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• EdDSA & Schnorr verification are the same

• RSA signatures are large (~6x ECDSA/EdDSA)

• ECDSA requires nonce inversion and other complexities

• no security reduction like Schnorr -> DL + ROM

• BLS requires bilinear pairings (slow to verify, not a NIST standard - yet!)

• adaptive security of BLS [BL22]



 Example(2,3)

Public Key PK

What are threshold signatures?

• -out-of-  

• trusted key generation 
or DKG to produce 

t n

PK



Why multi-party Schnorr signatures? Why now?

1990: Schnorr 
paper

1991: Schnorr 
patent

2008: Schnorr 
patent expires

2023: NIST  
initial draft

2022: NIST adds 
EdDSA

2021: (BIP340) 
Bitcoin -> Schnorr

2020: MuSig2, DWMS,  
FROST (2-Round)

2021: FROST22018: MuSig 
(3-Round)2001: Stinson & Strobl



Standards

https://csrc.nist.gov/publications/detail/nistir/8214c/draft

https://csrc.nist.gov/publications/detail/nistir/8214c/draft


Main Goals
• output signature that verifies like standard, single-party Schnorr signature


• few signing rounds


• reasonable security assumptions


• concurrent security


• adaptive security



(Single-Party) Schnorr Signatures

Signer: 
sk ← 𝔽; PK ← gsk

[Sch91]
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icons by flaticon.com

Main security property: 
unforgeability

http://flaticon.com


z ← r + c ⋅ sk

How to share  ? sk
How to share  ? r

Multi-Party Schnorr Signatures

sig = (R, z)
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     BLLOR21]

sk2

R(1)
1 R(k)

1

Session 1 Session k
sk1

R(1)
2 R(k)

2

Can forge!

Affected: 

• multi-signatures 

• threshold signatures 

• blind signatures 

Solution: Force adversary to 
commit to its nonces…
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(m, 𝒮)

Concurrently secure
(even when  delayed to 

Round 2)
(m, 𝒮)



Recent Schnorr Threshold Signatures

Scheme
*Static*  

Assumptions

FROST [KG20, BCKMTZ22] 

FROST2 [CKM21, BCKMTZ22] 

Lindell22 

Classic Schnorr [Mak22] 

Sparkle 

Schnorr 
Threshold 
DL + ROM

Signing
Rounds

2

3

OMDL + ROM

Concurrent
Security

Adaptive
Security

Exp. loss
(Tight)



Adaptive Security

sk1 sk2 sk3

Signing

Rounds

Static Corruption



Adaptive Security

sk1 sk2 sk3

Signing

Rounds

Static Corruption

Adaptive Corruption

sk1 sk2

Signing

Rounds

sk3



Adaptive Security

sk1 sk2 sk3

Signing

Rounds

Static Corruption

Adaptive Corruption

sk1 sk2

Signing
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sk3sk1  sk2,
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Adaptive Security is Challenging
• easy when  is small: reduction guesses corrupt parties ahead of time and 

aborts if wrong
n

• incurs exponential loss

• heavyweight tools, like non-committing encryption

• secure erasure of secret state

• hard when  = number of parties is large, i.e.,  > 1024n n

• large  important to prevent adversary from corrupting majorityn
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corrupt 
signer  i

Adversary

Reduction

ski

Reduction outputs 
(x0, x1, …, xt)

can query  
times

t

ski, statei

OMDL Challenge 
(X0, X1, …, Xt)

Key Insights:
1. How to compute  
2. How to simulate 

x0
state

PK, {PKi}i∈n
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Coming Soon: Adaptive security of FROST



Thank you!


