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Arguments of Knowledge [GMR85]
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An argument of knowledge allows a prover to interactively show to a verifier 
that it knows witness  such that   .w (u, w) ∈ R

𝖯 𝖵

w u

𝗍𝗋𝗎𝖾/𝖿𝖺𝗅𝗌𝖾

𝖼𝗈𝗆𝗆𝗂𝗍

𝖼𝗁𝖺𝗅𝗅𝖾𝗇𝗀𝖾

𝗋𝖾𝗌𝗉𝗈𝗇𝗌𝖾

 
?
∈ R
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Emerging paradigm: The verifier does not fully 
resolve the prover’s statement, but rather 

reduces it to a simpler statement to be checked. 

[BDFG21], [RZ21], [ACR21], 
[KST22], [BBBPWM18], [BC23], 
[BCLMS21], [KS23], [CBBZ22], 
[BCHO22], [Set20], [Bay13], 
[BZ12], [BGH19], [CNRZZ22], 
[BCS21], [BMMTV21], [AC20],
[LFKN92], [GKR15], [Lee21], 
[Val08], [RZ22], [BCCGP16], 
+

A Shift in Perspective
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“The basic step in our inner product argument is a 2-move reduction to a 
smaller statement.”

- Bootle, Cerulli, Chaidos, Groth, and Petit,  
Eurocrypt 2016

Recursive Inner-Product Argument
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Recursive Inner-Product Argument

A

G

A?=

Length  inner-productn
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“The basic step in our inner product argument is a 2-move reduction to a 
smaller statement.”

- Bootle, Cerulli, Chaidos, Groth, and Petit,  
Eurocrypt 2016

Recursive Inner-Product Argument

A

G

A?=

Length  inner-productn

Inner-Product Step 
[BCCGP16]

G′ 

A′ 
A′ 

?=

Length  inner-productn/2
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Polynomial Aggregation

- Boneh, Drake, Fisch, and Gabizon,  
Crypto 2021

“If the prover has a witness for , then it must have witnesses for 
.” 

(P, x, y)
(P, x1, y1), …, (P, xn, yn)
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P
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Polynomial 
Aggregation  

Scheme 
[BGH19, BDFG21] 

x

?= y

P

Polynomial Aggregation

- Boneh, Drake, Fisch, and Gabizon,  
Crypto 2021

“If the prover has a witness for , then it must have witnesses for 
.” 

(P, x, y)
(P, x1, y1), …, (P, xn, yn)
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“Intuitively, a folding scheme … reduces the task of checking two instances 
in  to the task of checking a single instance in .” R R

- Joint work with Setty and Tzialla,  
- Crypto 2022
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“Intuitively, a folding scheme … reduces the task of checking two instances 
in  to the task of checking a single instance in .” R R

- Joint work with Setty and Tzialla,  
- Crypto 2022

Folding  
Scheme  
[KST22]

u w
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R1CS

◯
?=

“We reduce R1CS constraint systems to three algebraic relations” 

- Ràfols and Zapico,  
Crypto 2021

R1CS  
Reduction 
[RZ21]

Inner-
Product

Hadamard-
Product

Checkable 
Subspace 
Sampling

?= ?=◯



Modern Arguments are Reductions
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Split-accumulation schemes reduce the task of 
checking  instances and accumulators into the task 
of checking single accumulator. [BCLMS21] 
Aggregation schemes for polynomial commitments 
reduce the task of checking several openings to the 
task of checking a single opening. [BDFG21] 
The ZeroCheck protocol reduces the task of 
checking that a polynomial vanishes on a set to a 
Sumcheck. [BTVW14, Set20, CBBZ22] 
The tensor-product protocol reduces the task of 
checking an inner-product with a structured vector 
to the task of checking several univariate 
polynomial evaluations. [BCHO22] 
The Hadamard-product protocol reduces the task 
of checking a Hadamard product to the task of 
checking an inner-product. [Bay13]

n
Inner-product arguments reduce the the task of 
checking the inner-product of size  vectors to 
checking the inner-product of size  vectors. 
[BCCGP16, BBBPWM18, BMMTV21, Lee21] 
Checkable subspace sampling reduces the task of 
checking matrix evaluations to the task of checking 
vector evaluations. [RZ21] 
Incrementally verifiable computation reduces the 
task of checking a succinct proof of  applications of 
function  and a succinct proof of m subsequent 
applications of  to the task of checking a succinct 
proof of  applications of . [Val08] 
The zero-knowledge HPI argument reduces the 
task of checking a pre-image of a homomorphism  
to the task of checking a pre-image of a randomized 
homomorphism .[BDFG21]

n
n/2

n
F

F
n + m F

y

y′ 
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Interactive reductions 
are universal; their 
definitions are not

making it difficult to compose 
compatible techniques hidden 

under incompatible abstractions. 

Problem: Need a Unifying Theory
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Interactive reductions 
are universal; their 
definitions are not

making it difficult to compose 
compatible techniques hidden 

under incompatible abstractions. 

which serve as both a 
unifying abstraction and a 
compositional framework.

We formalize reductions 
of knowledge as a 
common language

Solution

Problem: Need a Unifying Theory



A reduction of knowledge interactively reduces the claim    to a 
claim   
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𝖯 𝖵
If the prover is 
provided satisfying  
then it must output a 
satisfying  

w1

w2

Completeness

If prover outputs 
satisfying  then it 

must almost certainly 
know a satisfying 

w2
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Knowledge Soundness
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 Pr[⟨P*, V⟩(u1, 𝗌𝗍) ∈ R2] = ε

Knowledge Soundness
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𝖯* 𝖵

Consider  s.t. for  P* (u1, 𝗌𝗍)

u1𝗌𝗍

    Pr[(u1, E(u1, 𝗌𝗍)) ∈ R1] ≈ ε

Then there exists an extractor  s.t.E

 𝖤𝗑𝗍𝗋𝖺𝖼𝗍𝗈𝗋 E

w1

u2w2
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?
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𝖯 𝖵

“ ”𝗍𝗋𝗎𝖾“ ”𝗍𝗋𝗂𝗏

Reconciling Reductions with Arguments
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An argument of knowledge is a reduction of knowledge from  to 
  “ ”  “ ” .

R
R⊤ = {( 𝗍𝗋𝗎𝖾 , 𝗍𝗋𝗂𝗏 )}



      R𝖨𝖯(n) = {((G, A), A) ∈ ((𝔾n, 𝔾), 𝔽 n) ∣ ⟨G, A⟩ = A}
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Define the Inner-Product Relation as

First Example: Inner-Product Reduction [BCCGP16]
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Solution: Sequential Composition Theorem

    Π1 : R1 → R2     Π2 : R2 → R3

      Π2 ∘ Π1 : R1 → R3

We prove that reductions are sequentially composable.
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Simpler soundness proof: Invoke sequential composition.

Π𝗌𝗍𝖾𝗉

R𝖨𝖯(n) → R𝖨𝖯(n/2)

Π𝗌𝗍𝖾𝗉

R𝖨𝖯(n/2) → R𝖨𝖯(n/4)
⋯ Π𝖻𝖺𝗌𝖾

R𝖨𝖯(1) → R𝖳

Base case: the 
prover sends the 

witness A ∈ 𝔽

R𝖨𝖯(n)

R𝖳

   Π𝖵𝖢 : R𝖨𝖯(n) → R⊤



Our Generalization: Tensor Reduction of Knowledge
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Theorem. There exists a reduction of knowledge that 
reduces the task of checking knowledge of  such that 

 for to the task of checking 
knowledge of  such that  for . 

w
u(w) = v u ∈ hom(Wn, V)

w′ u′ (w′ ) = v′ u′ ∈ hom(W, V)

( )  

?= vu w ( )  

?= v′ u′ w′ 

This generalizes techniques 
in [BCCGP16], [BBBPWM18], 
[BCS21] , [BMMTV21] , 
[AC20], and [ACR21]



𝖯 𝖵

 
?
∈ Rℓ

 
?
∈ R

u1, …, uℓw1, …, wℓ

uw

Second Example: Folding Schemes
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An -folding scheme is a reduction of knowledge from  to .ℓ Rℓ = R × ⋯ × R R
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21

Π2

Π𝟤

Π𝟤

RRℓ



22

Solution: Parallel Composition Theorem

We prove that reductions can be composed in parallel.



22

Solution: Parallel Composition Theorem

    Π1 : R1 → R2

We prove that reductions can be composed in parallel.



22

Solution: Parallel Composition Theorem

    Π1 : R1 → R2

    Π2 : R3 → R4

We prove that reductions can be composed in parallel.



22

Solution: Parallel Composition Theorem

    Π1 : R1 → R2

    Π2 : R3 → R4

×

We prove that reductions can be composed in parallel.



22

Solution: Parallel Composition Theorem

    Π1 : R1 → R2

    Π2 : R3 → R4

×

We prove that reductions can be composed in parallel.

          Π1 × Π2 : R1 × R3 → R2 × R4



22

Solution: Parallel Composition Theorem

    Π1 : R1 → R2

    Π2 : R3 → R4

×

We prove that reductions can be composed in parallel.

          Π1 × Π2 : R1 × R3 → R2 × R4

{ } (u1, w1) ∈ R1

 (u3, w3) ∈ R3
   (u1, u3), (w1, w3)



22

Solution: Parallel Composition Theorem

    Π1 : R1 → R2

    Π2 : R3 → R4

×

We prove that reductions can be composed in parallel.

          Π1 × Π2 : R1 × R3 → R2 × R4

{ } (u1, w1) ∈ R1

 (u3, w3) ∈ R3
   (u1, u3), (w1, w3)

{ } (u2, w2) ∈ R2

 (u4, w4) ∈ R4
   (u2, u4), (w2, w4)
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𝖱𝟣𝖢𝖲

R𝖳

𝖾𝗇𝖼𝗈𝖽𝖾

𝗋𝖺𝗇𝖽𝗈𝗆
𝗅𝗂𝗇𝖾𝖺𝗋

𝖼𝗈𝗆𝖻𝗂𝗇𝖺𝗍𝗂𝗈𝗇

𝗅𝗈𝖼𝖺𝗅
𝖾𝗏𝖺𝗅

⋯

𝗌𝗎𝗆𝖼𝗁𝖾𝖼𝗄 ⋯[LFKN92]

𝗌𝗎𝗆𝖼𝗁𝖾𝖼𝗄
[LFKN92]

𝖬𝗎𝗅𝗍𝗂𝗅𝗂𝗇𝖾𝖺𝗋 𝖯𝖢𝖲

𝖨𝖯𝖠

[WTSTW18, Lee21]

[BBBPWM18]

×
⋮

𝖥𝗈
𝗅𝖽

R 𝖳

[BFLS91] 
[BTVW14]

𝖯𝖢𝖲
𝖼𝗈𝗆𝗆𝗂𝗍

[WTSTW18]
[Lee21]

𝖱𝖫𝖢

𝗓𝖾𝗋𝗈𝖼𝗁𝖾𝖼𝗄
[BTVW14]

𝖲𝗉𝖺𝗋𝗌𝖾
𝖯𝖢𝖲

Spartan
[Set20]



×

×

×
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Reductions of knowledge serve as both a 
unifying abstraction and a compositional framework. 
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