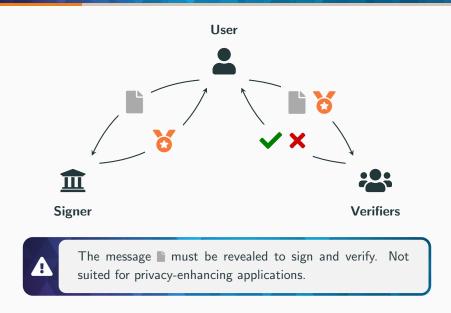
Lattice Signature with Efficient Protocols, Application to Anonymous Credentials

Corentin Jeudy^{1,2}, Adeline Roux-Langlois³, Olivier Sanders¹

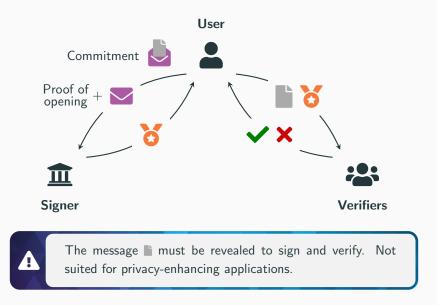
¹ Orange Labs, Applied Crypto Group
 ² Univ Rennes, CNRS, IRISA
 ³ Normandie Univ, UNICAEN, ENSICAEN, CNRS, GREYC
 ³ Mormandie Univ, UNICAEN, ENSICAEN, CNRS, GREYC

Crypto 2023 - August 22nd, 2023

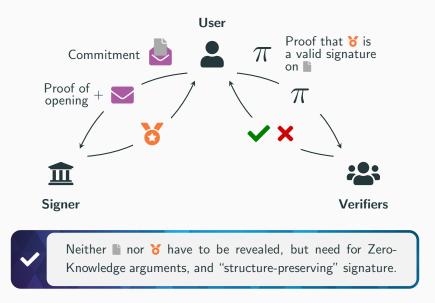
Signature with Efficient Protocols (SEP)



Signature with Efficient Protocols (SEP)



Signature with Efficient Protocols (SEP)



An Interesting Versatility

Many concrete privacy-enhancing applications.

- Anonymous Credentials Systems: requires the ability to
 - ✓ sign committed messages
 - \checkmark prove possession of a message-signature pair in ZK
- Group Signatures: requires to add a verifiable encryption of the user identity
- Blind Signatures: requires the ability to
 - sign committed messages
 - \checkmark prove possession of a signature on a public message in ZK
- E-Cash Systems
- etc.

Real industrial impact: EPID and DAA deployed in billions of devices (TPM, SGX). Blind/Group signatures in ISO standards

Very efficient instantiations of SEPs in the classical setting.

- $[CL02]^1$ Based on the Strong-RSA assumption.
- [CL04]²[BB08]³[PS16]⁴ Based on pairings in bilinear groups.

[BB08][PS16] are constant-size. Very efficient group signatures, anonymous credentials, etc.

• Best group signature is based on SEP: 0.16 KB

¹ J. Camenisch, A. Lysyanskaya. A signature scheme with efficient protocols. SCN 2002.

² J. Camenisch, A. Lysyanskaya. Signature schemes and anonymous credentials from bilinear maps. CRYPTO 2004.

³D. Boneh, X. Boyen. Short signatures without random oracles and the SDH assumption in bilinear groups. J. Cryptol 2008.

⁴D. Pointcheval, O. Sanders. Short Randomizable Signatures. CT-RSA 2016.

Very efficient instantiations of SEPs in the classical setting.

- $[CL02]^1$ Based on the Strong-RSA assumption.
- [CL04]²[BB08]³[PS16]⁴ Based on pairings in bilinear groups.

[BB08][PS16] are constant-size. Very efficient group signatures, anonymous credentials, etc.

• Best group signature is based on SEP: 0.16 KB

Those are vulnerable to quantum computing. How about **post-quantum** solutions?

¹J. Camenisch, A. Lysyanskaya. A signature scheme with efficient protocols. SCN 2002.

² J. Camenisch, A. Lysyanskaya. Signature schemes and anonymous credentials from bilinear maps. CRYPTO 2004.

 $^{^3}$ D. Boneh, X. Boyen. Short signatures without random oracles and the SDH assumption in bilinear groups. J. Cryptol 2008.

⁴D. Pointcheval, O. Sanders. Short Randomizable Signatures. CT-RSA 2016.

Existing PQC Signature with Efficient Protocols

Only one proposal of post-quantum signature with efficient protocols:

• [LLM⁺16]⁵ Proof of concept based on standard lattices.

		pk	sk	sig	$ \pi $
[LLM ⁺ 16]	Exact Proof	3 TB	15 GB	9 MB	10 GB
	Appr. Proof	7 TB	37 GB	14 MB	670 MB

⁵B. Libert, S. Ling, F. Mouhartem, K. Nguyen, and H. Wang. Signature schemes with efficient protocols and dynamic group signatures from lattice assumptions. ASIACRYPT, 2016.

Only one proposal of post-quantum signature with efficient protocols:

• [LLM⁺16]⁵ Proof of concept based on standard lattices.

		pk	sk	sig	$ \pi $
[LLM ⁺ 16]	Exact Proof	3 TB	15 GB	9 MB	10 GB
	Appr. Proof	7 TB	37 GB	14 MB	670 MB

Simpler, more compact, more efficient construction on standard lattices, and extension to ideal and module lattices.

		pk	sk	sig	$ \pi $
Ours	Exact Proof	8 MB	9 MB	270 KB	640 KB

Today

⁵B. Libert, S. Ling, F. Mouhartem, K. Nguyen, and H. Wang. Signature schemes with efficient protocols and dynamic group signatures from lattice assumptions. ASIACRYPT, 2016.

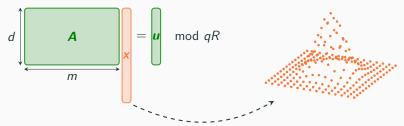
Our Lattice Signature With Efficient Protocols

Short Integer Solution and Trapdoors

Module- $\overline{SIS}_{m,d,q,\beta}$

Given $\mathbf{A} \leftrightarrow U((R/qR)^{d \times m})$, find a **non-zero** $\mathbf{x} \in R^m$ such that $\mathbf{A}\mathbf{x} = \mathbf{0} \mod qR, \ 0 < \|\mathbf{x}\|_2 \le \beta.$ $R = \mathbb{Z}[\mathbf{x}]/\langle \mathbf{x}^n + 1 \rangle$ with $n = 2^k$

Trapdoor on **A**: piece of information used to sample Gaussian vector **x** such that $Ax = u \mod qR$ for any syndrome u



Constructing our SEP

Original Construction from [LLM⁺16]

 $\begin{aligned} & \texttt{sk} = \textit{T}_{\textit{A}} (\text{Trapdoor}), \textit{A}_i, \textit{u}, \textit{D}, \textit{D}_j \text{ uniform public} \\ & \texttt{sig} = ((\tau_i)_i, \textit{v}, \textit{r}) \text{ with } \tau_i \text{ tag bits, } \textit{v}, \textit{r} \text{ short, } m_j \text{ binary vectors} \end{aligned}$

$$\underbrace{\begin{bmatrix} \mathbf{A} \mid \mathbf{A}_0 + \sum_i \mathbf{\tau}_i \mathbf{A}_i \end{bmatrix}}_{\mathbf{T}_{\mathbf{A}} \text{ extends to full matrix}} \cdot \mathbf{v} = \mathbf{u} + \mathbf{D} \cdot \operatorname{bin} \left(\underbrace{\mathbf{D}_0 \mathbf{r} + \sum_j \mathbf{D}_j [\mathbf{m}_j | \mathbf{1} - \mathbf{m}_j]}_{\text{Commitment}} \right)$$

$$\begin{cases} \mathbf{w} = \operatorname{bin} \left(\mathbf{D}_0 \mathbf{r} + \sum_j \mathbf{D}_j [\mathbf{m}_j | \mathbf{1} - \mathbf{m}_j] \right) \\ \bullet \left[\mathbf{A} \mid \mathbf{A}_0 + \sum_j \mathbf{\tau}_i \mathbf{A}_j \right] \mathbf{v} = \mathbf{u} + \mathbf{D} \mathbf{w} \\ \bullet \operatorname{bin-recomp}(\mathbf{w}) = \mathbf{D}_0 \mathbf{r} + \sum_j \mathbf{D}_j [\mathbf{m}_j | \mathbf{1} - \mathbf{m}_j] \\ \bullet \mathbf{w} \operatorname{binary} \end{cases}$$
 ZKP details

Constructing our SEP

New Arguments in Security Proofs (+ message packing)

 $\begin{aligned} \mathtt{sk} &= \textit{T}_{\textit{A}} \; (\mathsf{Trapdoor}), \; \textit{A}_i, \textit{u}, \textit{D}, \textit{D}_j \; \mathsf{uniform \; public} \\ \mathtt{sig} &= ((\tau_i)_i, \textit{v}, \textit{r}) \; \mathsf{with} \; \tau_i \; \mathsf{tag \; bits}, \; \textit{v}, \textit{r} \; \mathsf{short}, \; \textit{m} \; \mathsf{binary \; vector} \end{aligned}$

$$[\mathbf{A} \mid \mathbf{A}_0 + \sum_i \boldsymbol{\tau}_i \mathbf{A}_i] \cdot \mathbf{v} = \mathbf{u} + \underbrace{\mathbf{D}_0 \mathbf{r} + \mathbf{D}_1 \mathbf{m}}_{\boldsymbol{\boxtimes}}$$

Before

$$\begin{bmatrix} \mathbf{A} & | & \mathbf{A}_0 + \sum_i \tau_i \mathbf{A}_i \end{bmatrix} \cdot \mathbf{v} = \mathbf{u} + \mathbf{D} \cdot \operatorname{bin} \left(\mathbf{D}_0 \mathbf{r} + \sum_j \mathbf{D}_j [\mathbf{m}_j | \mathbf{1} - \mathbf{m}_j] \right)$$

Jeudy, Roux-Langlois, Sanders

Crypto 2023 - August 22nd, 2023

Constructing our SEP

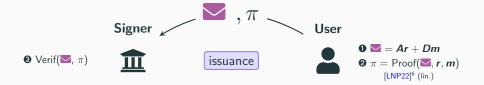
sk = R (Trapdoor), A, u, D_1 uniform public, $G = I \otimes [1 \ 2 \dots 2^{k-1}]$ gadget matrix sig = (τ, v') with τ tag, v' short, m binary vector

Jeudy, Roux-Langlois, Sanders

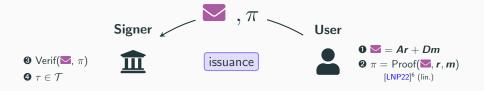
Crypto 2023 - August 22nd, 2023

Application to Anonymous Credentials: The Protocols

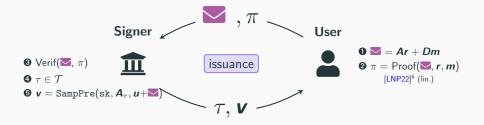
 $^{^{6}}$ V. Lyubashevsky, N. K. Nguyen, M. Plançon. Lattice-Based Zero-Knowledge Proofs and Applications: Shorter, Simpler, and More General. Crypto 2022.



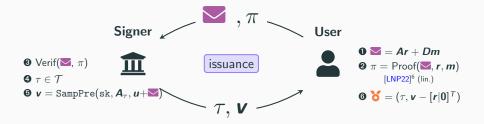
 $^{^{6}}$ V. Lyubashevsky, N. K. Nguyen, M. Plançon. Lattice-Based Zero-Knowledge Proofs and Applications: Shorter, Simpler, and More General. Crypto 2022.



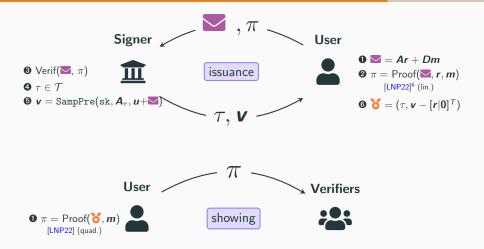
 $^{^{6}}$ V. Lyubashevsky, N. K. Nguyen, M. Plançon. Lattice-Based Zero-Knowledge Proofs and Applications: Shorter, Simpler, and More General. Crypto 2022.



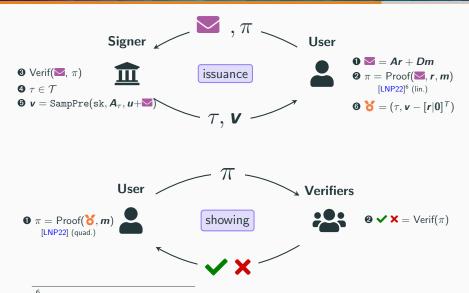
 $^{^{6}}$ V. Lyubashevsky, N. K. Nguyen, M. Plançon. Lattice-Based Zero-Knowledge Proofs and Applications: Shorter, Simpler, and More General. Crypto 2022.



 $^{^{6}}$ V. Lyubashevsky, N. K. Nguyen, M. Plançon. Lattice-Based Zero-Knowledge Proofs and Applications: Shorter, Simpler, and More General. Crypto 2022.



 $^{^{6}}$ V. Lyubashevsky, N. K. Nguyen, M. Plançon. Lattice-Based Zero-Knowledge Proofs and Applications: Shorter, Simpler, and More General. Crypto 2022.



 $^{^{6}}$ V. Lyubashevsky, N. K. Nguyen, M. Plançon. Lattice-Based Zero-Knowledge Proofs and Applications: Shorter, Simpler, and More General. Crypto 2022.

Security of Anonymous Credentials

• Anonymity:

- Issuance. No leakage of the secret key, nor concealed attributes
 - Hiding commitment, and Zero-Knowledge
- Showing. No leakage of the credential, secret, concealed attributes
 - ✓ Zero-Knowledge

- Unforgeability: Prevent three types of forgeries.
 - Impersonation. Forgery using an honest user's secret key

✓ Reduction to Module-SIS with matrix D_s

• Malicious Prover. Tricks verifiers in the zero-knowledge argument

Soundness of the proof system

Signature Forgery. Forges a valid credential on fresh attributes/key
 EUF-CMA security of our signature

Wrapping Up

Our contribution (https://ia.cr/2022/509)

- A (more) practical signature with efficient protocols, under standard or structured lattice assumptions.
- ☆ Orders of magnitude more efficient than [LLM+16].
- **IFix** of the approximate ZK proof system of [YAZ⁺19].
- First lattice-based anonymous credentials.

	Assumptions	Interactive Assumption	cred
[LLM+16]	SIS	No	670 MB (appr. proof)
Ours	MSIS/MLWE	No	730 KB
[BLNS23]	$\frac{NTRU_{ISIS_f}}{Int_{NTRU_{ISIS_f}}}$	No Yes	243 KB 62 KB

Related Work

Thank you for your attention!

Questions?

References

D. Boneh and X. Boyen.

Short signatures without random oracles and the SDH assumption in bilinear groups.

J. Cryptol., 2008.

W. Beullens, V. Lyubashevsky, N. K. Nguyen, and G. Seiler. Lattice-based blind signatures: Short, efficient, and round-optimal.

IACR Cryptol. ePrint Arch., page 77, 2023.

 J. Camenisch and A. Lysyanskaya.
 A signature scheme with efficient protocols. In SCN, 2002.

References

ii

J. Camenisch and A. Lysyanskaya.
 Signature schemes and anonymous credentials from bilinear maps.
 In <u>CRYPTO</u>, 2004.

B. Libert, S. Ling, F. Mouhartem, K. Nguyen, and H. Wang. Signature schemes with efficient protocols and dynamic group signatures from lattice assumptions.

In ASIACRYPT, 2016.

 V. Lyubashevsky, N. K. Nguyen, and M. Plançon.
 Lattice-based zero-knowledge proofs and applications: Shorter, simpler, and more general.
 <u>CRYPTO</u>, 2022.

- D. Pointcheval and O. Sanders.
 Short randomizable signatures.
 In <u>CT-RSA</u>, 2016.

R. Yang, M. H. Au, Z. Zhang, Q. Xu, Z. Yu, and W. Whyte. Efficient lattice-based zero-knowledge arguments with standard soundness: Construction and applications. In CRYPTO, 2019.