
Fully Adaptive Schnorr Threshold
Signatures

Elizabeth Crites*
University of Edinburgh

Chelsea Komlo
University of Waterloo

Zcash Foundation, Dfns

Mary Maller
Ethereum Foundation

PQShield

Why Schnorr signatures?

Why Schnorr signatures?
• NIST standard signatures: RSA, ECDSA, EdDSA (Aug. 2022)

Why Schnorr signatures?
• NIST standard signatures: RSA, ECDSA, EdDSA (Aug. 2022)

• EdDSA & Schnorr verification are the same

Why Schnorr signatures?
• NIST standard signatures: RSA, ECDSA, EdDSA (Aug. 2022)

• EdDSA & Schnorr verification are the same

• RSA signatures are large (~6x ECDSA/EdDSA)

Why Schnorr signatures?
• NIST standard signatures: RSA, ECDSA, EdDSA (Aug. 2022)

• EdDSA & Schnorr verification are the same

• RSA signatures are large (~6x ECDSA/EdDSA)

• ECDSA requires nonce inversion and other complexities

Why Schnorr signatures?
• NIST standard signatures: RSA, ECDSA, EdDSA (Aug. 2022)

• EdDSA & Schnorr verification are the same

• RSA signatures are large (~6x ECDSA/EdDSA)

• ECDSA requires nonce inversion and other complexities

• no security reduction like Schnorr -> DL + ROM

Why Schnorr signatures?
• NIST standard signatures: RSA, ECDSA, EdDSA (Aug. 2022)

• EdDSA & Schnorr verification are the same

• RSA signatures are large (~6x ECDSA/EdDSA)

• ECDSA requires nonce inversion and other complexities

• no security reduction like Schnorr -> DL + ROM

• BLS requires bilinear pairings (slow to verify, not a NIST standard - yet!)

Why Schnorr signatures?
• NIST standard signatures: RSA, ECDSA, EdDSA (Aug. 2022)

• EdDSA & Schnorr verification are the same

• RSA signatures are large (~6x ECDSA/EdDSA)

• ECDSA requires nonce inversion and other complexities

• no security reduction like Schnorr -> DL + ROM

• BLS requires bilinear pairings (slow to verify, not a NIST standard - yet!)

• adaptive security of BLS [BL22]

 Example(2,3)

Public Key PK

What are threshold signatures?

• -out-of-

• trusted key generation
or DKG to produce

t n

PK

Why multi-party Schnorr signatures? Why now?

1990: Schnorr
paper

1991: Schnorr
patent

2008: Schnorr
patent expires

2023: NIST
initial draft

2022: NIST adds
EdDSA

2021: (BIP340)
Bitcoin -> Schnorr

2020: MuSig2, DWMS,
FROST (2-Round)

2021: FROST22018: MuSig
(3-Round)2001: Stinson & Strobl

Standards

https://csrc.nist.gov/publications/detail/nistir/8214c/draft

https://csrc.nist.gov/publications/detail/nistir/8214c/draft

Main Goals
• output signature that verifies like standard, single-party Schnorr signature

• few signing rounds

• reasonable security assumptions

• concurrent security

• adaptive security

(Single-Party) Schnorr Signatures

Signer:
sk ← 𝔽; PK ← gsk

[Sch91]

icons by flaticon.com

http://flaticon.com

(Single-Party) Schnorr Signatures

To sign a message :

m
r ← 𝔽; R ← gr

c ← H(PK, m, R)
z ← r + c ⋅ sk

Signer:
sk ← 𝔽; PK ← gsk

[Sch91]

icons by flaticon.com

http://flaticon.com

(Single-Party) Schnorr Signatures

To sign a message :

m
r ← 𝔽; R ← gr

c ← H(PK, m, R)
z ← r + c ⋅ sk

Signer:
sk ← 𝔽; PK ← gsk

[Sch91]

(R, z)

m
(sk, r)

sig = (R, z)

icons by flaticon.com

http://flaticon.com

(Single-Party) Schnorr Signatures

To sign a message :

m
r ← 𝔽; R ← gr

c ← H(PK, m, R)
z ← r + c ⋅ sk

Signer:
sk ← 𝔽; PK ← gsk

Verifier:
 c ← H(PK, m, R)

R ⋅ PKc = gz

[Sch91]

(R, z)

m
(sk, r)

sig = (R, z)

icons by flaticon.com

http://flaticon.com

(Single-Party) Schnorr Signatures

To sign a message :

m
r ← 𝔽; R ← gr

c ← H(PK, m, R)
z ← r + c ⋅ sk

Signer:
sk ← 𝔽; PK ← gsk

Verifier:
 c ← H(PK, m, R)

R ⋅ PKc = gz

[Sch91]

(R, z)

m
(sk, r)

sig = (R, z)

icons by flaticon.com

Main security property:
unforgeability

http://flaticon.com

z ← r + c ⋅ sk

How to share ? sk
How to share ? r

Multi-Party Schnorr Signatures

sig = (R, z)

2-Round Threshold Scheme
Key Generation: PK

sk2sk1

2-Round Threshold Scheme
Key Generation: PK

sk2sk1

R1 ← gr1 R2 ← gr2

2-Round Threshold Scheme
Key Generation: PK

R1, R2

Round 1:

sk2sk1

R1 ← gr1 R2 ← gr2

2-Round Threshold Scheme
Key Generation: PK

R = R1R2
c ← H(PK, m, R)

R1, R2

Round 1:

sk2sk1

R1 ← gr1 R2 ← gr2

2-Round Threshold Scheme
Key Generation: PK

R = R1R2
c ← H(PK, m, R)

R1, R2

Round 1:

sk2sk1

R1 ← gr1 R2 ← gr2

z2 ← r2 + c ⋅ λ𝒮
2 ⋅ sk2z1 ← r1 + c ⋅ λ𝒮

1 ⋅ sk1

2-Round Threshold Scheme
Key Generation: PK

R = R1R2
c ← H(PK, m, R)

R1, R2

Round 1:

sk2sk1

R1 ← gr1 R2 ← gr2

z2 ← r2 + c ⋅ λ𝒮
2 ⋅ sk2z1 ← r1 + c ⋅ λ𝒮

1 ⋅ sk1

z1, z2

Round 2:

(R, z)

m
(sk1, r1)
(sk2, r2)

2-Round Threshold Scheme
Key Generation: PK

R = R1R2
c ← H(PK, m, R)

R1, R2

Round 1:

sk2sk1

R1 ← gr1 R2 ← gr2

z2 ← r2 + c ⋅ λ𝒮
2 ⋅ sk2z1 ← r1 + c ⋅ λ𝒮

1 ⋅ sk1

Combine / Verify:

z ← z1 + z2

c ← H(PK, m, R)
R ⋅ PKc = gz

z1, z2

Round 2:

(R, z)

m
(sk1, r1)
(sk2, r2)

2-Round Threshold Scheme
Key Generation: PK

R = R1R2
c ← H(PK, m, R)

R1, R2

Round 1:

NOT concurrently secure

sk2sk1

R1 ← gr1 R2 ← gr2

z2 ← r2 + c ⋅ λ𝒮
2 ⋅ sk2z1 ← r1 + c ⋅ λ𝒮

1 ⋅ sk1

Combine / Verify:

z ← z1 + z2

c ← H(PK, m, R)
R ⋅ PKc = gz

z1, z2

Round 2:

(R, z)

m
(sk1, r1)
(sk2, r2)

Concurrent Security: ROS Attacks [NKDM03, DEFKLNS19,
 BLLOR21]

sk2

Session 1 Session k
sk1

Concurrent Security: ROS Attacks [NKDM03, DEFKLNS19,
 BLLOR21]

sk2

R(1)
1 R(k)

1

Session 1 Session k
sk1

Concurrent Security: ROS Attacks [NKDM03, DEFKLNS19,
 BLLOR21]

sk2

R(1)
1 R(k)

1

Session 1 Session k
sk1

R(1)
2 R(k)

2

Concurrent Security: ROS Attacks [NKDM03, DEFKLNS19,
 BLLOR21]

sk2

R(1)
1 R(k)

1

Session 1 Session k
sk1

R(1)
2 R(k)

2

Can forge!

Concurrent Security: ROS Attacks [NKDM03, DEFKLNS19,
 BLLOR21]

sk2

R(1)
1 R(k)

1

Session 1 Session k
sk1

R(1)
2 R(k)

2

Can forge!

Affected:

• multi-signatures

• threshold signatures

• blind signatures

Solution: Force adversary to
commit to its nonces…

Key Generation: PK

sk2sk1

Sparkle

Key Generation: PK

sk2sk1

R1 ← gr1 R2 ← gr2

Sparkle

Key Generation: PK

sk2sk1

R1 ← gr1 R2 ← gr2

Sparkle
Round 1:

H′ (R1, m, 𝒮), H′ (R2, m, 𝒮)

Key Generation: PK

sk2sk1

R1 ← gr1 R2 ← gr2

R1, R2

Round 2:

Sparkle
Round 1:

H′ (R1, m, 𝒮), H′ (R2, m, 𝒮)

Key Generation: PK

R = R1R2
c ← H(PK, m, R)

sk2sk1

R1 ← gr1 R2 ← gr2

R1, R2

Round 2:

Sparkle
Round 1:

H′ (R1, m, 𝒮), H′ (R2, m, 𝒮)

Key Generation: PK

R = R1R2
c ← H(PK, m, R)

sk2sk1

R1 ← gr1 R2 ← gr2

z2 ← r2 + c ⋅ λ𝒮
2 ⋅ sk2z1 ← r1 + c ⋅ λ𝒮

1 ⋅ sk1

R1, R2

Round 2:

Sparkle
Round 1:

H′ (R1, m, 𝒮), H′ (R2, m, 𝒮)

Key Generation: PK

R = R1R2
c ← H(PK, m, R)

sk2sk1

R1 ← gr1 R2 ← gr2

z2 ← r2 + c ⋅ λ𝒮
2 ⋅ sk2z1 ← r1 + c ⋅ λ𝒮

1 ⋅ sk1

R1, R2

Round 2:

Sparkle

z1, z2

Round 3:

Round 1:
H′ (R1, m, 𝒮), H′ (R2, m, 𝒮)

Key Generation: PK

R = R1R2
c ← H(PK, m, R)

sk2sk1

R1 ← gr1 R2 ← gr2

z2 ← r2 + c ⋅ λ𝒮
2 ⋅ sk2z1 ← r1 + c ⋅ λ𝒮

1 ⋅ sk1

Combine / Verify:

z ← z1 + z2

c ← H(PK, m, R)
R ⋅ PKc = gz

R1, R2

Round 2:

Sparkle

z1, z2

Round 3:

Round 1:
H′ (R1, m, 𝒮), H′ (R2, m, 𝒮)

Key Generation: PK

R = R1R2
c ← H(PK, m, R)

sk2sk1

R1 ← gr1 R2 ← gr2

z2 ← r2 + c ⋅ λ𝒮
2 ⋅ sk2z1 ← r1 + c ⋅ λ𝒮

1 ⋅ sk1

Combine / Verify:

z ← z1 + z2

c ← H(PK, m, R)
R ⋅ PKc = gz

R1, R2

Round 2:

Sparkle

z1, z2

Round 3:

Round 1:
H′ (R1, m, 𝒮), H′ (R2, m, 𝒮)

(m, 𝒮)

Concurrently secure
(even when delayed to

Round 2)
(m, 𝒮)

Recent Schnorr Threshold Signatures

Scheme
Static  

Assumptions

FROST [KG20, BCKMTZ22]

FROST2 [CKM21, BCKMTZ22]

Lindell22

Classic Schnorr [Mak22]

Sparkle

Schnorr
Threshold
DL + ROM

Signing
Rounds

2

3

OMDL + ROM

Concurrent
Security

Adaptive
Security

Exp. loss
(Tight)

Adaptive Security

sk1 sk2 sk3

Signing

Rounds

Static Corruption

Adaptive Security

sk1 sk2 sk3

Signing

Rounds

Static Corruption

Adaptive Corruption

sk1 sk2

Signing

Rounds

sk3

Adaptive Security

sk1 sk2 sk3

Signing

Rounds

Static Corruption

Adaptive Corruption

sk1 sk2

Signing

Rounds

sk3

sk3sk1 sk2,
state

Concurrent Adaptive Security

Round 1:

Round 2:

Round 3:

sk4sk2 sk3

cm3cm2

R2

cm4

R3

sk1 sk2 sk3

cm3cm1

Session 1 Session 2

Concurrent Adaptive Security

Round 1:

Round 2:

Round 3:

sk4sk2 sk3

cm3cm2

R2

cm4

R3

sk1 sk2 sk3

cm3cm1

Session 1 Session 2

Adaptive Security is Challenging

Adaptive Security is Challenging
• easy when is small: reduction guesses corrupt parties ahead of time and

aborts if wrong
n

Adaptive Security is Challenging
• easy when is small: reduction guesses corrupt parties ahead of time and

aborts if wrong
n

• incurs exponential loss

Adaptive Security is Challenging
• easy when is small: reduction guesses corrupt parties ahead of time and

aborts if wrong
n

• incurs exponential loss

• heavyweight tools, like non-committing encryption

Adaptive Security is Challenging
• easy when is small: reduction guesses corrupt parties ahead of time and

aborts if wrong
n

• incurs exponential loss

• heavyweight tools, like non-committing encryption

• secure erasure of secret state

Adaptive Security is Challenging
• easy when is small: reduction guesses corrupt parties ahead of time and

aborts if wrong
n

• incurs exponential loss

• heavyweight tools, like non-committing encryption

• secure erasure of secret state

• hard when = number of parties is large, i.e., > 1024n n

Adaptive Security is Challenging
• easy when is small: reduction guesses corrupt parties ahead of time and

aborts if wrong
n

• incurs exponential loss

• heavyweight tools, like non-committing encryption

• secure erasure of secret state

• hard when = number of parties is large, i.e., > 1024n n

• large important to prevent adversary from corrupting majorityn

SparkleOur Results

(Threshold =)t + 1

Tight! Rewind

Same security
loss as Schnorr

Sparkle

And concurrently secure!

Our Results

(Threshold =)t + 1

Tight! Rewind

Same security
loss as Schnorr

Adaptive Security under (A)OMDL
DL Oracle

Adversary

Reduction

Adaptive Security under (A)OMDL
DL Oracle

Adversary

Reduction

OMDL Challenge
(X0, X1, …, Xt)

Adaptive Security under (A)OMDL
DL Oracle

Adversary

Reduction

OMDL Challenge
(X0, X1, …, Xt)

PK, {PKi}i∈n

Adaptive Security under (A)OMDL
DL Oracle

corrupt
signer i

Adversary

Reduction

OMDL Challenge
(X0, X1, …, Xt)

PK, {PKi}i∈n

Adaptive Security under (A)OMDL
DL Oracle

corrupt
signer i

Adversary

Reduction

can query
times

t

OMDL Challenge
(X0, X1, …, Xt)

PK, {PKi}i∈n

Adaptive Security under (A)OMDL
DL Oracle

corrupt
signer i

Adversary

Reduction

ski

can query
times

t

OMDL Challenge
(X0, X1, …, Xt)

PK, {PKi}i∈n

Adaptive Security under (A)OMDL
DL Oracle

corrupt
signer i

Adversary

Reduction

ski

can query
times

t

ski, statei

OMDL Challenge
(X0, X1, …, Xt)

PK, {PKi}i∈n

Adaptive Security under (A)OMDL
DL Oracle

corrupt
signer i

Adversary

Reduction

ski

Reduction outputs
(x0, x1, …, xt)

can query
times

t

ski, statei

OMDL Challenge
(X0, X1, …, Xt)

PK, {PKi}i∈n

Adaptive Security under (A)OMDL
DL Oracle

corrupt
signer i

Adversary

Reduction

ski

Reduction outputs
(x0, x1, …, xt)

can query
times

t

ski, statei

OMDL Challenge
(X0, X1, …, Xt)

Key Insights:
1. How to compute
2. How to simulate

x0
state

PK, {PKi}i∈n

Key Takeaways
• Adaptive security is important, as threshold signatures are being deployed

• First fully adaptive security proof for threshold Schnorr signatures

• Challenging to achieve:

• multi-party

• multi-round

• concurrently secure

• adaptively secure

• and looks like a standard, single-party Schnorr signature!

Key Takeaways
• Adaptive security is important, as threshold signatures are being deployed

• First fully adaptive security proof for threshold Schnorr signatures

• Challenging to achieve:

• multi-party

• multi-round

• concurrently secure

• adaptively secure

• and looks like a standard, single-party Schnorr signature!

Coming Soon: Adaptive security of FROST

Thank you!

