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A B
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Privacy:
There exists a PPT simulator A* with no knowledge of x 
that can act as A and B cannot tell the difference

Private Information Retrieval [CGKM ‘95, KO ‘97,....]
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Two-Server PIR, Client Preprocessing [BIM ‘04, …, CK ‘20, ...]
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HappyQuery(index x):
    Find (S,p) in H such that x ∊ S

    Send to B1 S\{x}, get back xor of elements p’

    Compute DB[x] = p ⨁ p’

Query Outline
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Gen Eval Puncture

x ∊ {1,...,M} x ∊ {1,...,M}
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Tool: Puncturable Pseudorandom Function [GGM ‘84, BW ‘13, KPTZ ‘13, BGI ‘14, …]
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Gen Eval/PEval Puncture

x ∊ {1,...,M}

y

x ∊ {1,...,M}

Tool: Puncturable Pseudorandom Function [GGM ‘84, BW ‘13, KPTZ ‘13, BGI ‘14, …]



41

Puncture

Correctness: 
For any input  x’ ≠ x, punctured key evaluates to same output as original 
key

x ∊ {1,...,M}

Tool: Puncturable Pseudorandom Function [GGM ‘84, BW ‘13, KPTZ ‘13, BGI ‘14, …]



42

Puncture

Security:
New key contains no information about evaluation at punctured point x

Correctness: 
For any input  x’ ≠ x, punctured key evaluates to same output as original 
key

x ∊ {1,...,M}

Puncture on Puncturable PRF [BW ‘13, KPTZ ‘13, BGI ‘14, …]
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Puncture

Security:
New key contains no information about evaluation at punctured point x

Correctness: 
For any input  x’ ≠ x, punctured key evaluates to same output as original 
key

x ∊ {1,...,M}

Puncture on Puncturable PRF [BW ‘13, KPTZ ‘13, BGI ‘14, …]

Recall: if x = (i,j) and sets are made of tuples (i,Fk(i)), if we send 
to B0 k’ ← Puncture(k,i), it hides Fk(i) but does not hide i



Puncture on Privately Puncturable PRF [BLW ‘15, BKM ‘17, CC ‘17, ...]
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Puncture

Security:
New key contains no information about evaluation at punctured point x

Privacy:
New key contains no information about punctured point x

Correctness: 
For any input  x’ ≠ x, punctured key evaluates to same output as original 
key

x ∊ {1,...,M}
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Puncture

Security:
New key contains no information about evaluation at punctured point x

Privacy:
New key contains no information about punctured point x

Correctness: 
For any input  x’ ≠ x, punctured key evaluates to same output as original 
key

x ∊ {1,...,M}

[SACM ‘21]: First construction of sublinear time, 
polylog bandwidth PIR, using ppPRFs
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Security:
New key contains no information about evaluation at punctured point x

Privacy:
New key contains no information about punctured point x

Weak Correctness: 
For any input  x’ ≠ x, punctured key evaluates to same output as original 
key for a correct guess of the punctured point x

PEval

x ∊ {1,...,M} p ∊ {1,...,M}

y
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Security:
New key contains no information about evaluation at punctured point x

Privacy:
New key contains no information about punctured point x

Weak Correctness: 
For any input  x’ ≠ x, punctured key evaluates to same output as original 
key for a correct guess of the punctured point x

PEval

‘Guess’ of point that was 
punctured

p ∊ {1,...,M}x ∊ {1,...,M}

y
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Security:
New key contains no information about evaluation at punctured point x

Privacy:
New key contains no information about punctured point x

Weak Correctness: 
For any input  x’ ≠ x, punctured key evaluates to same output as original 
key for a correct guess of the punctured point x

PEval

Efficient Full Evaluation:

x ∊ {1,...,M} p ∊ {1,...,M}

y



Weak Privately Puncturable PRF

49

PEval

Efficient Full Evaluation (Simplified):

Can compute a function over evaluations of entire domain in time 
quasi-linear in domain size.

x ∊ {1,...,M} p ∊ {1,...,M}

y
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PEval

Efficient Full Evaluation (Simplified):

Can compute a function over evaluations of entire domain in time 
quasi-linear in domain size.

x ∊ {1,...,M} p ∊ {1,...,M}

y

XOR:

Output array of length M where the i-th element is:
 ⨁x ∊ {1,...M}PEval(k’, x, i)
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PEval

Efficient Full Evaluation (Simplified):

Can compute a function over evaluations of entire domain in time 
quasi-linear in domain size.

x ∊ {1,...,M} p ∊ {1,...,M}

y

XOR:

Output array of length M where the i-th element is:
 ⨁x ∊ {1,...M}PEval(k’, x, i)

At index equal to point that was punctured, xor will be 
consistent with original key (except for element punctured)



Weak Privately Puncturable PRF

52

PEval

Efficient Full Evaluation (Simplified):

Can compute a function over evaluations of entire domain in time 
quasi-linear in domain size.

x ∊ {1,...,M} p ∊ {1,...,M}

y

XOR:

Output array of length M where the i-th element is:
 ⨁x ∊ {1,...M}PEval(k’, x, i)

At index equal to point that was punctured, xor will be 
consistent with original key (except for element punctured)

By Efficient Full Evaluation, we can output this array in 
quasi-linear time in M.
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G(k)[0] G(k)[1]

G(G(k)[0])[0] G(G(k)[0])[1] G(G(k)[1])[0] G(G(k)[1])[1]

Punctured Key: { 3,             ,             }G(k)[0] G(G(k)[1])[1]

index punctured

Left-to-right ordering of 
nodes in adjacent path
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Left-to-right ordering of 
nodes in adjacent path

Punctured Key: { 3,             ,             }G(k)[0] G(G(k)[1])[1]

Privately

Recipient can guess punctured index:
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Left-to-right ordering of 
nodes in adjacent path

Punctured Key: { 3,             ,             }G(k)[0] G(G(k)[1])[1]

Privately

Recipient can guess punctured index:

Guess of 1:

G(G(k)
[1])[1]

G(k)[0] rand1 rand2
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Guess of 1:

G(G(k)
[1])[1]

G(k)[0] rand1 rand2

Guess of 2:
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Left-to-right ordering of 
nodes in adjacent path

Punctured Key: { 3,             ,             }G(k)[0] G(G(k)[1])[1]

Privately
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Left-to-right ordering of 
nodes in adjacent path

Punctured Key: { 3,             ,             }G(k)[0] G(G(k)[1])[1]

Privately

Recipient can guess punctured index:

Guess of 1:

G(G(k)
[1])[1]

G(k)[0] rand1 rand2

Guess of 2:
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Guess of 3:
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[0]

G(k)[0]
[1]

G(G(k)
[1])[1]

Guess of 4:
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Distribution for fast 
membership

Weak Privately 
Puncturable PRF

Amortized sublinear PIR with 
log(N) upload and √N download 

bandwidth from OWF
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Distribution for fast 
membership

Weak Privately 
Puncturable PRF

Amortized sublinear PIR with 
log(N) upload and √N download 

bandwidth from OWF

PIR Scheme Client storage Amortized query time Online Bandwidth

TreePIR 1MB 3.5s 16.6KB

Checklist [KC21] 8GB 12.5s 0.5KB

Database of 232 bit entries
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TreePIR [DGIMMO ‘19] on 
Rate-1 TDF

First amortized sublinear PIR 
with polylog(N) bandwidth from 

DDH
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TreePIR [DGIMMO ‘19] on 
Rate-1 TDF

First amortized sublinear PIR 
with polylog(N) bandwidth from 

DDH

TreePIR SPIRAL [MW ‘21] Practical amortized sublinear PIR 
with polylog(N) bandwidth



New works building on TreePIR
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- Piano: Extremely Simple, Single-Server PIR with Sublinear Server Computation [ZLTS ‘23] (to appear IEEE S&P ‘24)
- Simple and Practical Amortized Sublinear Private Information Retrieval [MIR ‘23] (ePrint)
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