |M

𝒴Δ,N
𝖵𝖮𝖫𝖤

k*hi

IKNP-style “correction word”

Δ?? + β′ = w
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𝖵𝖮𝖫𝖤



k, w = Δk + β (mod N) Δ, β

β′ = β + Δ(Mk*hi)

Public  s.t. M q |M

𝒴Δ,N
𝖵𝖮𝖫𝖤

k*hi

IKNP-style “correction word”

However, deriving a correct 
correlation isn’t enough; we 
need reset resilience as well Δ?? + β′ = w

Securely Translating 𝒴Δ,N
𝖵𝖮𝖫𝖤 → 𝒴Δ,q

𝖵𝖮𝖫𝖤



k, w = Δk + β (mod N) Δ, β

β′ = β + Δ(Mk*hi)

Public  s.t. M q |M

𝒴Δ,N
𝖵𝖮𝖫𝖤

k*hi

IKNP-style “correction word”

However, deriving a correct 
correlation isn’t enough; we 
need reset resilience as well Δklo + β′ = w

Securely Translating 𝒴Δ,N
𝖵𝖮𝖫𝖤 → 𝒴Δ,q

𝖵𝖮𝖫𝖤

Same   valid klo (mod q) ∀ k*hi



small

k, w = Δk + β (mod N) Δ, β

β′ = β + Δ(Mk*hi)

Public  s.t. M q |M

𝒴Δ,N
𝖵𝖮𝖫𝖤

k*hi

IKNP-style “correction word”

However, deriving a correct 
correlation isn’t enough; we 
need reset resilience as well Δklo + β′ = w

Securely Translating 𝒴Δ,N
𝖵𝖮𝖫𝖤 → 𝒴Δ,q

𝖵𝖮𝖫𝖤

Same   valid klo (mod q) ∀ k*hi



small

k, w = Δk + β (mod N) Δ, β

β′ = β + Δ(Mk*hi)

Public  s.t. M q |M

𝒴Δ,N
𝖵𝖮𝖫𝖤

k*hi

IKNP-style “correction word”

However, deriving a correct 
correlation isn’t enough; we 
need reset resilience as well Δklo + β′ = w

Check modulo auxiliary biprime
gklo, gw (mod Ñ)

gβ′ (gklo)Δ ?= gw (mod Ñ)

Securely Translating 𝒴Δ,N
𝖵𝖮𝖫𝖤 → 𝒴Δ,q

𝖵𝖮𝖫𝖤

Sound assuming Strong RSASame   valid klo (mod q) ∀ k*hi

Similar to [DF02]



Signing Efficiency: PCF Overhead

• Covert construction only adds a single  element, comparable to semi-honest 
signing for reasonable deterrence 

• Fully secure Paillier-based construction for 256-bit curve, this work ( ) in 
comparison with [NRSW20] (Bulletproofs) and [GKMN21] (Garbled Circuits) 

- 451 bytes (including correction word+check)   

 Bandwidth:   <  Bulletproofs  <<  Garbled Circuits 

- 188ms to prove and verify   

 Computation: Garbled Circuits  <    <  Bulletproofs

𝔾

𝖯𝖢𝖥

𝖯𝖢𝖥

𝖯𝖢𝖥

1KB 100s of KB

tens of ms 188ms 950ms

0.5KB



Instantiating ℱ𝗌𝖾𝗍𝗎𝗉

• s are defined with a trusted dealer, no standard setup protocol 
- This model may be enough for some applications [ANOSS22] 

• Setup protocol for covert  is straightforward via OT 

• Setup for Paillier  has to generate biprimes  
- Prover knows factorization of  
- Verifier can know factorization of  

• Each party could potentially choose its own modulus and prove well-
formedness. 
We do not explore this further in this work as we focus on signing

𝖯𝖢𝖥

𝖯𝖢𝖥

𝖯𝖢𝖥 N, Ñ
N

Ñ



In Conclusion
• We give a new approach to stateless deterministic 2P-Schnorr 

signing based on s: towards blackbox use of cryptography 

• Two instantiations based on s for VOLE: 

- Covert security from PRF-based SoftSpoken VOLE [Roy22] 

- Malicious security from Paillier-based [OSY21, RS21] 
+ Novel mechanism to translate VOLE from  
+ Interesting tradeoffs relative to existing work

𝖯𝖢𝖥

𝖯𝖢𝖥

ℤN → ℤq
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