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Arguments of Knowledge | GMR85 |

An argument of knowledge allows a prover to interactively show to a verifier
that it knows witness w such that (u, w) € R.
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A Shift in Perspective
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Emerging paradigm: The verifier does not fully
resolve the prover’s statement, but rather
reduces it to a simpler statement to be checked.



Recursive Inner-Product Argument

“The basic step in our inner product argument is a 2-move reduction to a
smaller statement.”

- Bootle, Cerulli, Chaidos, Groth, and Petit,
Eurocrypt 2016
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Polynomial Aggregation

“If the prover has a witness for (P, x, y), then it must have witnesses for
(P9 xl? yl)? IR (Pa xna yn)'”

- Boneh, Drake, Fisch, and Gabizon,
Crypto 2021
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Folding Schemes

“Intuitively, a folding scheme ... reduces the task of checking two instances
in R to the task of checking a single instance in R.”

Joint work with Setty and Tzialla,
Crypto 2022
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“Intuitively, a folding scheme ... reduces the task of checking two instances
in R to the task of checking a single instance in R.”

Joint work with Setty and Tzialla,
Crypto 2022



Algebraic Arguments for NP

“We reduce R1CS constraint systems to three algebraic relations”

- Rafols and Zapico,
Crypto 2021
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Modern Arguments are Reductions

Split-accumulation schemes reduce the task of
checking n instances and accumulators into the task
of checking single accumulator. [ BCLMS21 |

Aggregation schemes for polynomial commitments
reduce the task of checking several openings to the

task of checking a single opening. [BDFG21 |

The ZeroCheck protocol reduces the task of
checking that a polynomial vanishes on a set to a

Sumcheck. [BTVW14, Set20, CBBZ22]

The tensor-product protocol reduces the task of
checking an inner-product with a structured vector
to the task of checking several univariate

polynomial evaluations. [BCHO22 |

The Hadamard-product protocol reduces the task
of checking a Hadamard product to the task of

checking an inner-product. [Bay13 ]

Inner-product arguments reduce the the task of
checking the inner-product of size n vectors to

checking the inner-product of size n/2 vectors.
[BCCGP16, BBBPWM18, BMMTV21l, Lee21]

Checkable subspace sampling reduces the task of
checking matrix evaluations to the task of checking

vector evaluations. [RZ21 |

Incrementally verifiable computation reduces the
task of checking a succinct proof of n applications of
function /' and a succinct proof of m subsequent
applications of F' to the task of checking a succinct
proof of n + m applications of F. [Val08]

The zero-knowledge HPI argument reduces the

task of checking a pre-image of a homomorphism y
to the task of checking a pre-image ofiasrandomized

homomorphism y".[BDFG21 |



Problem: Need a Unifying Theory
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Interactive reductions -
are universal; their
definitions are not

making it difficult to compose
compatible techniques hidden
under incompatible abstractions.
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Interactive reductions " We formalize reductions
are universal; their of knowledge as a
definitions are not common language
making it difficult to compose which serve as both a
compatible techniques hidden and a

under incompatible abstractions. S compositional framework.
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Reductions of Knowledge: A Unifying Language

A reduction of knowledge interactively reduces the claim («,, w,) € R{ to a
claim (u,, w,) € Ry

?
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Reductions of Knowledge: A Unifying Language

A reduction of knowledge interactively reduces the claim («,, w,) € R{ to a

claim (u,, w,) € Ry

Knowledge Soundness

If prover outputs
satistying w, then it
must almost certainly
know a satistying w,

Wi

10

?
u, € IRy

Completeness

If the prover is
provided satisfying w,
then it must output a
satisfying w,



Knowledge Soundness

st Uy

Consider P* s.t. for (1, st)

Pr(P*, V)(uy, st) € Ry| =
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Knowledge Soundness

st Uy

Consider P* s.t. for (u,, st) Extractor £

Pr(P*, V)(uy, st) € Ry| =

Then there exists an extractor £ s.t.

Pr(u,, E(u,, st)) € Ry] ~
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Reconciling Reductions with Arguments

An argument of knowledge is a reduction of knowledge from R to
R+ = {(“true”, “triv”)}. )
W u  ER

cctrivv cctruen e RT
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First Example: Inner-Product Reduction | BCCGP16 |

Define the Inner-Product Relation as

Rip(17) = {((G,K), A) c ((@ ,G),F ) (G,A) =K}
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Define the Inner-Product Relation as

Characterized
by length

R = {(m, 1) e (6.8,5)|(6.4) }
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Define the Inner-Product Relation as

Characterized
by length Witness

Statement Satisfying
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There exists a reduction of knowledge from Ryp(72) to Ryp(n2/2).

A (G,A) é R;p(n)
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Problem: Simple Construction, Complex Proof

— ?
st (G, Ay)) € Ryp(n)

(Gna Xn) é RIP(I)
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interpolate forA,_, 77 : S .
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Problem: Simple Construction, Complex Proof
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Solution: Sequential Composition Theorem

We prove that reductions are sequentially composable.
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Inner-Product Argument with a Simple Proof

Simpler soundness proof: Invoke sequential composition.
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Inner-Product Argument with a Simple Proof

Simpler soundness proof: Invoke sequential composition.

Base case: the
prover sends the

witness A € [

11

step 1_Istep 1—[base

Ripiy = Ripiu) Rip(uay = Ripuay Rippy = Ry
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Inner-Product Argument with a Simple Proof

Simpler soundness proof: Invoke sequential composition.

HVC X RIP(n) —> RT Base case: the
prover sends the
witness A € [

RIP(n) — RIP(n/z) RIP(n/z) — RIP(n/4) RIP(I) — Ry

17



Our Generalization: Tensor Reduction of Knowledge

This generalizes techniques
in [BCCGP16], [BBBPWM18],
'BCS21], [BMMTV21],
"'AC207, and [ACR21]

Theorem. There exists a reduction of knowledge that
reduces the task of checking knowledge of w such that

u(w) =v for u € hom(W", V)to the task of checking
knowledge of w’'such that u'(w’) = v'for u” € hom(W, V).

18




Second Example: Folding Schemes
An /-folding scheme is a reduction of knowledge from R = R X -+ X R to R.

)
Wiy eeey Wy Upy oees Uy c R

19



Problem: Simple Construction, Complex Proof | R722 |

Consider a
2-folding
scheme

I, :R*—> R
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Consider a
2-folding
scheme

I, :R*—> R
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Solution: Parallel Composition Theorem

We prove that reductions can be composed in parallel.
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Solution: Parallel Composition Theorem

We prove that reductions can be composed in parallel.

{( 9”4)9( 9W4)

ooooooooooooooo

( ) ) S RZ
(1, Wy) E R,

ooooooooooooooo

(u, w) € Ry
(i3, W3) € Ry

{ (uy, uz), (W, w3)
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Tree Folding Scheme with a Simple Proof

Giveﬂ . R2 —> R, then Hf — O (Hf/z X Hf/z) . Rf —> R.
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Taming the Complexity of Modern Arguments
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Taming the Complexity of Modern Arguments

encode

t [BFLS91]
- [BTVW14]

commit

[WTSTW1S8 |
| Lee21]

sumcheck

Multilinear PCS
[WTSTW18, Lee21]

zerocheck
[BTVW14]

sumcheck
[LFKN92]

1
1
1
1

)

A 3

A Y

) ------ C
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Reductions of knowledge serve as both a

unifying abstraction and a compositional framework.

1a.¢cr/2022/009 25 X akothapalli@cmu.edu



References

|BCLMS21] Bunz, Chiesa, Lin, Mishra, Spooner. Proof Carrying Data
without Succinct Arguments.

BDFG21] Boneh, Drake, Fisch, Gabizon. Halo Infinite: Recursive
zkSNARKs from any Additive Polynomial Commitment Scheme.

|BCCGP16] Bootle, Cerulli, Chaidos, Groth, Petit. Efficient Zero-
Knowledge Arguments for Arithmetic Circuits 1in the Discrete Log
Setting.

[RZ21] Rafols and Zapico. An Algebraic Framework for Universal and

Updatable SNARKs.

|KST22] Kothapalli, Setty, Tzialla.
Arguments from Folding Schemes.

Nova: Recursive Zero-Knowledge

|CNRzz22] Campanelli, Nitulescu, Rafols, Zacharakis, Zapico.
vector commitments and their practical applications.

[LFKNS92] Lund, Fortnow, Karloff,
interactive proof systems.

|BBBPWM18] Bunz, Bootle, Boneh, Poelstra, Wuille, and Maxwell.
Bulletproofs: Short Proofs for Confidential Transactions and More.

[BMMTV21] BuUnz, Maller, Mishra,
pairing products and applications.

(WTSTW18] Wahby, Tzialla, Shelat, Thaler, and Walfish. Doubly-efficient
zkSNARKs without trusted setup.

[BTVW14] Blumberg, Thaler, Vu,
using multiple provers.

|GMR85] Goldwasser, Micali,
interactive proof systems.

Linear—-map

Nisan. Algebraic methods for

and Vesely. Proofs for 1inner

Tyagi,

and Walfish. Verifiable computation

and Rackoff. The knowledge complexity of

Lee21] Lee. Dory: Efficient, Transparent arguments for Generalised
Inner Products and Polynomial Commitments.
'Bz12] Bayer, and Groth. Efficient zero-knowledge argument for

correctness of a shuffle.

26

|CBBZ22] Chen, Bunz, Boneh, Zhang. Plonk with Linear-Time

Prover and High-Degree Custom Gates.

HyperPlonk:

[Set20] Setty.
trusted setup.

[BCHO22] Gemini:
Environments.

Spartan: Efficient and general-purpose zkSNARKs without

Bootle, Chiesa, Hu, Orru. Elastic SNARKs for Diverse

Bayl1l3] Bayer. Practical Zero-Knowledge Protocols Based on the Discrete
Logarithm Assumption.

BCS21] Bootle, Chiesa, and Sotiraki. Sumcheck Arguments and their
Applications.

[RZ22] Rafols, and Zacharakis. Folding Schemes with Selective
Verification.

KS23] Kothapalli, and Setty. HyperNova: Recursive arguments for
customizable constraint systems.

[Valo8] Valiant. Incrementally Verifiable Computation or Proofs of

Knowledge Imply Time/Space Efficiency.

BGH19] Bowe, Grigg, Hopwood. Recursive proof composition without a
trusted setup.
|AC20] Attema and Cramer. Compressed-protocol theory and practical

application to plug & play secure algorithmics.

|ACR21] Attema, Cramer, and Rambaud.
bilinear group arithmetic circuits
transparent threshold signatures.

Compressed Sigma protocols for
and application to logarithmic

|GKR15] Goldwasser, Tauman Kalai, and Rothblum. Delegating computation:
interactive proofs for muggles

[BFLS91] Babai, Fortnow, Levin, and Szegedy. Checking computations 1in
polylogarithmic time.
'BC23] Bunz, and Chen. ProtoStar: Generic Efficient Accumulation/

Folding for Special Sound Protocols



