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Our Result in Short

A new Schnorr-type 3-round 
blind signature based on isogenies (CSIDH).

• The first (partially) blind signature from isogenies. 

• Provable security for log-concurrent sessions.

• New hardness assumption for optimization.



1. Background



What are Blind Signatures?

Signer (𝑣𝑘, 𝑠𝑘) User (𝑣𝑘,𝑚)

…
Signature 𝜎 for 𝑚

⇒ An interactive signing protocol with “privacy”.



What are Blind Signatures?

Signer (𝑣𝑘, 𝑠𝑘) User (𝑣𝑘,𝑚)

…
Signature 𝜎 for 𝑚

⇒ An interactive signing protocol with “privacy”.

Security
Honest user   ⇒ Want 𝒎 to be hidden
Honest signer  ⇒ Want unforgeability
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Blindness

Given two transcripts (𝑇, 𝑇!) and (m", 𝜎"), (m#, 𝜎#), 
Adv      cannot guess bit 𝑏.  

Transcript 𝑻

Signer (𝑣𝑘, 𝑠𝑘) User (𝑣𝑘)

…
𝜎!, 𝑚! , (𝜎", 𝑚")

…

𝑚&

𝑚'(&

𝑻′

Very intuitively, (𝜎,𝑚) cannot 
be traced back to the user.
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p Traditional Applications 
- E-cash, anonymous credentials, e-voting.

p Recent Applications
- Adding anonymity for cryptocurrency transactions [ASIACCS:YL19]
- Hiding metadata in secure messaging [CCS:KKP22]

- Privacy-preserving authentication tokens [Google22]

[ASIACCS:YL19] Yi, Xun, and Kwok-Yan Lam. "A new blind ECDSA scheme for bitcoin transaction anonymity." AsiaCCS.

[Google22] “VPN by Google One, Explained” https://one.google.com/about/vpn/howitworks

By Microsoft: Based on (the now 
“insecure”) Brand’s blind signature

Applications of Blind Signatures

[CCS:KKP22] Hashimoto, Katsumata, Prest“How to Hide MetaData in MLS-Like Secure Group Messaging: Simple, Modular, and Post-Quantum." CCS.
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Known Methods to Construct Blind Signatures

1

2

Blind Schnorr Type [AC:PS92]

- Very simple and efficient.
- 3-round protocol. (*Construction based on Sigma protocols.)
- Only secure up to logarithmically concurrent sessions.

Fischlin Type [C:Fis06]

- Generic construction from standard tools.
- Uses NIZK and (typically) less efficient.
- 2-round protocol.
- Secure for polynomial concurrent sessions.



What About Isogenies?

1

2

Blind Schnorr Type [AC:PS92]

Fischlin Type [C:Fis06]

Current construction relies on modules/rings but 
isogenies are less expressive L

No efficient NIZKs and compatible signatures L



What About Isogenies?

1

2

Blind Schnorr Type [AC:PS92]

Fischlin Type [C:Fis06]

Today’s Talk

No efficient NIZKs and compatible signatures L



2. Reviewing Blind Schnorr



The Basics: Blind Schnorr

Signer (𝑣𝑘 = ℎ = 𝑔!, 𝑠𝑘 = 𝑎) User (𝑣𝑘 = ℎ,𝑚)

⇒ First Step: Interactive signing protocol w/o blindness.
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The Basics: Blind Schnorr

𝑦 ← ℤ$
𝑌 = 𝑔%

𝑐 ← 𝐻(𝑌,𝑚)
𝑟 = 𝑦 − 𝑐 ⋅ 𝑎

𝜎 = (𝑐, 𝑟)

Not blind since 𝜎 contains the transcript.

𝑌

𝑐

𝑟

Signer (𝑣𝑘 = ℎ = 𝑔!, 𝑠𝑘 = 𝑎) User (𝑣𝑘 = ℎ,𝑚)

⇒ First Step: Interactive signing protocol w/o blindness.

We have
𝑔" ⋅ ℎ# = 𝑌.



Blinding the Schnorr Protocol
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𝑦 ← ℤ$
𝑌 = 𝑔%

𝑟 = 𝑦 − 𝑐 ⋅ 𝑎
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Blinding the Schnorr Protocol

𝑦 ← ℤ$
𝑌 = 𝑔%

𝑟 = 𝑦 − 𝑐 ⋅ 𝑎
𝝈∗ = (𝒄∗, 𝒓∗)
= (𝒄 + 𝒅, 𝒓 + 𝒛)

𝑌

𝑐

𝑟

Signer (𝑣𝑘 = 𝑔!, 𝑠𝑘 = 𝑎) User (𝑣𝑘 = ℎ,𝑚)

Idea: Randomize signature
𝜎∗ = 𝑐 + 𝑑, 𝑟 + 𝑧 with 𝑑, 𝑧 ← ℤ$'

𝑑, 𝑧 ← ℤ$'

𝑌∗ = 𝑔( ⋅ 𝑌 ⋅ ℎ)
𝑐∗ ← 𝐻(𝑌∗, 𝑚)
𝑐 = 𝑐∗ − 𝑑

Why correct?

𝑔( ⋅ ℎ) = 𝑌

𝑔(*+ ⋅ ℎ)*, = 𝑌∗

𝒈𝒓∗ ⋅ 𝒉𝒄∗ = 𝒀∗

original

randomized



A Modular Construction from Modules
The core idea is to randomize the commitment 𝑌 twice.

Uses the fact that 𝔾 is a ℤ$-module.
*Layman’s term: 𝑌 can be multiplied with ℎ).

• [EC:HKL19,C:HKLN20] abstract this and shows a generic construction of 
blind signatures based on “linear identification protocol”.

• Can be instantiated by classical groups and lattices.



3. CSI-Otter
Isogeny-based Blind Signature
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Set element

Review: Group Actions

𝔤! ∗ 𝐸 = 𝐻
∗∶ 𝔾×𝑆 → 𝑆

Group element

In Isogenies: 𝔾 = “class group ≅ ℤ𝑵”, 𝑺 = “set of elliptic curves”
*CSIDH parameters
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Review: Group Actions

𝔤! ∗ 𝐸 = 𝐻
∗∶ 𝔾×𝑆 → 𝑆

Group element Set element

Example operation:
𝔤$ ∗ 𝐻 = 𝔤$ ∗ 𝔤% ∗ 𝐸 = 𝔤$ ⋅ 𝔤% ∗ 𝐸 

*compatibility
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Review: Group Actions

𝔤! ∗ 𝐸 = 𝐻
∗∶ 𝔾×𝑆 → 𝑆

Group element Set element

Example operation:
𝔤$ ∗ 𝐻 = 𝔤$ ∗ 𝔤% ∗ 𝐸 = 𝔤$ ⋅ 𝔤% ∗ 𝐸 = 𝔤%&$ ∗ 𝐸 

BUT no operations over set elements! No 𝑬×𝑯!



Set element

Review: Group Actions

𝔤! ∗ 𝐸 = 𝐻
∗∶ 𝔾×𝑆 → 𝑆

Group element

“Base” elliptic curve 𝐸 ∈ 𝑆 is the 
generator 𝑔 ∈ 𝔾 in classical groups.

𝔤! ∗ 𝐸 ⟺ 𝑔!



Base Non-Blind Protocol Based on Isogeny

𝑦 ← ℤ/
𝑌 = [𝔤%] ∗ 𝐸

𝑐 ← 𝐻(𝑌,𝑚)

𝑟 = 𝑦 − 𝑐 ⋅ 𝑎
𝜎 = (𝑐, 𝑟)

𝑌

𝑐 ∈ {0,1}

𝑟

Signer 
(𝑣𝑘 = 𝐻 = [𝔤!] ∗ 𝐸, 𝑠𝑘 = 𝑎) User (𝑣𝑘 = 𝐻,𝑚)

Due to limited structure, challenge space is now binary.

If 𝒄 = 𝟎: [𝖌𝒓] ∗ 𝑬 = 𝒀.
If 𝒄 = 𝟏: [𝖌𝒓] ∗ 𝑯 = 𝒀.



Why Blind Schnorr Fails with Group Actions
p Module Setting

ℎ = 𝑔!,



Why Blind Schnorr Fails with Group Actions
p Module Setting

p Group Action Setting

𝑦 ← ℤ/
𝑌 = [𝔤%] ∗ 𝐸 𝑌

ℎ = 𝑔!,

𝐻 = 𝔤! ∗ 𝐸,
(𝑑, 𝑧) ← ℤ/'
Can only do 
𝖌𝒛 ∗ 𝒀 or  𝖌𝒅 ∗ 𝑯!! 

Can only randomize once!!
Not enough for blindness L



Here Comes the Twist J

𝐻 = 𝔤! ∗ 𝐸,

Isogeny has slightly more structure than a group action.

Given 
Can compute the quadratic twist 𝐻"# ≝ 𝔤"! ∗ 𝐸

* “Inverse” in the classical setting: ℎ = 𝑔% ⇒ ℎ'" = 𝑔'%



Non-Blind Protocol using Twist

𝑦 ← ℤ/
𝑌 = [𝔤%] ∗ 𝐸

𝑐 ← 𝐻(𝑌,𝑚)

𝑟 = 𝑦 − 𝑐 ⋅ 𝑎
𝜎 = (𝑐, 𝑟)

𝑌

𝑐 ∈ {1, −1}

𝑟

Signer 
(𝑣𝑘 = 𝐻 = [𝔤!] ∗ 𝐸, 𝑠𝑘 = 𝑎) User (𝑣𝑘 = 𝐻,𝑚)

First Fix: The challenge space is now {1, −1}

[𝖌𝒓] ∗ 𝑯𝒄 = 𝒀.



CSI-Otter: Making it Blind
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𝑌

𝑐

𝑟

Signer (𝑣𝑘 = 𝐻, 𝑠𝑘 = 𝑎) User (𝑣𝑘 = 𝐻,𝑚)

Idea: Randomize signature
𝜎∗ = 𝒄 ⋅ 𝒅, 𝒓 ⋅ 𝒅 + 𝒛 with 𝑑, 𝑧 ← 1,−1 ×ℤ/
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𝑦 ← ℤ+
𝑌 = 𝔤% ∗ 𝐸

𝑟 = 𝑦 − 𝑐 ⋅ 𝑎
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𝑌
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Signer (𝑣𝑘 = 𝐻, 𝑠𝑘 = 𝑎) User (𝑣𝑘 = 𝐻,𝑚)

Idea: Randomize signature
𝜎∗ = 𝒄 ⋅ 𝒅, 𝒓 ⋅ 𝒅 + 𝒛 with 𝑑, 𝑧 ← 1,−1 ×ℤ/

𝑑, 𝑧 ← 1,−1 ×ℤ+
𝑌∗ = 𝔤( ∗ 𝒀𝒅
𝑐∗ ← 𝐻(𝑌∗, 𝑚)
𝑐 = 𝑐∗ ⋅ 𝑑-.

Randomize with
Quadratic Twist!!



CSI-Otter: Making it Blind

𝑦 ← ℤ+
𝑌 = 𝔤% ∗ 𝐸

𝑟 = 𝑦 − 𝑐 ⋅ 𝑎
𝝈∗ = (𝒄∗, 𝒓∗)
= (𝒄 ⋅ 𝒅, 𝒓 ⋅ 𝒅 + 𝒛)

𝑌

𝑐

𝑟

Signer (𝑣𝑘 = 𝐻, 𝑠𝑘 = 𝑎) User (𝑣𝑘 = 𝐻,𝑚)

Idea: Randomize signature
𝜎∗ = 𝒄 ⋅ 𝒅, 𝒓 ⋅ 𝒅 + 𝒛 with 𝑑, 𝑧 ← 1,−1 ×ℤ/

𝑑, 𝑧 ← 1,−1 ×ℤ+
𝑌∗ = 𝔤( ∗ 𝑌)
𝑐∗ ← 𝐻(𝑌∗, 𝑚)
𝑐 = 𝑐∗ ⋅ 𝑑-.

Why correct?

[𝔤(] ∗ 𝐻) = 𝑌

[𝔤(⋅,] ∗ 𝐻)⋅, = 𝑌,

[𝔤(⋅,*+] ∗ 𝐻)⋅, = 𝔤+ ∗ 𝑌,

original

randomized

[𝖌𝒓∗] ∗ 𝑯𝒄∗ = 𝒀∗



In Other Words, Just Another Way to Blind
p Blind Schnorr

Randomizing signature:
𝜎∗ = 𝑐 + 𝑑, 𝑟 + 𝑧 with 𝑑, 𝑧 ← ℤ$'

p CSI-Otter-like Blind Schnorr

Randomizing signature:
𝜎∗ = 𝑐 ⋅ 𝑑, 𝑟 ⋅ 𝑑 + 𝑧 with 𝑑, 𝑧 ← ℤ$'

𝑦 ← ℤ$
𝑌 = 𝑔%

𝑌 𝑑, 𝑧 ← ℤ$'

𝑌∗ = 𝑔( ⋅ 𝑌)



4. Partially Blind Signature



Signer (𝑣𝑘, 𝑠𝑘) User (𝑣𝑘,𝑚)

…
Signature 𝜎 

for 𝑚 and𝑚∗

⇒ Allows to embed a common message 𝑚∗.

𝑚∗

Partially Blind Signatures (PBS)



Partially Blind Signatures (PBS)

Signer (𝑣𝑘, 𝑠𝑘) User (𝑣𝑘,𝑚)

…
Signature 𝜎 

for 𝑚 and𝑚∗

⇒ Allows to embed a common message 𝑚∗.

𝑚∗

Motivation: The signer can enforce rules, 
e.g., expiration date of signature.



Strawman Idea that Doesn’t Work

𝑦 ← ℤ$
𝑌 = 𝑔%

𝑐 ← 𝐻(𝑌,𝑚,𝒎∗)
𝑟 = 𝑦 − 𝑐 ⋅ 𝑎

𝜎 = (𝑐, 𝑟)

𝑌

𝑐

𝑟

Signer (𝑣𝑘 = ℎ = 𝑔!, 𝑠𝑘 = 𝑎) User (𝑣𝑘 = ℎ,𝑚)

⇒ Put 𝑚∗ into the hash to bind it to the transcript…?

We have
𝑔" ⋅ ℎ# = 𝑌.



Strawman Idea that Doesn’t Work

𝑦 ← ℤ$
𝑌 = 𝑔%

𝑐 ← 𝐻(𝑌,𝑚, O𝒎)
𝑟 = 𝑦 − 𝑐 ⋅ 𝑎

𝜎 = (𝑐, 𝑟)

No way for the signer to check this! 

𝑌

𝑐

𝑟

Signer (𝑣𝑘 = ℎ = 𝑔!, 𝑠𝑘 = 𝑎) User (𝑣𝑘 = ℎ,𝑚)

⇒ Put 𝑚∗ into the hash to bind it to the transcript…?

We have
𝑔" ⋅ ℎ# = 𝑌.



Idea that Works [C:AO00]

Signer (𝑣𝑘 = ℎ = 𝑔!, 𝑠𝑘 = 𝑎)

In Blind Schnorr, signer was implicitly proving knowledge of … 

𝑎 ∈ ℤ# s.t. ℎ = 𝑔!

In Partially Blind Schnorr, we modify so that the signer proves … 

𝑎 ∈ ℤ# s.t. ℎ = 𝑔! ∨ 𝐺 𝑚∗ = ℎ∗ = 𝑔!

*𝐺: random oracle



Why It Fails for Isogenies

𝑎 ∈ ℤ# s.t. ℎ = 𝑔! ∨ 𝐺 𝑚∗ = ℎ∗ = 𝑔!Classical Group:

𝐺 𝑚∗ = 𝐻∗ = [𝔤!] ∗ 𝐸Isogeny:



Why It Fails for Isogenies

𝑎 ∈ ℤ# s.t. ℎ = 𝑔! ∨ 𝐺 𝑚∗ = ℎ∗ = 𝑔!Classical Group:

𝐺 𝑚∗ = 𝐻∗ = [𝔤!] ∗ 𝐸Isogeny:

In isogeny, we don’t know how to hash into 
the set of elliptic curves w/o knowing secret 𝒂 .



Our Idea: Extending to a 2-out-of-3 Proof

ℎ$ = 𝑔!! ∨ ℎ% = 𝑔!" ∨ ℎ∗ = 𝑔!∗ = 𝑔&((∗)

Signer (𝑣𝑘 = (ℎ/, ℎ.) = (𝑔!! , 𝑔!"), 𝑠𝑘 = 𝑎0)

Prove knowledge of 2-out-of-3 exponents.

u Everybody knows secret 𝑎∗ but this won’t be enough to sign.
u Can still blind this 2-out-of-3 protocol to build a PBS.



Omitted Details from Talk 

p Formal security proof of CSI-Otter using [AC:KLX22]

p Optimizations using higher degree roots of unity.
⇒ New 𝜁+-ring group action inverse problem

p On-going work: 
Ø On first glace, ROS attack does not apply.
Ø One-more unf. in the poly-concurrent regime…?



Thank You For Listening J

A new Schnorr-type 3-round 
blind signature based on isogenies (CSIDH).

• The first (partially) blind signature from isogenies. 

• Provable security for log-concurrent sessions.

• New hardness assumption for optimization.


