

Revisiting cycles of pairing-friendly elliptic curvesMarta Bellés-Muñoz, Jorge Jiménez Urroz, Javier Silva
CRYPTO 2023

A cycle of elliptic curves
such that

The problem:

2 / 14

A cycle of elliptic curves
such that

● This problem is easy.

The problem:

2 / 14

A cycle of elliptic curves
such that

● This problem is easy.

● But if we require E, E’ to be pairing-friendly, the problem
becomes hard.

The problem:

2 / 14

Recursive composition of proofs

3 / 14

Recursive composition of proofs

3 / 14

Recursive composition of proofs

3 / 14

Recursive composition of proofs

3 / 14

Recursive composition of proofs

3 / 14

Recursive composition of proofs
● The final verifier only needs to check one proof.

3 / 14

Recursive composition of proofs
● The final verifier only needs to check one proof.
● We focus on the case of pairing-friendly SNARKs.

3 / 14

Recursive composition of proofs
● The final verifier only needs to check one proof.
● We focus on the case of pairing-friendly SNARKs.
● We need to be able to write in the language of the SNARK.

3 / 14

Recursion with cycles

4 / 14

Recursion with cycles

4 / 14

Recursion with cycles

4 / 14

Recursion with cycles

4 / 14

Recursion with cycles

4 / 14

Recursion with cycles

Only two curves needed in total.
4 / 14

A cycle of elliptic curves
such that

We want E, E’ to be pairing-friendly.

The problem:

5 / 14

A cycle of elliptic curves
such that

We want E, E’ to be pairing-friendly.

The problem:

embedding degree of E

roots of unity of order

5 / 14

A cycle of elliptic curves
such that

We want E, E’ to be pairing-friendly.

The problem:

embedding degree of E

roots of unity of order

for small k, (to ensure efficient pairing computation),
but not too small (to prevent security degradation).

5 / 14

Known facts about cycles

6 / 14

Known facts about cycles
● No cofactors allowed.

6 / 14

Known facts about cycles
● No cofactors allowed.

● What prime-order pairing-friendly curves are known?

6 / 14

Known facts about cycles
● No cofactors allowed.

● What prime-order pairing-friendly curves are known?

Polynomial families
● (X), (X) polynomials.

6 / 14

Known facts about cycles
● No cofactors allowed.

● What prime-order pairing-friendly curves are known?

Polynomial families
● (X), (X) polynomials.
● For infinitely many x, the values (x), (x) correspond to the order of

the scalar field and base field of a curve, and both values are prime.

6 / 14

Polynomial families with prime order
MNT3 (k = 3) MNT4 (k = 4) MNT6 (k = 6)

Freeman (k = 10)

BN (k = 12)

7 / 14

Cycles from known families

8 / 14

Cycles from known families
MTN4 MTN6

MTN4

MTN6

MTN4’

MTN6’
Embedding degree too
small for applications.

8 / 14

Cycles from known families
MTN4 MTN6

MTN4

MTN6

MTN4’

MTN6’

Freeman Freeman’

BN BN’

Embedding degree too
small for applications.

8 / 14

Cycles from known families
MTN4 MTN6

MTN4

MTN6

MTN4’

MTN6’

Freeman Freeman’
Freeman BN

Freeman other

BN other

?
BN BN’

Longer cycles?
Embedding degree too
small for applications.

8 / 14

Our results
Considering polynomial families:

9 / 14

Our results
Considering polynomial families:

Given a known family (X), (X), the divisibility conditions are
straightforward to check.

9 / 14

Our results
Considering polynomial families:

Given a known family (X), (X), the divisibility conditions are
straightforward to check.

● If they hold, there is a polynomial family of cycles.

9 / 14

Our results
Considering polynomial families:

Given a known family (X), (X), the divisibility conditions are
straightforward to check.

● If they hold, there is a polynomial family of cycles.
● If they fail, there are only finitely many x such that

9 / 14

Our results
Considering polynomial families:

Given a known family (X), (X), the divisibility conditions are
straightforward to check.

● If they hold, there is a polynomial family of cycles.
● If they fail, there are only finitely many x such that

We can find explicit bounds on x
for different embedding degrees.

9 / 14

Our results

10 / 14

Our results
● For embedding degree up to , we run an exhaustive search

for 2-cycles for MNT3, Freeman and BN curves.

10 / 14

Our results
● For embedding degree up to , we run an exhaustive search

for 2-cycles for MNT3, Freeman and BN curves.
● We show that no 2-cycles exist with the exception of a few toy

examples.

10 / 14

Our results
● For embedding degree up to , we run an exhaustive search

for 2-cycles for MNT3, Freeman and BN curves.
● We show that no 2-cycles exist with the exception of a few toy

examples.

We could go higher, but the
bounds on x grow quite fast.

10 / 14

Cycles from known families
MTN4 MTN6

MTN4

MTN6

MTN4’

MTN6’

Freeman Freeman’
Freeman BN

Freeman other

BN other

?
BN BN’

Longer cycles?
Embedding degree too
small for applications.

11 / 14

New impossibility results
MTN4 MTN6

MTN4

MTN6

MTN4’

MTN6’

Freeman Freeman’
Freeman BN

Freeman

BN
BN BN’

Longer cycles?
Embedding degree too
small for applications. ? 12 / 14

In conclusion

13 / 14

In conclusion
● Cycles are composed of prime-order curves.

13 / 14

In conclusion
● Cycles are composed of prime-order curves.
● The only known method to generate prime-order pairing-friendly curves is

through polynomial families.

13 / 14

In conclusion
● Cycles are composed of prime-order curves.
● The only known method to generate prime-order pairing-friendly curves is

through polynomial families.
● We show that known families do not contain any 2-cycles that are

pairing-friendly (with the exception of the inefficient MNT4-MNT6 cycles.

13 / 14

In conclusion
● Cycles are composed of prime-order curves.
● The only known method to generate prime-order pairing-friendly curves is

through polynomial families.
● We show that known families do not contain any 2-cycles that are

pairing-friendly (with the exception of the inefficient MNT4-MNT6 cycles.
● The technique easily extends to any new polynomial family that might appear

in the future.

13 / 14

In conclusion
● Cycles are composed of prime-order curves.
● The only known method to generate prime-order pairing-friendly curves is

through polynomial families.
● We show that known families do not contain any 2-cycles that are

pairing-friendly (with the exception of the inefficient MNT4-MNT6 cycles.
● The technique easily extends to any new polynomial family that might appear

in the future.
● The code runs in a few hours for embedding degree up to 22, but there is a lot

of room for optimization.

13 / 14

In conclusion
● Cycles are composed of prime-order curves.
● The only known method to generate prime-order pairing-friendly curves is

through polynomial families.
● We show that known families do not contain any 2-cycles that are

pairing-friendly (with the exception of the inefficient MNT4-MNT6 cycles.
● The technique easily extends to any new polynomial family that might appear

in the future.
● The code runs in a few hours for embedding degree up to 22, but there is a lot

of room for optimization.
● We also provide density estimates of pairing-friendly cycles among all cycles.

13 / 14

Thank you!
Paper Code

Questions?
14 / 14

	Slide: 1
	Slide: 2 (1)
	Slide: 2 (2)
	Slide: 2 (3)
	Slide: 3 (1)
	Slide: 3 (2)
	Slide: 3 (3)
	Slide: 3 (4)
	Slide: 3 (5)
	Slide: 3 (6)
	Slide: 3 (7)
	Slide: 3 (8)
	Slide: 4 (1)
	Slide: 4 (2)
	Slide: 4 (3)
	Slide: 4 (4)
	Slide: 4 (5)
	Slide: 4 (6)
	Slide: 5 (1)
	Slide: 5 (2)
	Slide: 5 (3)
	Slide: 6 (1)
	Slide: 6 (2)
	Slide: 6 (3)
	Slide: 6 (4)
	Slide: 6 (5)
	Slide: 7
	Slide: 8 (1)
	Slide: 8 (2)
	Slide: 8 (3)
	Slide: 8 (4)
	Slide: 9 (1)
	Slide: 9 (2)
	Slide: 9 (3)
	Slide: 9 (4)
	Slide: 9 (5)
	Slide: 10 (1)
	Slide: 10 (2)
	Slide: 10 (3)
	Slide: 10 (4)
	Slide: 11
	Slide: 12
	Slide: 13 (1)
	Slide: 13 (2)
	Slide: 13 (3)
	Slide: 13 (4)
	Slide: 13 (5)
	Slide: 13 (6)
	Slide: 13 (7)
	Slide: 14

