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Recursion with cycles

Only two curves needed in total.
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We want E, E’ to be pairing-friendly.

The problem:

embedding degree of E

roots of unity of order 

for small k,   (to ensure efficient pairing computation),
but not too small (to prevent security degradation).
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Known facts about cycles
● No cofactors allowed.

● What prime-order pairing-friendly curves are known?

Polynomial families
●  (X),   (X) polynomials.
● For infinitely many x, the values   (x),  (x) correspond to the order of 

the scalar field and base field of a curve, and both values are prime. 
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Polynomial families with prime order
MNT3 (k = 3) MNT4 (k = 4) MNT6 (k = 6)

Freeman (k = 10)

BN (k = 12)
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Our results
Considering polynomial families:

Given a known family   (X),   (X), the divisibility conditions are 
straightforward to check.

● If they hold, there is a polynomial family of cycles.
● If they fail, there are only finitely many x such that

We can find explicit bounds on x 
for different embedding degrees.

9 / 14



  

Our results

10 / 14



  

Our results
● For embedding degree up to          , we run an exhaustive search 

for 2-cycles for MNT3, Freeman and BN curves.

10 / 14



  

Our results
● For embedding degree up to          , we run an exhaustive search 

for 2-cycles for MNT3, Freeman and BN curves.
● We show that no 2-cycles exist with the exception of a few toy 

examples.

10 / 14



  

Our results
● For embedding degree up to          , we run an exhaustive search 

for 2-cycles for MNT3, Freeman and BN curves.
● We show that no 2-cycles exist with the exception of a few toy 

examples.

We could go higher, but the 
bounds on x grow quite fast.
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● Cycles are composed of prime-order curves.
● The only known method to generate prime-order pairing-friendly curves is 

through polynomial families. 
● We show that known families do not contain any 2-cycles that are 

pairing-friendly (with the exception of the inefficient MNT4-MNT6 cycles.
● The technique easily extends to any new polynomial family that might appear 

in the future.
● The code runs in a few hours for embedding degree up to 22, but there is a lot 

of room for optimization.
● We also provide density estimates of pairing-friendly cycles among all cycles.
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Thank you!
Paper Code

Questions?
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