
TreePIR: Sublinear Time Polylog Bandwidth
Private Information Retrieval from DDH

Arthur Lazzaretti

joint work with Charalampos Papamanthou

1

Private Information Retrieval [CGKM ‘95, KO ‘97,....]

2

A B

3

A B

x ∊ {0,1}log(N) DB ∊ {0,1}N

Private Information Retrieval [CGKM ‘95, KO ‘97,....]

4

A B

x ∊ {0,1}log(N) DB ∊ {0,1}N

Private Information Retrieval [CGKM ‘95, KO ‘97,....]

5

A B

x ∊ {0,1}log(N) DB ∊ {0,1}N

DB[x] ⟂

Private Information Retrieval [CGKM ‘95, KO ‘97,....]

6

A B

x ∊ {0,1}log(N) DB ∊ {0,1}N

DB[x] ⟂

Privacy:
There exists a PPT simulator A* with no knowledge of x
that can act as A and B cannot tell the difference

Private Information Retrieval [CGKM ‘95, KO ‘97,....]

7

A

x ∊ {0,1}log(N)

B0

DB ∊ {0,1}N

B1

DB ∊ {0,1}N

Two-Server Private Information Retrieval [CGKM ‘95, KO ‘97,....]

8

A

x ∊ {0,1}log(N)

B0

DB ∊ {0,1}N

B1

DB ∊ {0,1}N

Two-Server Private Information Retrieval [CGKM ‘95, KO ‘97,....]

9

A

x ∊ {0,1}log(N)

DB[x]

B0

DB ∊ {0,1}N

B1

DB ∊ {0,1}N

⟂

⟂

Two-Server Private Information Retrieval [CGKM ‘95, KO ‘97,....]

Two-Server PIR, Client Preprocessing [BIM ‘04, …, CK ‘20, ...]

10

A

⟂

H ∊ {0,1}o(N)

B0

DB ∊ {0,1}N

B1

⟂

⟂

DB ∊ {0,1}N

Preprocess:

11

A

DB[xi]

B0

DB ∊ {0,1}N

B1

⟂

⟂

DB ∊ {0,1}N

Query (at step i):

xi ∊ {0,1}log(N)

H ∊ {0,1}o(N)

Two-Server PIR, Client Preprocessing [BIM ‘04, …, CK ‘20, ...]

12

A

⟂

H ∊ {0,1}o(N)

B0

DB ∊ {0,1}N

B1

⟂

⟂

DB ∊ {0,1}N

Preprocess:

A

DB[xi]

B0

DB ∊ {0,1}N

B1

⟂

⟂

DB ∊ {0,1}N

Query (at step i):

xi ∊ {0,1}log(N)

H ∊ {0,1}o(N)

Two-Server PIR, Client Preprocessing [BIM ‘04, …, CK ‘20, ...]

13

A

⟂

H ∊ {0,1}o(N)

B0

DB ∊ {0,1}N

B1

⟂

⟂

DB ∊ {0,1}N

Preprocess:

A

DB[xi]

B0

DB ∊ {0,1}N

B1

⟂

⟂

DB ∊ {0,1}N

Query (at step i):

xi ∊ {0,1}log(N)

H ∊ {0,1}o(N)

Two-Server PIR, Client Preprocessing [BIM ‘04, …, CK ‘20, ...]

B0

The Client’s Hint [CK ‘20, KC ‘21, …]

14

DB

A

A

B0

15

DBS1

4
9
5

11

The Client’s Hint [CK ‘20, KC ‘21, …]

A

B0

16

DBS1

4
9
5

11

The Client’s Hint [CK ‘20, KC ‘21, …]

A

B0

17

DBS1

4
9
5

11

The Client’s Hint [CK ‘20, KC ‘21, …]

A

B0

18

DB

S1

4
9
5

11

S1

4
9
5

11

The Client’s Hint [CK ‘20, KC ‘21, …]

A

B0

19

DB

S1

4
9
5

11

S1

4
9
5

11

The Client’s Hint [CK ‘20, KC ‘21, …]

A

B0

20

DB

S1

4
9
5

11

S1

4
9
5

11

p1

The Client’s Hint [CK ‘20, KC ‘21, …]

A

B0

21

DB
p1

S1

The Client’s Hint [CK ‘20, KC ‘21, …]

A

B0

22

DB
p1

S1

p2

S2

p3

S3

p4

S4

p5

S5

p6

S6

The Client’s Hint [CK ‘20, KC ‘21, …]

A

B0

23

DB

H
p1

S1

p2

S2

p3

S3

p4

S4

p5

S5

p6

S6

The Client’s Hint [CK ‘20, KC ‘21, …]

A

B0

24

DB

H
p1

S1

p2

S2

p3

S3

p4

S4

p5

S5

p6

S6

B1
DB

The Client’s Hint [CK ‘20, KC ‘21, …]

A

25

H
p1

S1

p2

S2

p3

S3

p4

S4

p5

S5

p6

S6

B1
DB

The Client’s Hint [CK ‘20, KC ‘21, …]

A

26

H
p1

S1

p2

S2

p3

S3

p4

S4

p5

S5

p6

S6

B1
DB

HappyQuery(index x):
 Find (S,p) in H such that x ∊ S

 Send to B1 S\{x}, get back xor of elements p’

 Compute DB[x] = p ⨁ p’

Query Outline

A

27

H
p1

S1

p2

S2

p3

S3

p4

S4

p5

S5

p6

S6

B1
DB

Query Outline

 Find (S,p) in H such that x ∊ S

 Send to B1 S\{x}, get back xor of elements p’

 Compute DB[x] = p ⨁ p’

A

Query Requirements

28

H
p1

S1

p2

S2

p3

S3

p4

S4

p5

S5

p6

S6

B1
DB

1) Fast membership testing

 Send to B1 S\{x}, get back xor of elements p’

 Compute DB[x] = p ⨁ p’

A

29

H
p1

S1

p2

S2

p3

S3

p4

S4

p5

S5

p6

S6

B1
DB

Query Requirements

1) Fast membership testing

2) Concise description after removal

A

30

H
p1

S1

p2

S2

p3

S3

p4

S4

p5

S5

p6

S6

B1
DB

Query Requirements

1) Fast membership testing

2) Concise description after removal

3) Practical

A

Modifying Client’s Hint

31

H

B1
DB

1) Fast membership testing

2) Concise description after removal

3) Practical

B1
A

32

DB

H

Modifying Client’s Hint

1) Fast membership testing

2) Concise description after removal

3) Practical

B1
A

33

H

Modifying Client’s Hint

S1

(1,Fk(1))
(2,Fk(2))
(3,Fk(3))
(4,Fk(4))

DB

1) Fast membership testing

2) Concise description after removal

3) Practical

B1
A

34

H

1) Fast membership testing

2) Concise description after removal

3) Practical

Modifying Client’s Hint

S1

(1,Fk(1))
(2,Fk(2))
(3,Fk(3))
(4,Fk(4))

DB

B1
A

35

H

1) Fast membership testing

2) Concise description after removal

3) Practical

Modifying Client’s Hint

S1

(1,Fk(1))
(2,Fk(2))
(3,Fk(3))
(4,Fk(4))

DB

Membership(x=(i,j), S=(k)):
Does Fk(i) == j ?

B1
A

36

H
p1

S1

Modifying Client’s Hint

DB

1) Fast membership testing

2) Concise description after removal

3) Practical
Membership(x=(i,j), S=(k)):

Does Fk(i) == j ?

B1
A

37

H

Modifying Client’s Hint

DB

1) Fast membership testing

2) Concise description after removal

3) Practical

p1

S1

B1
A

38

H

Modifying Client’s Hint

DB

1) Fast membership testing

2) Concise description after removal

3) Practical

p1

S1

39

Gen Eval Puncture

x ∊ {1,...,M} x ∊ {1,...,M}

y

Tool: Puncturable Pseudorandom Function [GGM ‘84, BW ‘13, KPTZ ‘13, BGI ‘14, …]

40

Gen Eval/PEval Puncture

x ∊ {1,...,M}

y

x ∊ {1,...,M}

Tool: Puncturable Pseudorandom Function [GGM ‘84, BW ‘13, KPTZ ‘13, BGI ‘14, …]

41

Puncture

Correctness:
For any input x’ ≠ x, punctured key evaluates to same output as original
key

x ∊ {1,...,M}

Tool: Puncturable Pseudorandom Function [GGM ‘84, BW ‘13, KPTZ ‘13, BGI ‘14, …]

42

Puncture

Security:
New key contains no information about evaluation at punctured point x

Correctness:
For any input x’ ≠ x, punctured key evaluates to same output as original
key

x ∊ {1,...,M}

Puncture on Puncturable PRF [BW ‘13, KPTZ ‘13, BGI ‘14, …]

43

Puncture

Security:
New key contains no information about evaluation at punctured point x

Correctness:
For any input x’ ≠ x, punctured key evaluates to same output as original
key

x ∊ {1,...,M}

Puncture on Puncturable PRF [BW ‘13, KPTZ ‘13, BGI ‘14, …]

Recall: if x = (i,j) and sets are made of tuples (i,Fk(i)), if we send
to B0 k’ ← Puncture(k,i), it hides Fk(i) but does not hide i

Puncture on Privately Puncturable PRF [BLW ‘15, BKM ‘17, CC ‘17, ...]

44

Puncture

Security:
New key contains no information about evaluation at punctured point x

Privacy:
New key contains no information about punctured point x

Correctness:
For any input x’ ≠ x, punctured key evaluates to same output as original
key

x ∊ {1,...,M}

Puncture on Privately Puncturable PRF [BLW ‘15, BKM ‘17, CC ‘17, ...]

45

Puncture

Security:
New key contains no information about evaluation at punctured point x

Privacy:
New key contains no information about punctured point x

Correctness:
For any input x’ ≠ x, punctured key evaluates to same output as original
key

x ∊ {1,...,M}

[SACM ‘21]: First construction of sublinear time,
polylog bandwidth PIR, using ppPRFs

Weak Privately Puncturable PRF

46

Security:
New key contains no information about evaluation at punctured point x

Privacy:
New key contains no information about punctured point x

Weak Correctness:
For any input x’ ≠ x, punctured key evaluates to same output as original
key for a correct guess of the punctured point x

PEval

x ∊ {1,...,M} p ∊ {1,...,M}

y

Weak Privately Puncturable PRF

47

Security:
New key contains no information about evaluation at punctured point x

Privacy:
New key contains no information about punctured point x

Weak Correctness:
For any input x’ ≠ x, punctured key evaluates to same output as original
key for a correct guess of the punctured point x

PEval

‘Guess’ of point that was
punctured

p ∊ {1,...,M}x ∊ {1,...,M}

y

Weak Privately Puncturable PRF

48

Security:
New key contains no information about evaluation at punctured point x

Privacy:
New key contains no information about punctured point x

Weak Correctness:
For any input x’ ≠ x, punctured key evaluates to same output as original
key for a correct guess of the punctured point x

PEval

Efficient Full Evaluation:

x ∊ {1,...,M} p ∊ {1,...,M}

y

Weak Privately Puncturable PRF

49

PEval

Efficient Full Evaluation (Simplified):

Can compute a function over evaluations of entire domain in time
quasi-linear in domain size.

x ∊ {1,...,M} p ∊ {1,...,M}

y

Weak Privately Puncturable PRF

50

PEval

Efficient Full Evaluation (Simplified):

Can compute a function over evaluations of entire domain in time
quasi-linear in domain size.

x ∊ {1,...,M} p ∊ {1,...,M}

y

XOR:

Output array of length M where the i-th element is:
 ⨁x ∊ {1,...M}PEval(k’, x, i)

Weak Privately Puncturable PRF

51

PEval

Efficient Full Evaluation (Simplified):

Can compute a function over evaluations of entire domain in time
quasi-linear in domain size.

x ∊ {1,...,M} p ∊ {1,...,M}

y

XOR:

Output array of length M where the i-th element is:
 ⨁x ∊ {1,...M}PEval(k’, x, i)

At index equal to point that was punctured, xor will be
consistent with original key (except for element punctured)

Weak Privately Puncturable PRF

52

PEval

Efficient Full Evaluation (Simplified):

Can compute a function over evaluations of entire domain in time
quasi-linear in domain size.

x ∊ {1,...,M} p ∊ {1,...,M}

y

XOR:

Output array of length M where the i-th element is:
 ⨁x ∊ {1,...M}PEval(k’, x, i)

At index equal to point that was punctured, xor will be
consistent with original key (except for element punctured)

By Efficient Full Evaluation, we can output this array in
quasi-linear time in M.

GGM PRF

53

k

G(k)[0] G(k)[1]

G(G(k)[0])[0] G(G(k)[0])[1] G(G(k)[1])[0] G(G(k)[1])[1]

GGM PRF

54

k

G(k)[0] G(k)[1]

G(G(k)[0])[0] G(G(k)[0])[1] G(G(k)[1])[0] G(G(k)[1])[1]

GGM PRF

55

k

G(k)[0] G(k)[1]

G(G(k)[0])[0] G(G(k)[0])[1] G(G(k)[1])[0] G(G(k)[1])[1]

GGM PRF

56

k

G(k)[0] G(k)[1]

G(G(k)[0])[0] G(G(k)[0])[1] G(G(k)[1])[0] G(G(k)[1])[1]

GGM PRF

57

k

G(k)[0] G(k)[1]

G(G(k)[0])[0] G(G(k)[0])[1] G(G(k)[1])[0] G(G(k)[1])[1]

GGM PRF

58

k

G(k)[0] G(k)[1]

G(G(k)[0])[0] G(G(k)[0])[1] G(G(k)[1])[0] G(G(k)[1])[1]

Punctured Key: { 3, , }G(k)[0] G(G(k)[1])[1]

GGM PRF

59

k

G(k)[0] G(k)[1]

G(G(k)[0])[0] G(G(k)[0])[1] G(G(k)[1])[0] G(G(k)[1])[1]

Punctured Key: { 3, , }G(k)[0] G(G(k)[1])[1]

index punctured

Left-to-right ordering of
nodes in adjacent path

Weak Privately Puncturable PRF

60

k

G(k)[0] G(k)[1]

G(G(k)[0])[0] G(G(k)[0])[1] G(G(k)[1])[0] G(G(k)[1])[1]

Punctured Key: { 3, , }G(k)[0] G(G(k)[1])[1]

Left-to-right ordering of
nodes in adjacent path

Privately

Weak ppPRF

61

Left-to-right ordering of
nodes in adjacent path

Punctured Key: { 3, , }G(k)[0] G(G(k)[1])[1]

Privately

Recipient can guess punctured index:

Weak ppPRF

62

Left-to-right ordering of
nodes in adjacent path

Punctured Key: { 3, , }G(k)[0] G(G(k)[1])[1]

Privately

Recipient can guess punctured index:

Guess of 1:

G(G(k)
[1])[1]

G(k)[0] rand1 rand2

Weak ppPRF

63

Left-to-right ordering of
nodes in adjacent path

Punctured Key: { 3, , }G(k)[0] G(G(k)[1])[1]

Privately

Recipient can guess punctured index:

Guess of 1:

G(G(k)
[1])[1]

G(k)[0] rand1 rand2

Guess of 2:

G(G(k)
[1])[1]

G(k)[0] rand1 rand2

Weak ppPRF

64

Left-to-right ordering of
nodes in adjacent path

Punctured Key: { 3, , }G(k)[0] G(G(k)[1])[1]

Privately

Recipient can guess punctured index:

Guess of 1:

G(G(k)
[1])[1]

G(k)[0] rand1 rand2

Guess of 2:

G(G(k)
[1])[1]

G(k)[0] rand1 rand2

Guess of 3:

G(k)[0]

G(k)[0]
[0]

G(k)[0]
[1]

G(G(k)
[1])[1]

Weak ppPRF

65

Left-to-right ordering of
nodes in adjacent path

Punctured Key: { 3, , }G(k)[0] G(G(k)[1])[1]

Privately

Recipient can guess punctured index:

Guess of 1:

G(G(k)
[1])[1]

G(k)[0] rand1 rand2

Guess of 2:

G(G(k)
[1])[1]

G(k)[0] rand1 rand2

Guess of 3:

G(k)[0]

G(k)[0]
[0]

G(k)[0]
[1]

G(G(k)
[1])[1]

Guess of 4:

G(k)[0]
[0]

G(k)[0]
[1]

G(G(k)
[1])[1]

G(k)[0]

TreePIR

66

Distribution for fast
membership

Weak Privately
Puncturable PRF

Amortized sublinear PIR with
log(N) upload and √N download

bandwidth from OWF

TreePIR

67

Distribution for fast
membership

Weak Privately
Puncturable PRF

Amortized sublinear PIR with
log(N) upload and √N download

bandwidth from OWF

PIR Scheme Client storage Amortized query time Online Bandwidth

TreePIR 1MB 3.5s 16.6KB

Checklist [KC21] 8GB 12.5s 0.5KB

Database of 232 bit entries

TreePIR plus recursion

68

TreePIR [DGIMMO ‘19] on
Rate-1 TDF

First amortized sublinear PIR
with polylog(N) bandwidth from

DDH

TreePIR plus recursion

69

TreePIR [DGIMMO ‘19] on
Rate-1 TDF

First amortized sublinear PIR
with polylog(N) bandwidth from

DDH

TreePIR SPIRAL [MW ‘21] Practical amortized sublinear PIR
with polylog(N) bandwidth

New works building on TreePIR

70

- Piano: Extremely Simple, Single-Server PIR with Sublinear Server Computation [ZLTS ‘23] (to appear IEEE S&P ‘24)
- Simple and Practical Amortized Sublinear Private Information Retrieval [MIR ‘23] (ePrint)

Sources for icons:

https://icon-library.com/icon/key-icon-png-7.html.html

https://www.onlygfx.com/magnifying-glass-clipart-png-transparent/

https://www.freepnglogos.com/images/tick-33835.html

https://icon-library.com/icon/key-icon-png-7.html.html
https://www.onlygfx.com/magnifying-glass-clipart-png-transparent/
https://www.freepnglogos.com/images/tick-33835.html

