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A cycle of elliptic curves

The problem:

E/IF such that #E(F ) — 0
E//Fp #E/(Fp> —

e This problem is easy.

e But if we require £, FE’to be pairing-friendly, the problem
becomes hard.
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e We focus on the case of pairing-friendly SNARKS.
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e The final verifier only needs to check one proof.

£

e We focus on the case of pairing-friendly SNARKS.
 We need to be able to write V in the language of the SNARK.
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Recursion with cycles

‘O
L /“\
E/F E'/F, p E/F
#E(F,) =p #E (Fp) = #E(F,) =p

Only two curves needed in total.
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A cycle of elliptic curves

The problem:

E,/F such that #E(F,) =p
L /Fp #E/(Fp) —

We want E, £’ to be pairing-friendly.
e: E(F,)x E(F,) —» pu, CF_«
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A cycle of elliptic curves

The problem:

E/F #E(F,) =p
E'[F, such that LE(F) =

We want E, £’ to be pairing-friendly.
e: E(F,) x E(Fy) = pp CFpp e embedding degree of E

~roots of unity of order P

p | ¥ —1 for small k, ¢ (to ensure efficient pairing computation),
| pe — 1 but not too small (to prevent security degradation).
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Known facts about cycles

#ET,)=F-p
No cofactors allowed. LE'(F,) = f' - x
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Known facts about cycles

#E(F,)

D=7 R
#E/(Fp):f/'

e What prime-order pairing-friendly curves are known?

e« No cofactors allowed.
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e What prime-order pairing-friendly curves are known?

Polynomial families

- " (X)!" (X) polynomials.
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Known facts about cycles

 No cofactors allowed. #E’(F - f/p x
#E'(F,) = f"-

What prime-order pairing-friendly curves are known?

Polynomial families

p(X), q(X) polynomials.

For infinitely many z, the values p(z), ¢(x) correspond to the order of
the scalar field and base field of a curve, and both values are prime.
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Polynomial families with prime order

MNT3 (k = 3) MNT4 (k = 4) MNT6 (k = 63
p(X)=12X2—6X +1 p(X)=X2+2X+2 pX)=4X"-2X+1
(X)=12X% -1 (X)=X?+X+1 (X)) =4X"+1

Freeman (k = 10)
p(X)=25X* 425X+ 15X* +5X +1

(X) =25X*+25X° +25X2 + 10X + 3

BN (k = 12)
p(X) =36X*+36X° +18X° +6X + 1

(X) =36X*+46X° +24X° +6X + 1
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Our results

p(X) [ a(X)* -1
(X) [ p(X)" ~1

Given a known family P(X), ¢(X), the divisibility conditions are

Considering polynomial families:

straightforward to check.

e If they hold, there is a polynomial family of cycles.
o If they fail, there are only ﬁmtely many z such that

p(z) | a(z)® -1
() | p(2)* — 1

We can ﬁnd explicit bounds on x
for different embedding degrees.
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Our results

We could go higher, but the
bounds on z grow quite fast.

e For embedding degree up to ¢ < 22, we run an exhaustive search

for 2-cycles for MNT3, Freeman and BN curves.

« We show that no 2-cycles exist with the exception of a few toy

examples.
Family / x t P q
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BN 12 | 18 | —1 7113 | 19

10/ 14



Cycles from known families

)

MTN4 MTNG6

V MTNG6 -\

MTN4 MTN4’

\ MTNG6’ J

Embedding degree too
small for applications.

F
7\%\

Freeman other
BN other

—/

Longer cycles?

R

Freeman

Freeman’

)*<

BN BN’

(

11/14



New impossibility results
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In conclusion

e Cycles are composed of prime-order curves.

e The only known method to generate prime-order pairing-friendly curves is
through polynomial families.

» We show that known families do not contain any 2-cycles that are
pairing-friendly (with the exception of the inefficient MNT4-MNT6 cycles.

e The technique easily extends to any new polynomial family that might appear
in the future.

e The code runs in a few hours for embedding degree up to 22, but there is a lot
of room for optimization.

e We also provide density estimates of pairing-friendly cycles among all cycles.
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Thank you!

Questions?
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