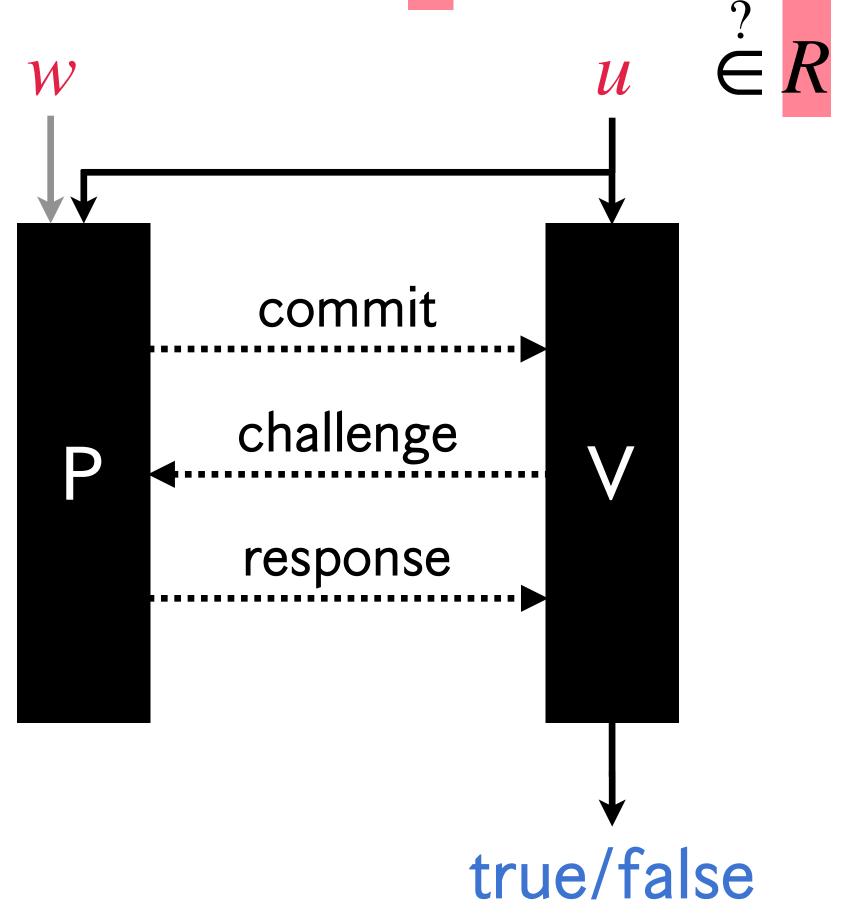
Algebraic **Reductions of** Knowledge

Abhiram Kothapalli [Carnegie Mellon University], Bryan Parno [Carnegie Mellon University]

akothapalli@cmu.edu ia.cr/2022/009

Arguments of Knowledge [GMR85]

An argument of knowledge allows a prover to interactively show to a verifier that it knows witness w such that $(u, w) \in \mathbb{R}$.



A Shift in Perspective

```
[BDFG21], [RZ21], [ACR21],
[KST22], [BBBPWM18], [BC23],
[BCLMS21], [KS23], [CBBZ22],
[BCH022], [Set20], [Bay13],
[BZ12], [BGH19], [CNRZZ22],
[BCS21], [BMMTV21], [AC20],
[LFKN92], [GKR15], [Lee21],
[Val08], [RZ22], [BCCGP16],
+
```

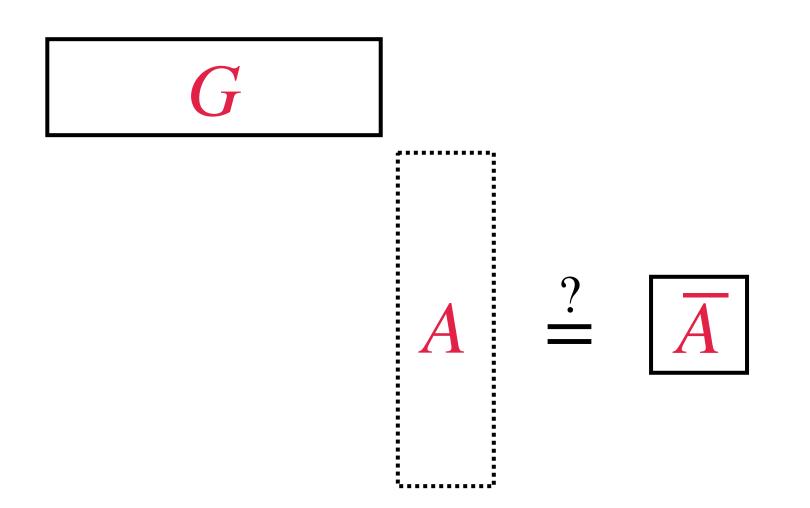
Emerging paradigm: The verifier does not fully resolve the prover's statement, but rather reduces it to a simpler statement to be checked.

Recursive Inner-Product Argument

"The basic step in our inner product argument is a <mark>2-move reduction to a</mark> smaller statement."

- Bootle, Cerulli, Chaidos, Groth, and Petit, Eurocrypt 2016

Recursive Inner-Product Argument

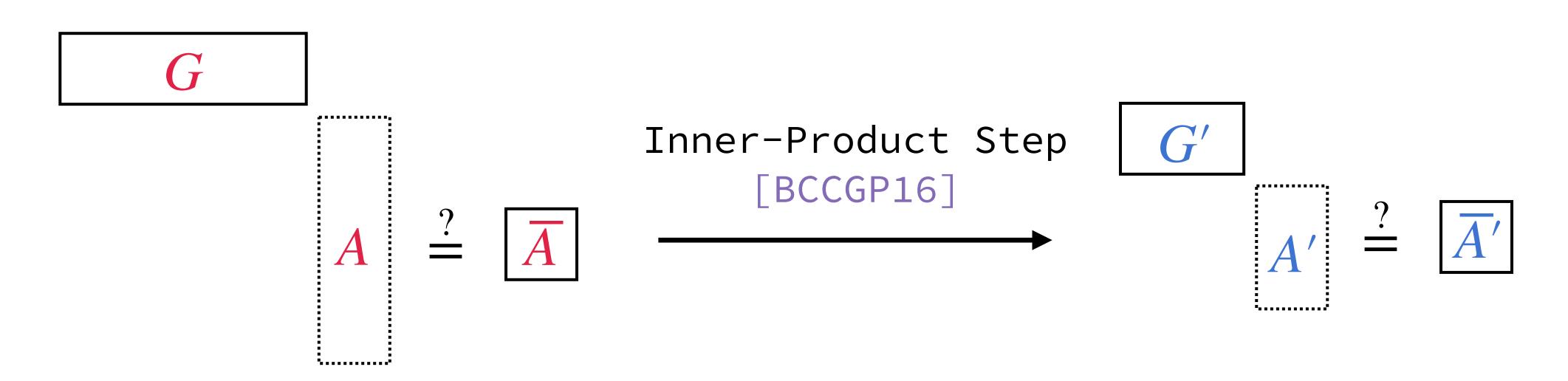


Length *n* inner-product

"The basic step in our inner product argument is a 2-move reduction to a smaller statement."

- Bootle, Cerulli, Chaidos, Groth, and Petit, Eurocrypt 2016

Recursive Inner-Product Argument



Length *n* inner-product

"The basic step in our inner product argument is a 2-move reduction to a smaller statement."

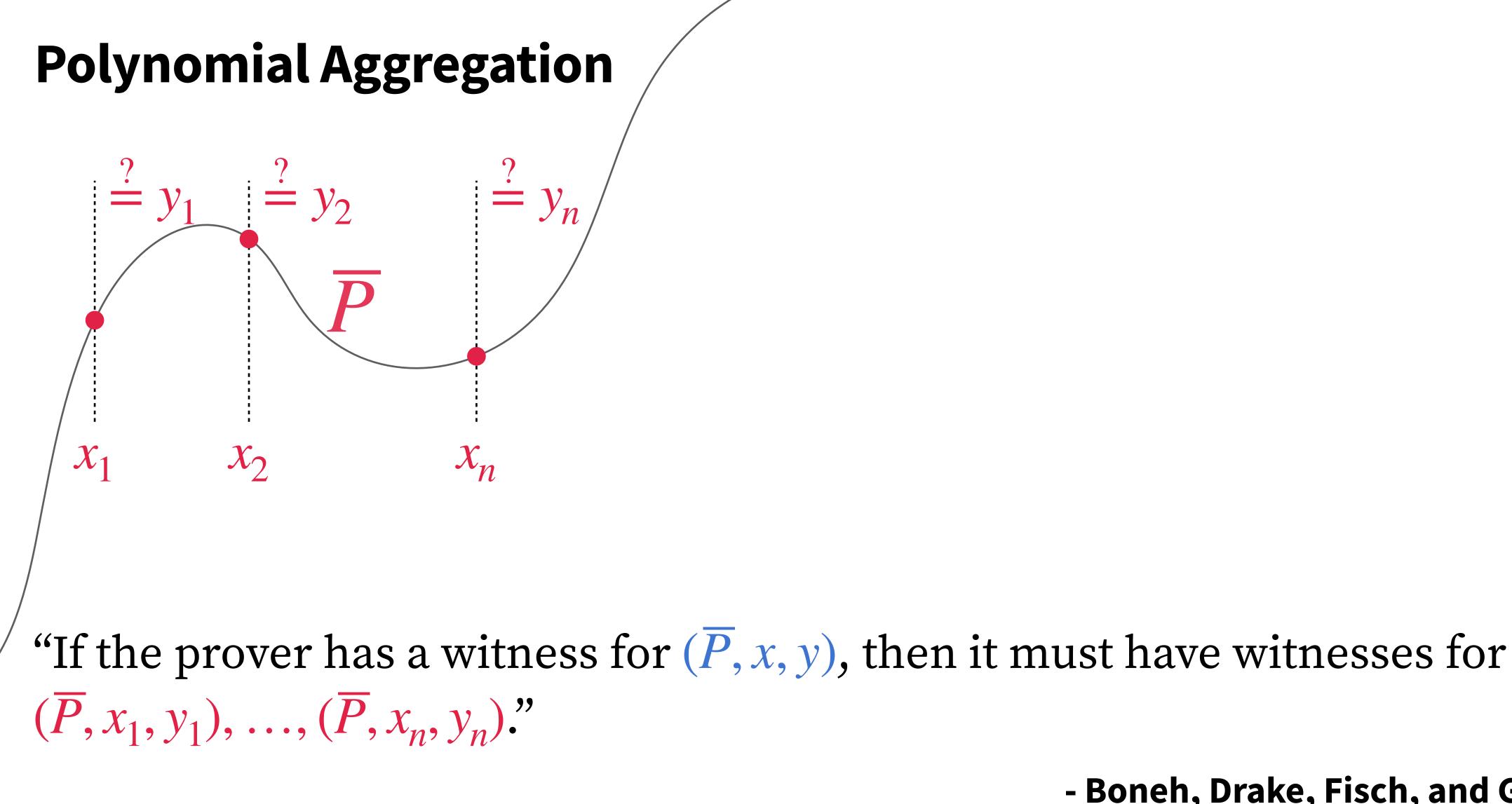
Length n/2 inner-product

- Bootle, Cerulli, Chaidos, Groth, and Petit, Eurocrypt 2016

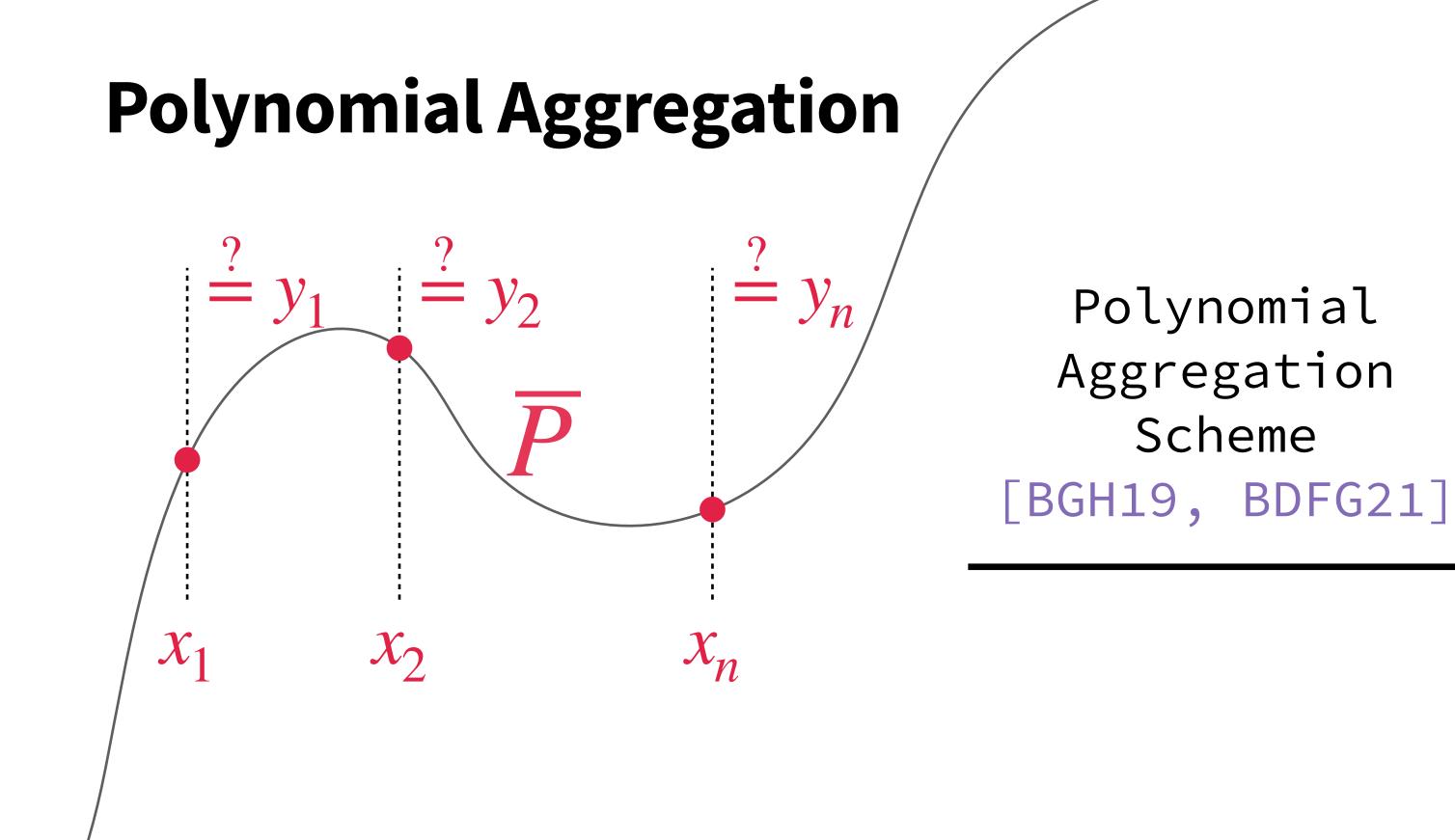
Polynomial Aggregation

"If the prover has a witness for (\overline{P}, x, y) , then it must have witnesses for $(\overline{P}, x_1, y_1), \ldots, (\overline{P}, x_n, y_n)$ "

- Boneh, Drake, Fisch, and Gabizon, Crypto 2021



- Boneh, Drake, Fisch, and Gabizon, Crypto 2021



"If the prover has a witness for (\overline{P}, x, y) , then it must have witnesses for $(\overline{P}, x_1, y_1), \ldots, (\overline{P}, x_n, y_n)$ "

- Boneh, Drake, Fisch, and Gabizon, Crypto 2021

 $\dot{=} y$

X

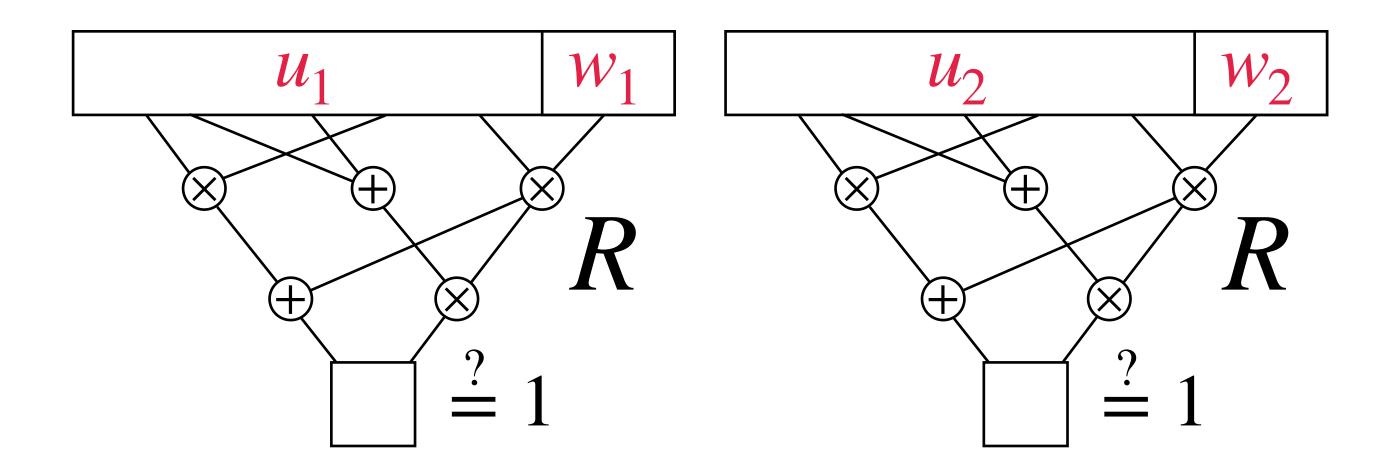
Folding Schemes

in *R* to the task of checking a single instance in *R*."

"Intuitively, a folding scheme ... reduces the task of checking two instances

Joint work with Setty and Tzialla,

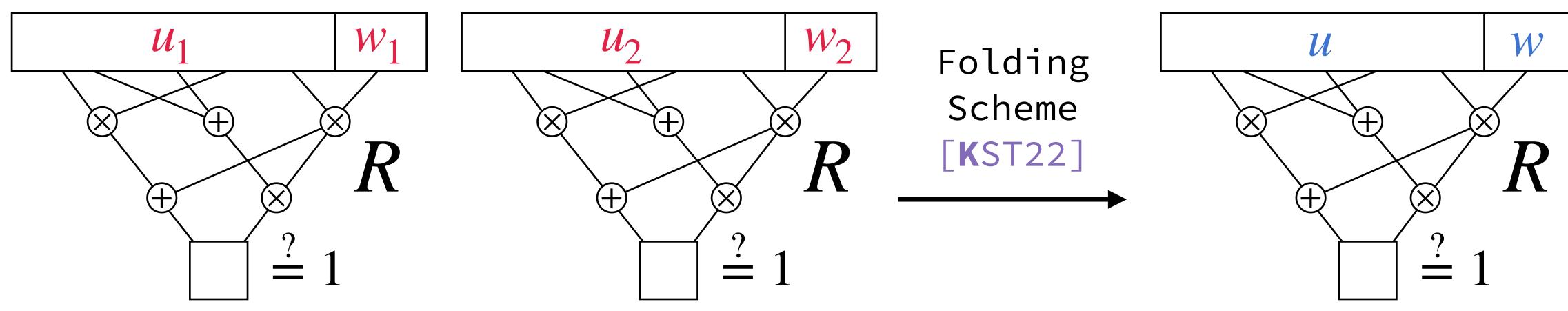
Folding Schemes



"Intuitively, a folding scheme ... reduces the task of checking two instances in *R* to the task of checking a single instance in *R*."

Joint work with Setty and Tzialla,

Folding Schemes



"Intuitively, a folding scheme ... reduces the task of checking two instances in *R* to the task of checking a single instance in *R*."

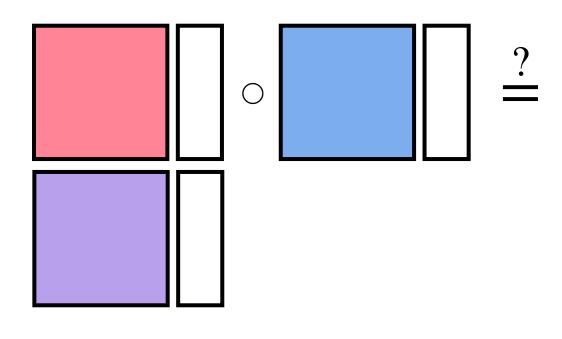
Joint work with Setty and Tzialla,

Algebraic Arguments for NP

"We reduce R1CS constraint systems to three algebraic relations"

- Ràfols and Zapico,

Algebraic Arguments for NP

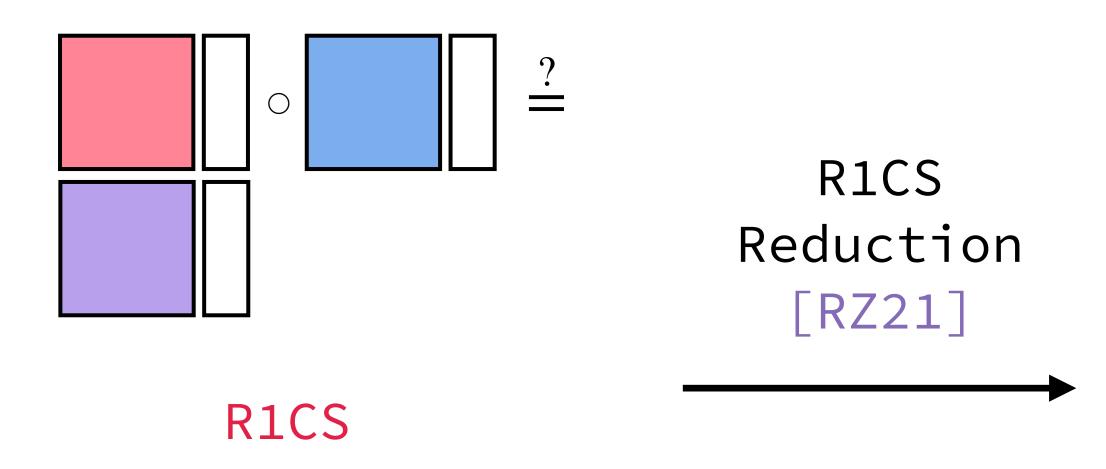


R1CS

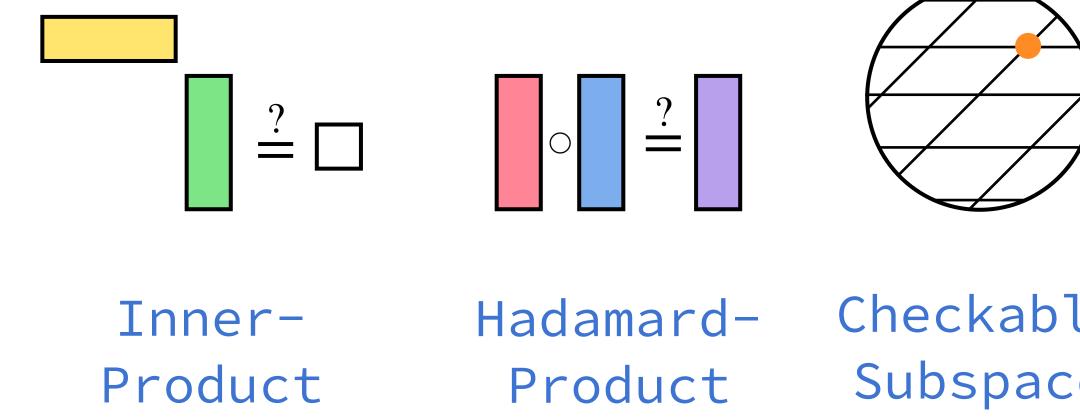
"We reduce R1CS constraint systems to three algebraic relations"

- Ràfols and Zapico,

Algebraic Arguments for NP



"We reduce R1CS constraint systems to three algebraic relations"



- Ràfols and Zapico,

Checkable Subspace Sampling Crypto 2021

Modern Arguments are Reductions

Split-accumulation schemes reduce the task of checking *n* instances and accumulators into the task of checking single accumulator. [BCLMS21]

Aggregation schemes for polynomial commitments reduce the task of checking several openings to the task of checking a single opening. [BDFG21]

The ZeroCheck protocol reduces the task of checking that a polynomial vanishes on a set to a Sumcheck. [BTVW14, Set20, CBBZ22]

The tensor-product protocol reduces the task of checking an inner-product with a structured vector to the task of checking several univariate polynomial evaluations. [BCH022]

The Hadamard-product protocol reduces the task of checking a Hadamard product to the task of checking an inner-product. [Bay13]

Inner-product arguments reduce the task of checking the inner-product of size *n* vectors to checking the inner-product of size n/2 vectors. BCCGP16, BBBPWM18, BMMTV21, Lee21] **Checkable subspace sampling** reduces the task of

checking matrix evaluations to the task of checking vector evaluations. [RZ21]

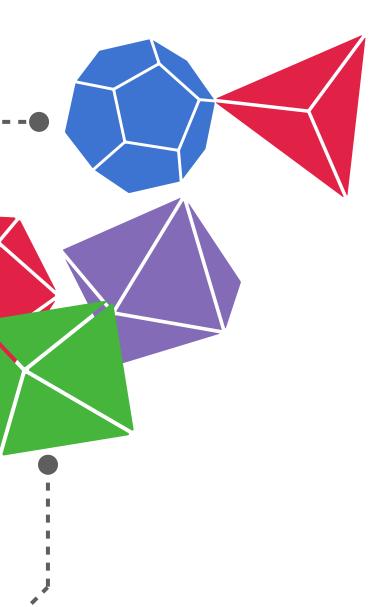
Incrementally verifiable computation reduces the task of checking a succinct proof of *n* applications of function F and a succinct proof of m subsequent applications of F to the task of checking a succinct proof of *n* + *m* applications of *F*. [Val08]

The zero-knowledge HPI argument reduces the task of checking a pre-image of a homomorphism y to the task of checking a pre-image of a randomized homomorphism y'. [BDFG21]

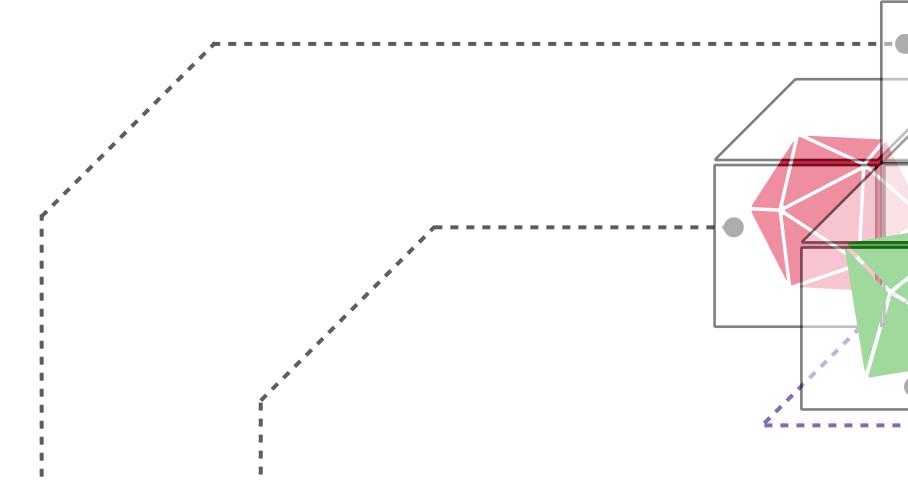
Problem: Need a Unifying Theory

Interactive reductions are universal; their definitions are not

making it difficult to compose compatible techniques hidden under incompatible abstractions.



Problem: Need a Unifying Theory



Interactive reductions are universal; their definitions are not

making it difficult to compose compatible techniques hidden under incompatible abstractions.

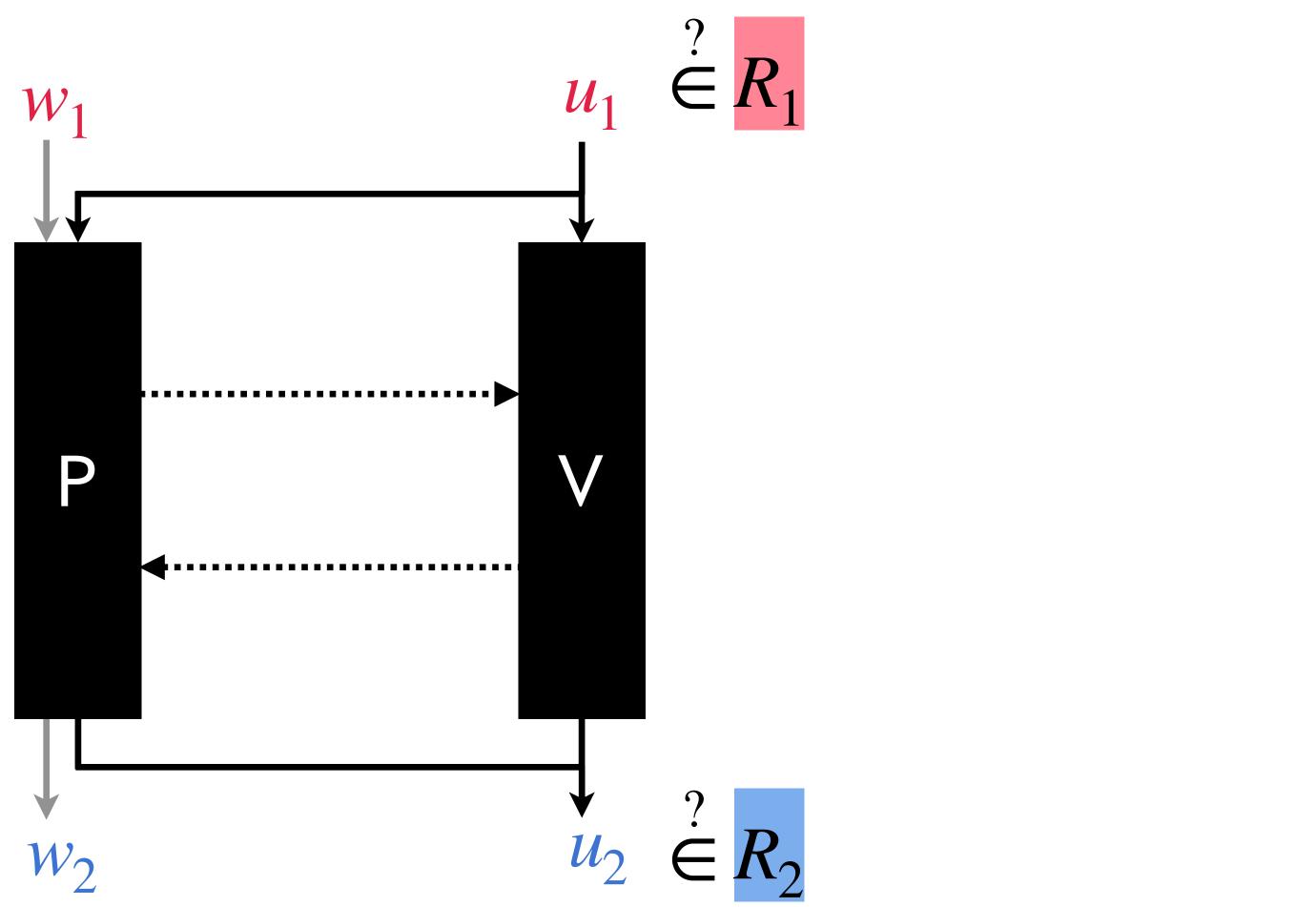
Solution

We formalize **reductions of knowledge** as a common language

which serve as both a unifying abstraction and a compositional framework.

Reductions of Knowledge: A Unifying Language

A reduction of knowledge interactively reduces the claim $(u_1, w_1) \in \mathbb{R}_1$ to a claim $(u_2, w_2) \in \mathbb{R}_2$



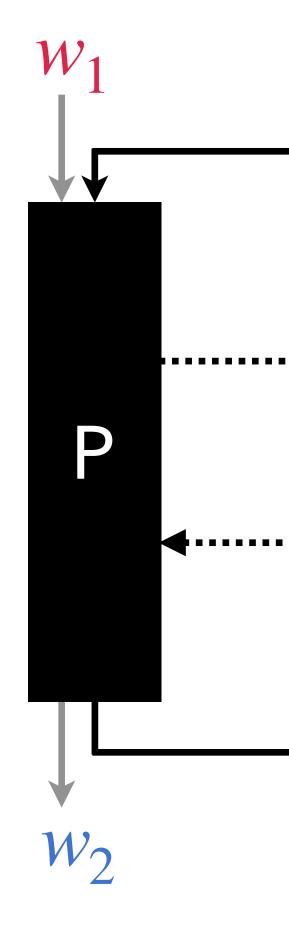
Reductions of Knowledge: A Unifying Language

A reduction of knowledge interactively reduces the claim $(u_1, w_1) \in \mathbb{R}_1$ to a claim $(u_2, w_2) \in \mathbb{R}_2$ $\dot{\in} R_1$

 \mathcal{U}_1

?

 $u_2 \in R_2$



Completeness

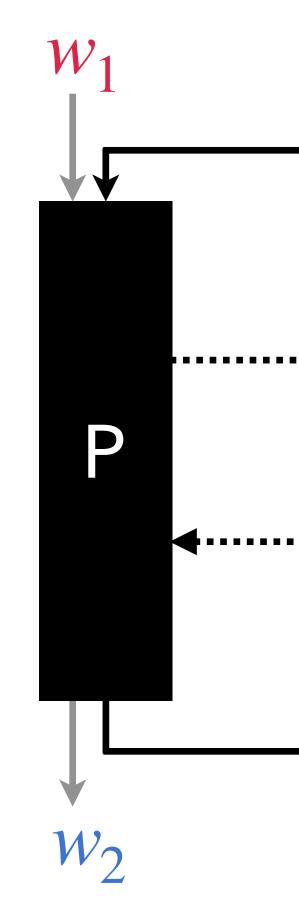
If the prover is provided satisfying w_1 then it must output a satisfying w_2

Reductions of Knowledge: A Unifying Language

A reduction of knowledge interactively reduces the claim $(u_1, w_1) \in \mathbb{R}_1$ to a claim $(u_2, w_2) \in \mathbb{R}_2$ w_1 $u_1 \stackrel{?}{\in} \mathbb{R}_1$

Knowledge Soundness

If prover outputs satisfying w_2 then it must almost certainly *know* a satisfying w_1



Completeness

9

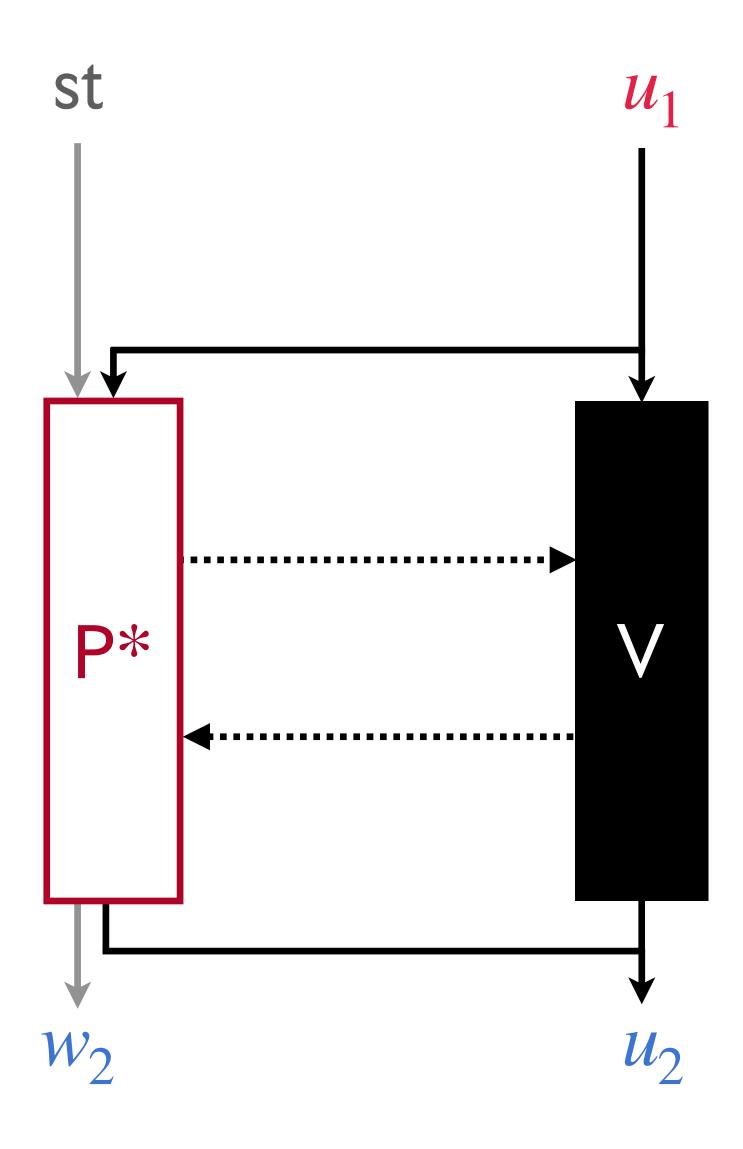
 $u_2 \in R_2$

If the prover is provided satisfying w_1 then it must output a satisfying w_2

Knowledge Soundness

Consider P^* s.t. for (u_1, st)

$\Pr[\langle P^*, V \rangle (u_1, st) \in \mathbb{R}_2] = \varepsilon$



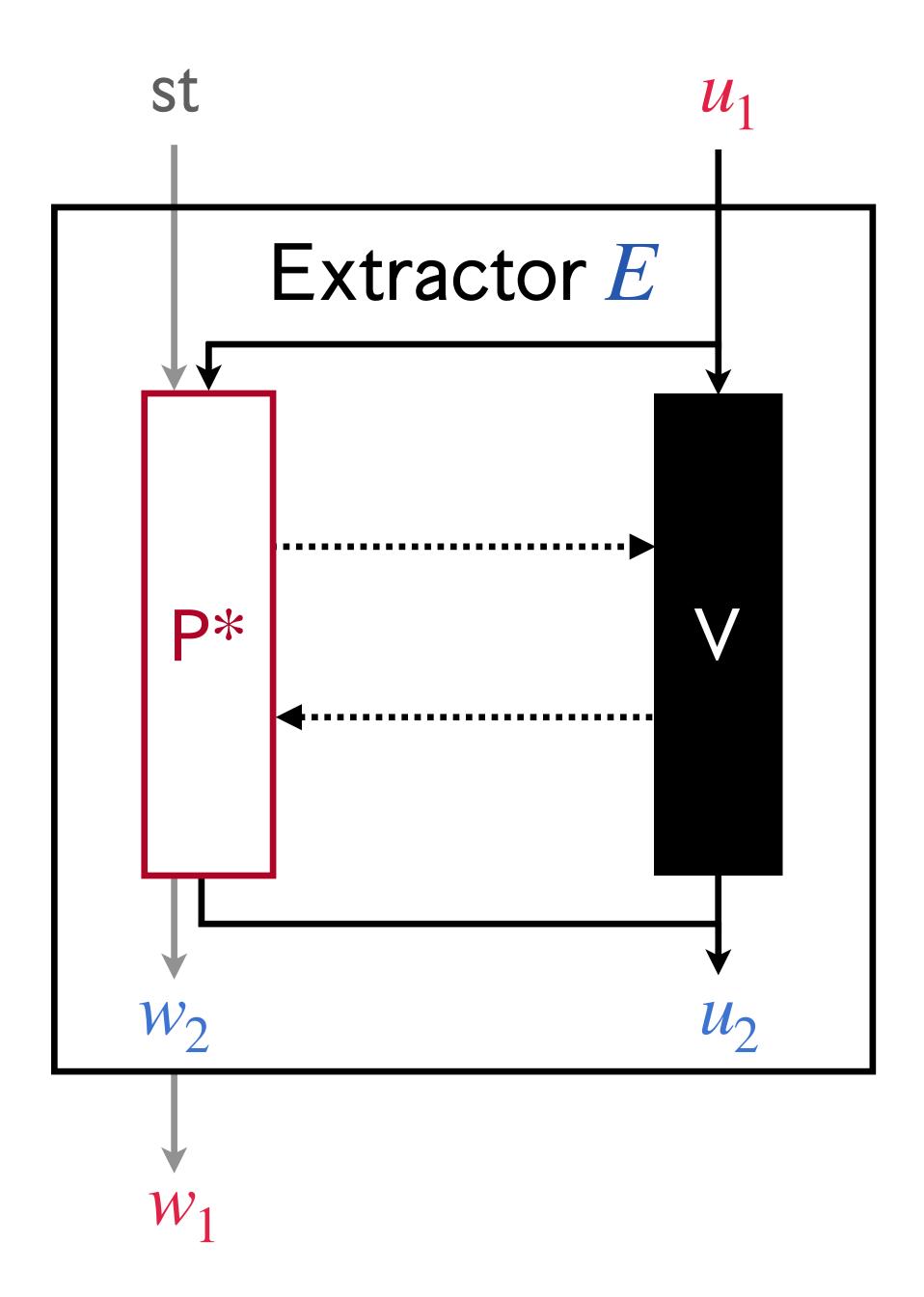
Knowledge Soundness

Consider P^* s.t. for (u_1, st)

$\Pr[\langle P^*, V \rangle (u_1, \operatorname{st}) \in \mathbb{R}_2] = \varepsilon$

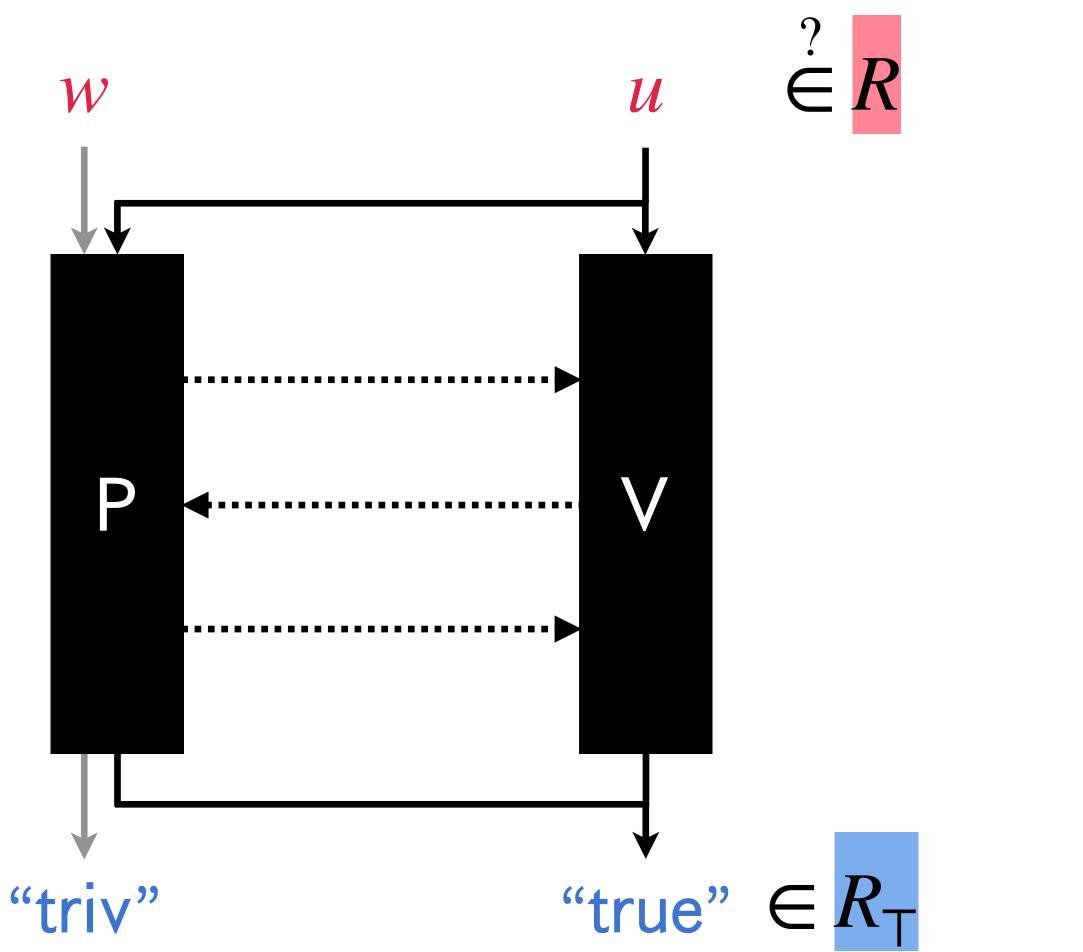
Then there exists an extractor E s.t.

 $\Pr[(u_1, E(u_1, st)) \in R_1] \approx \varepsilon$



Reconciling Reductions with Arguments

An **argument of knowledge** is a reduction of knowledge from *R* to $R_{T} = \{("true", "triv")\}.$



Define the Inner-Product Relation as

 $R_{\rm IP}(n) = \left\{ \left((\mathbf{G}, \overline{\mathbf{A}}), A \right) \in \left((\mathbb{G}^n, \mathbb{G}), \mathbb{F}^n \right) \, \middle| \, \left\langle \mathbf{G}, A \right\rangle = \overline{\mathbf{A}} \right\}$

Define the Inner-Product Relation as

Characterized by length *n*

 $\overset{.i.}{R_{\text{IP}}(n)} = \left\{ \left((\boldsymbol{G}, \boldsymbol{\overline{A}}), A \right) \in \left((\mathbb{G}^{n}, \mathbb{G}), \mathbb{F}^{n} \right) \middle| \left\langle \boldsymbol{G}, A \right\rangle = \boldsymbol{\overline{A}} \right\}$

Define the Inner-Product Relation as

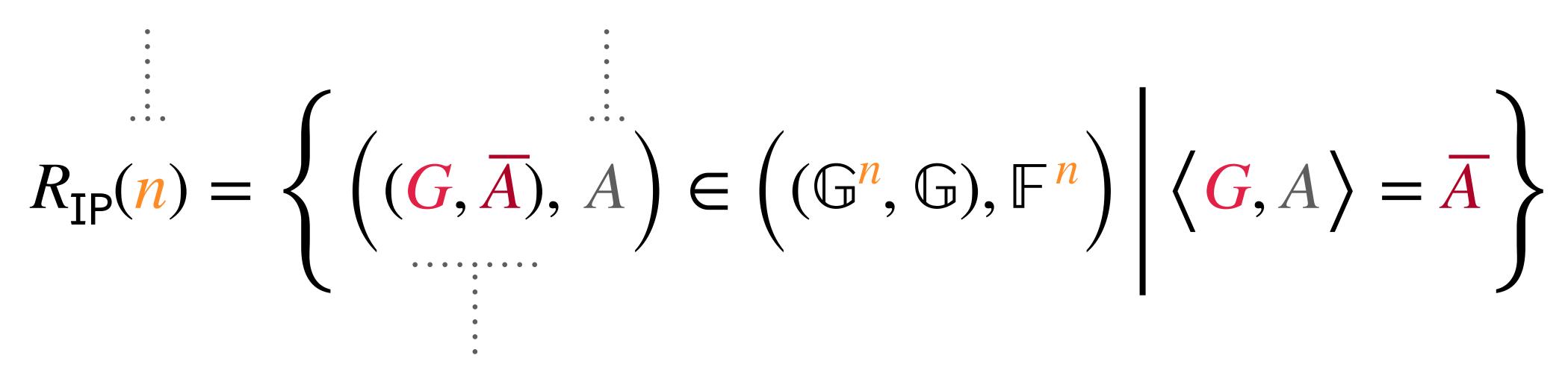
Characterized by length *n*

Statement

 $R_{\mathrm{IP}}(\underline{n}) = \left\{ \left((\underline{G}, \overline{A}), A \right) \in \left((\mathbb{G}^{\underline{n}}, \mathbb{G}), \mathbb{F}^{\underline{n}} \right) \middle| \left\langle \underline{G}, A \right\rangle = \overline{A} \right\}$

Define the Inner-Product Relation as

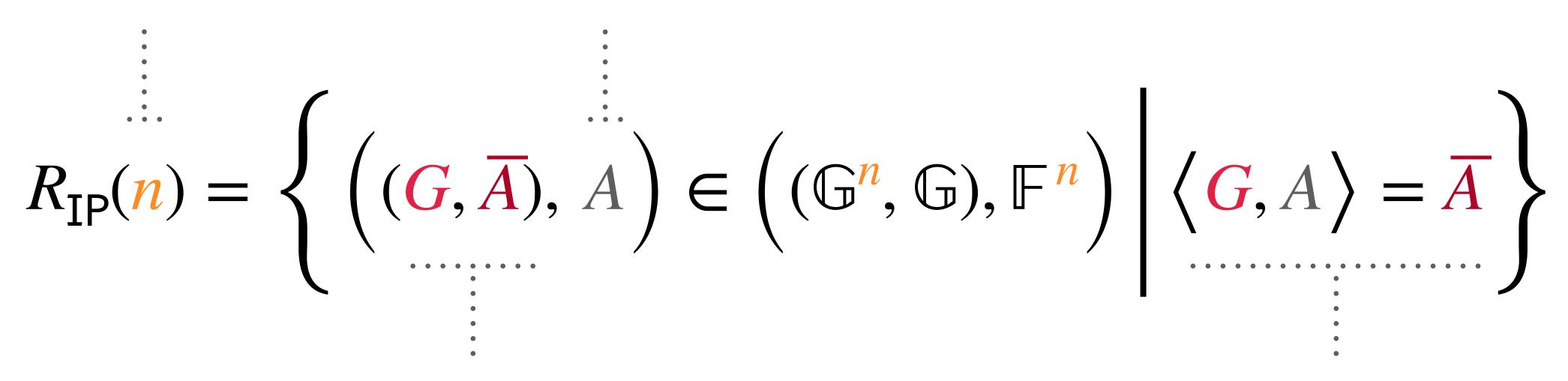
Characterized by length *n* Witness



Statement

Define the Inner-Product Relation as

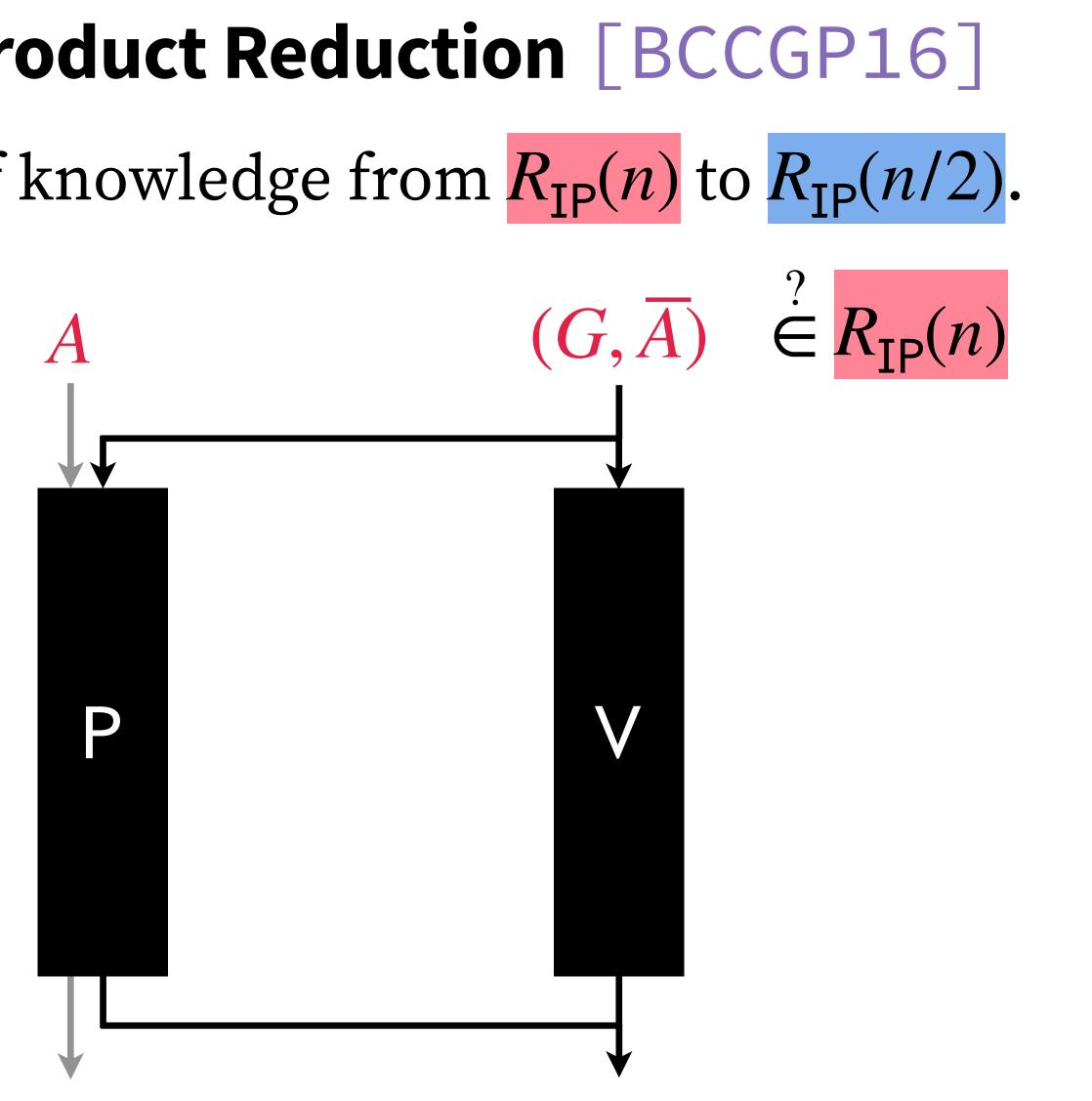
Characterized by length *n* Witness



Statement

Satisfying Condition

There exists a reduction of knowledge from $R_{IP}(n)$ to $R_{IP}(n/2)$.

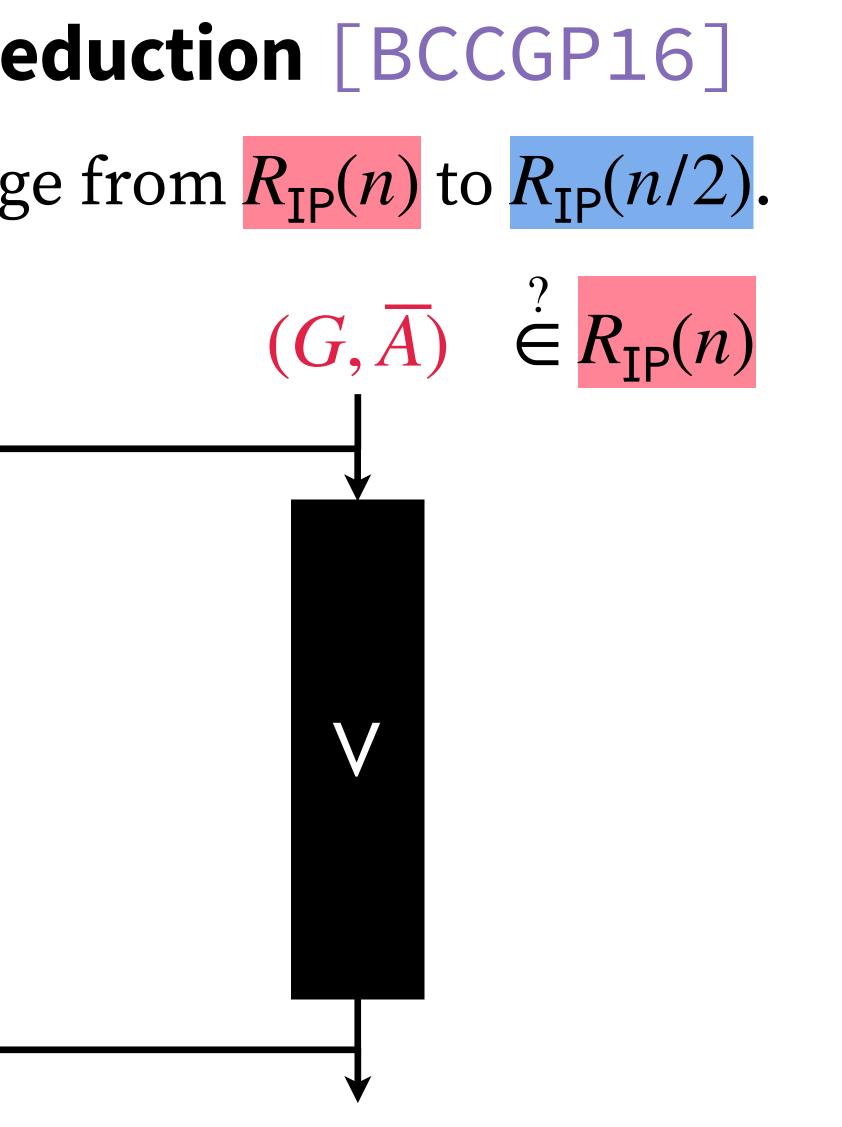


There exists a reduction of knowledge from $R_{IP}(n)$ to $R_{IP}(n/2)$.

A

Ρ

 $\overline{A}_{ij} \leftarrow G_i(A_j)$ for $i, j \in \{1, 2\}$

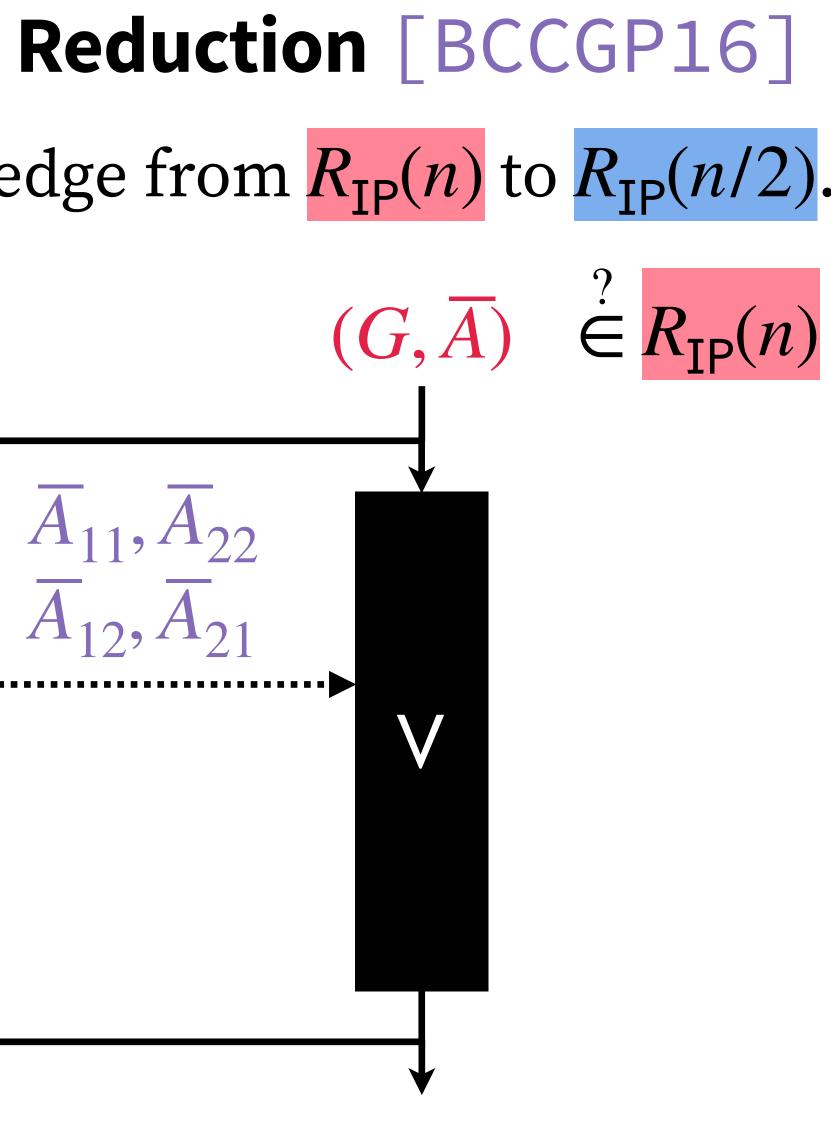


There exists a reduction of knowledge from $R_{IP}(n)$ to $R_{IP}(n/2)$.

A

P

$\overline{A}_{ij} \leftarrow G_i(A_j) \text{ for } i, j \in \{1, 2\}$

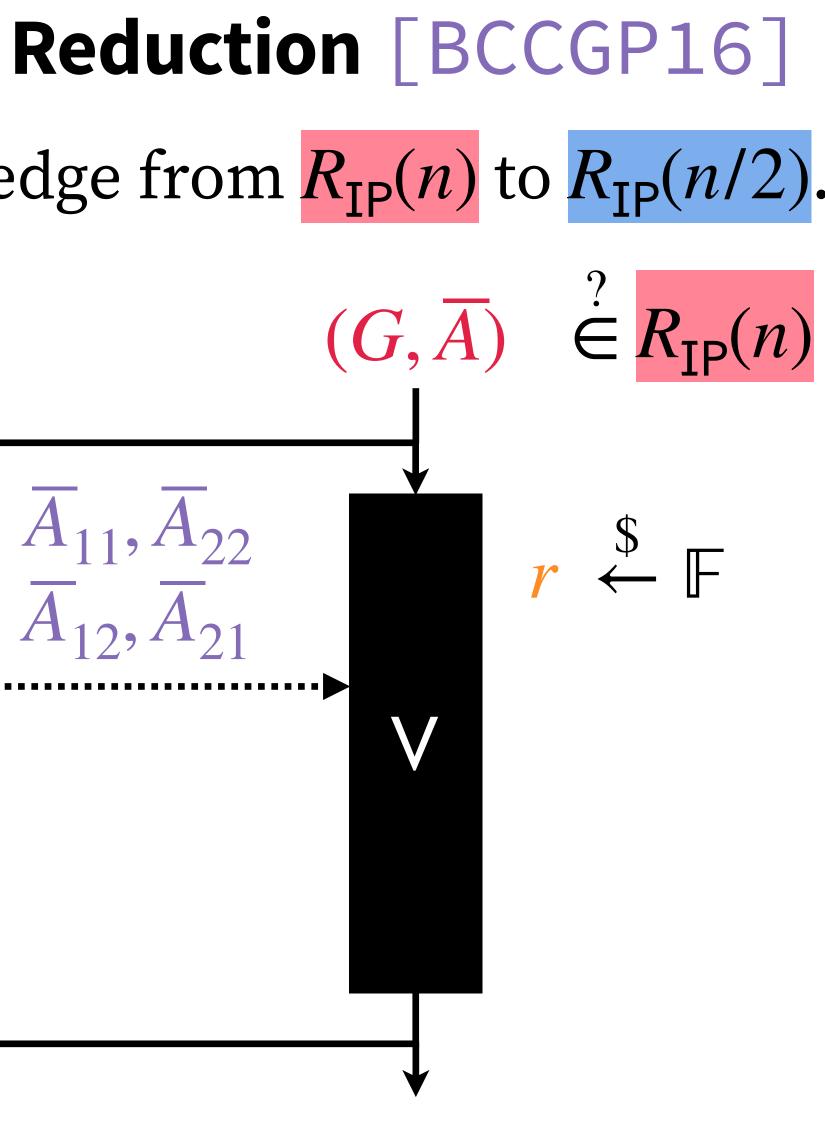


There exists a reduction of knowledge from $R_{IP}(n)$ to $R_{IP}(n/2)$.

A

P

$\overline{A}_{ij} \leftarrow G_i(A_j) \text{ for } i, j \in \{1, 2\}$

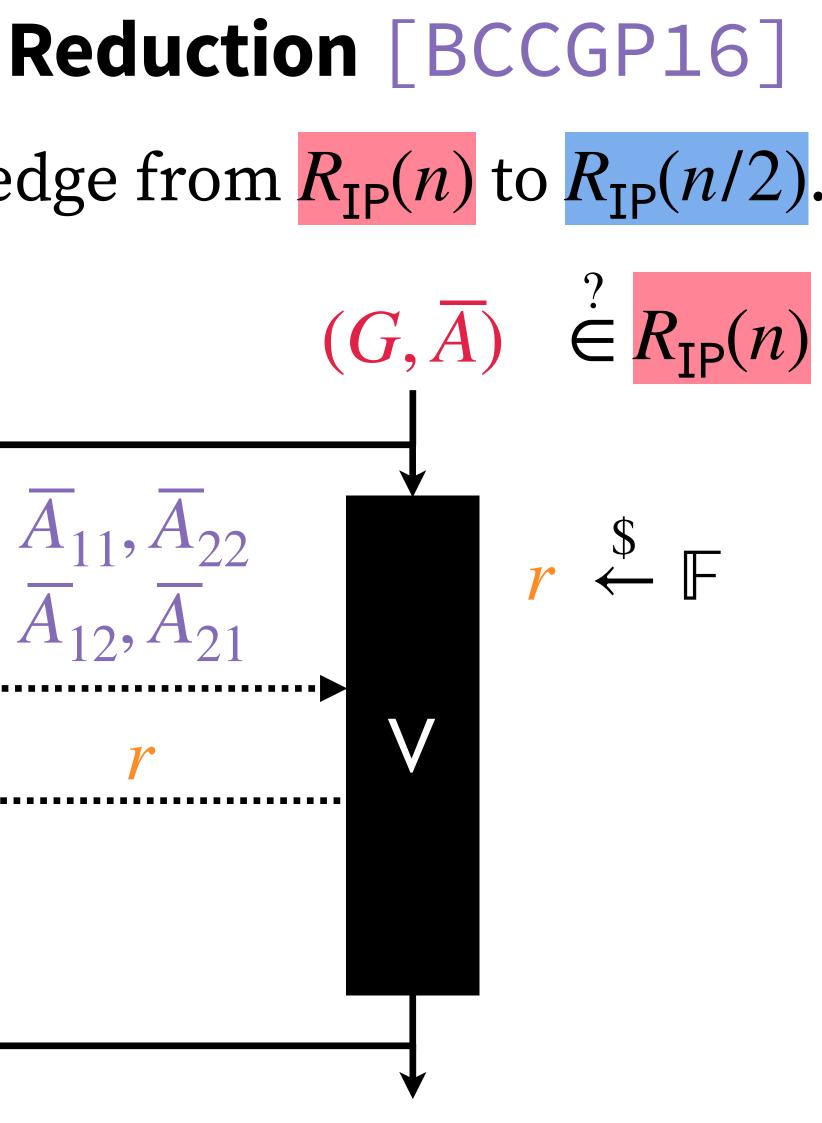


There exists a reduction of knowledge from $R_{IP}(n)$ to $R_{IP}(n/2)$.

A

P

$\overline{A}_{ij} \leftarrow G_i(A_j)$ for $i, j \in \{1, 2\}$

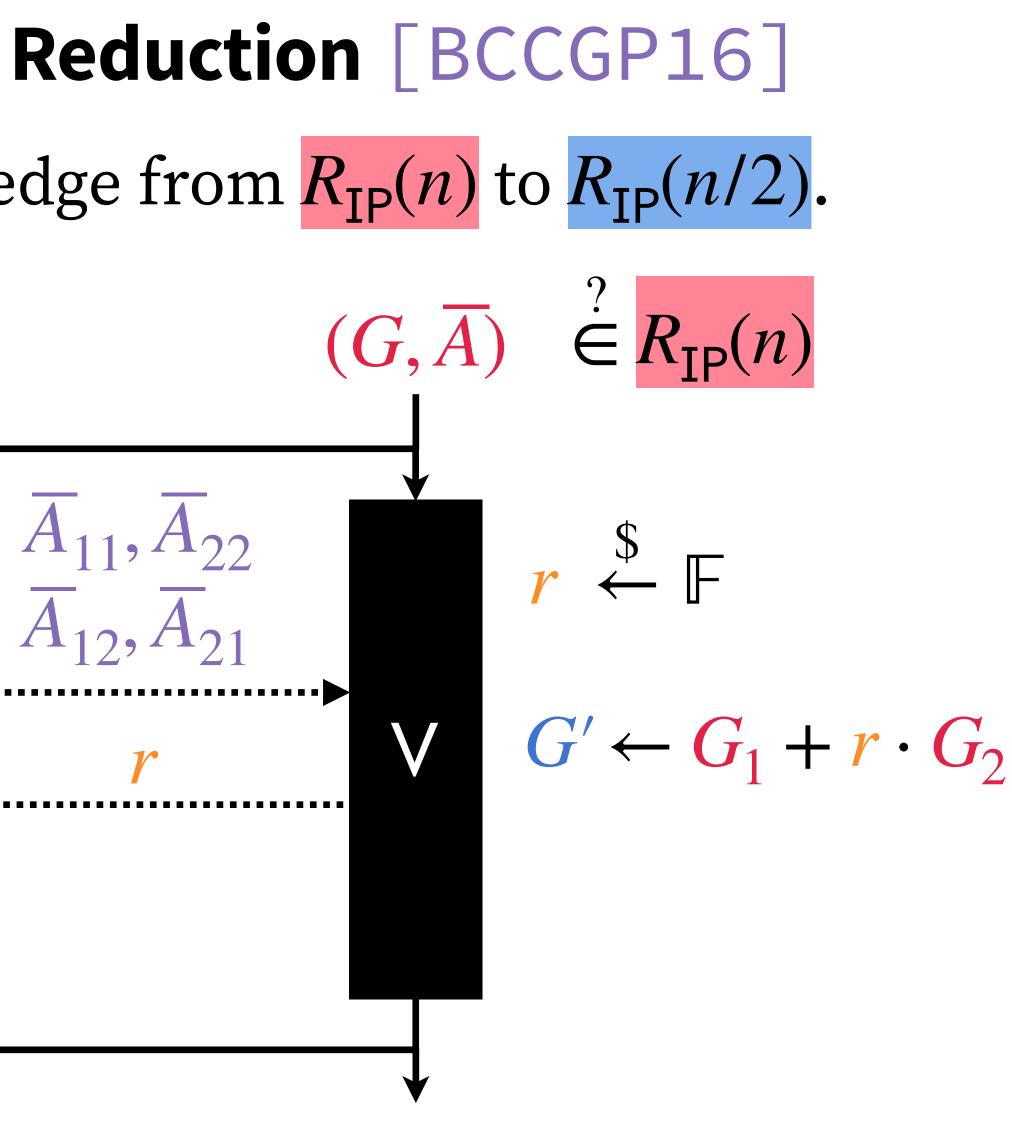


There exists a reduction of knowledge from $R_{IP}(n)$ to $R_{IP}(n/2)$.

A

P

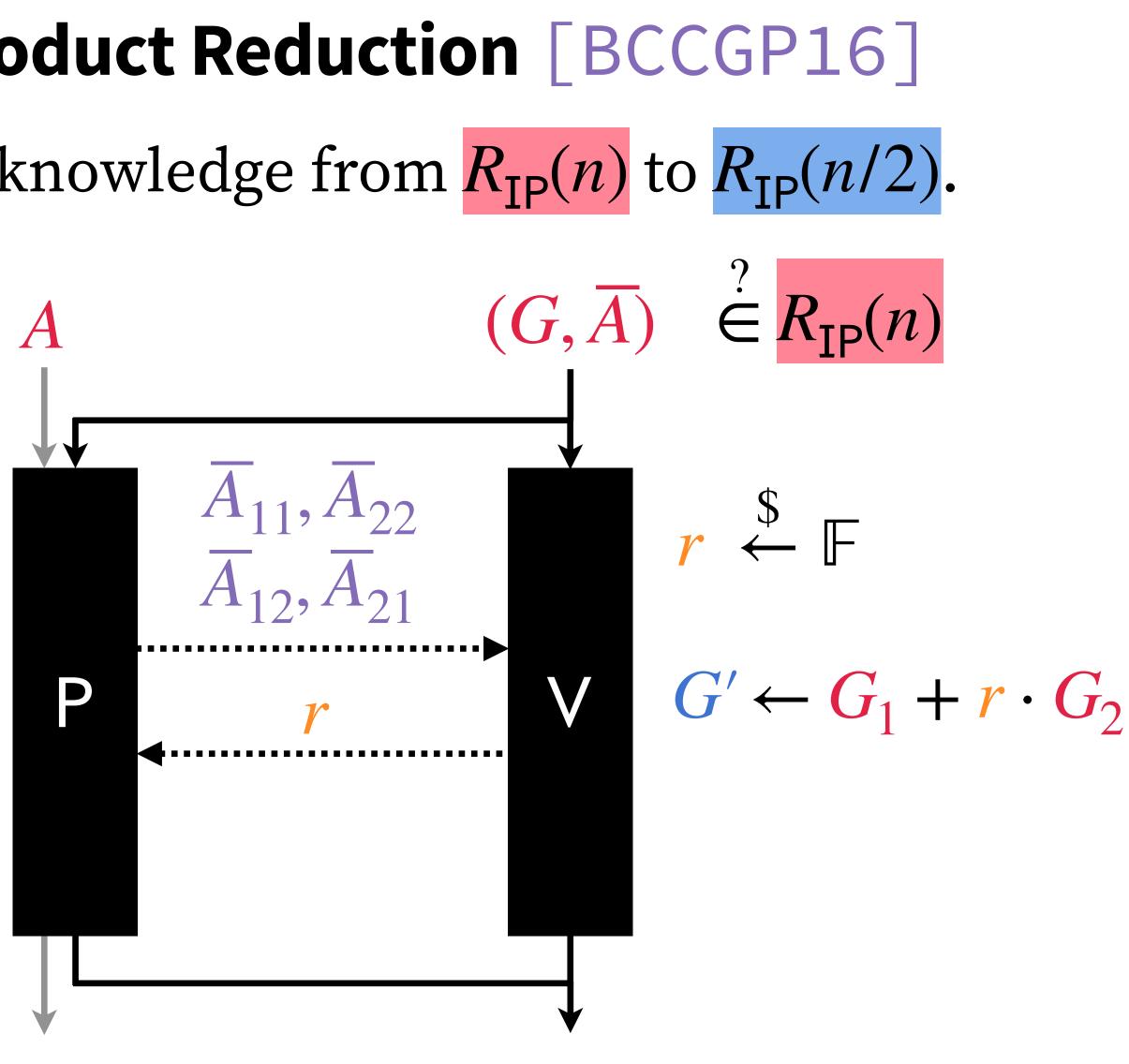
$\overline{A}_{ij} \leftarrow G_i(A_j)$ for $i, j \in \{1, 2\}$



There exists a reduction of knowledge from $R_{TP}(n)$ to $R_{TP}(n/2)$.

 $\overline{A}_{ij} \leftarrow G_i(A_j) \text{ for } i, j \in \{1,2\}$

 $A' \leftarrow A_1 + r \cdot A_2$

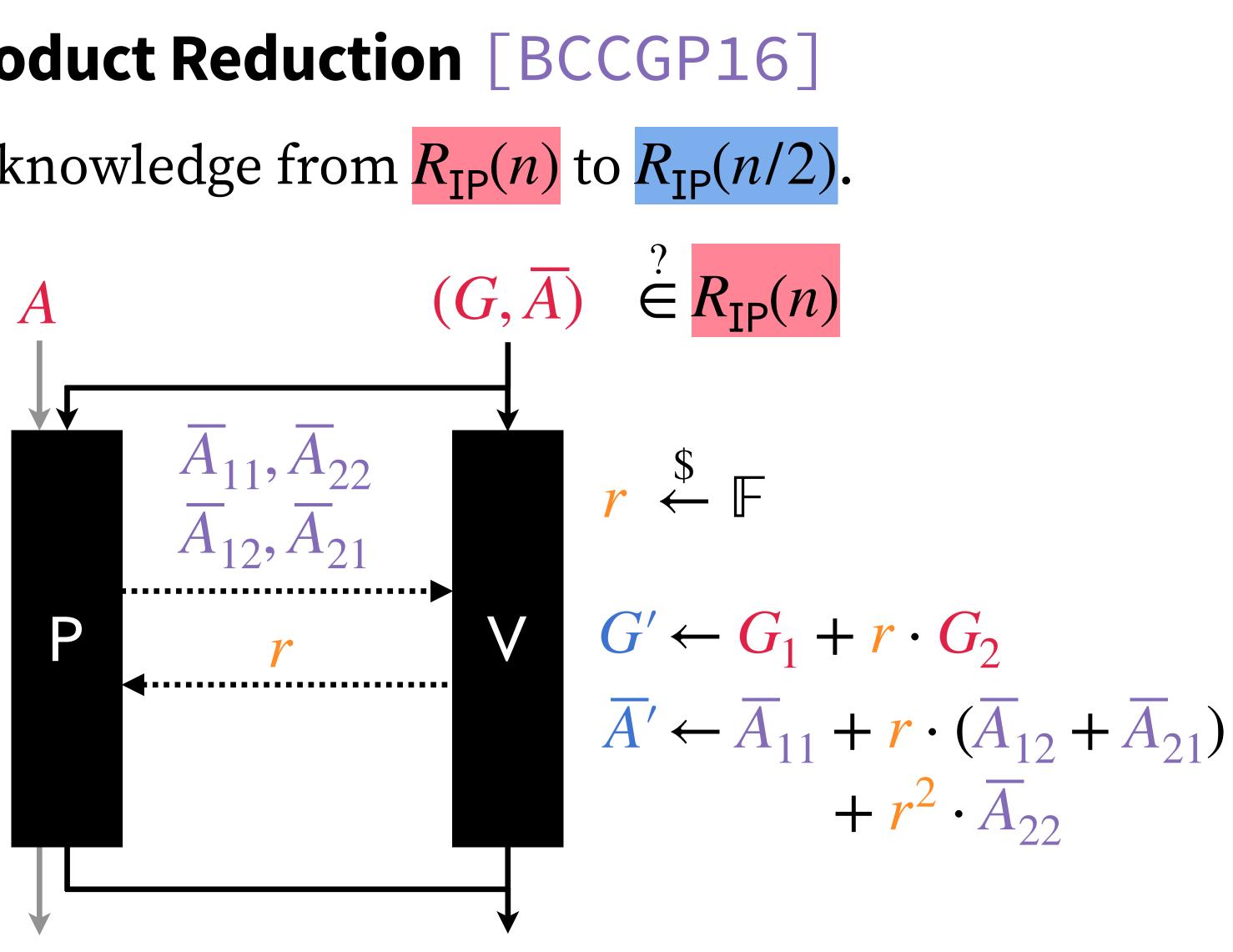


First Example: Inner-Product Reduction [BCCGP16]

There exists a reduction of knowledge from $R_{TP}(n)$ to $R_{TP}(n/2)$.

 $\overline{A}_{ij} \leftarrow G_i(A_j) \text{ for } i, j \in \{1,2\}$

 $A' \leftarrow A_1 + r \cdot A_2$

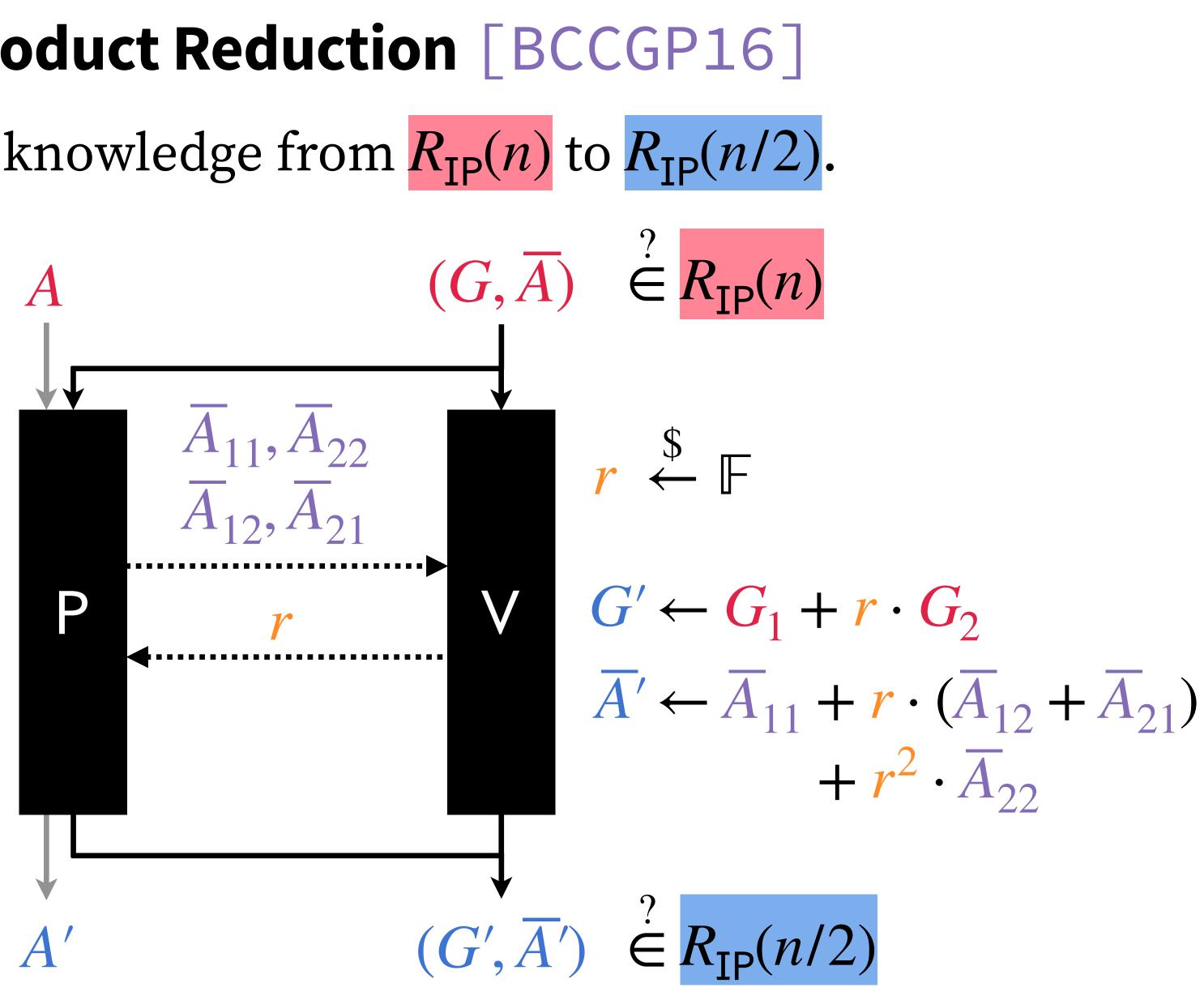


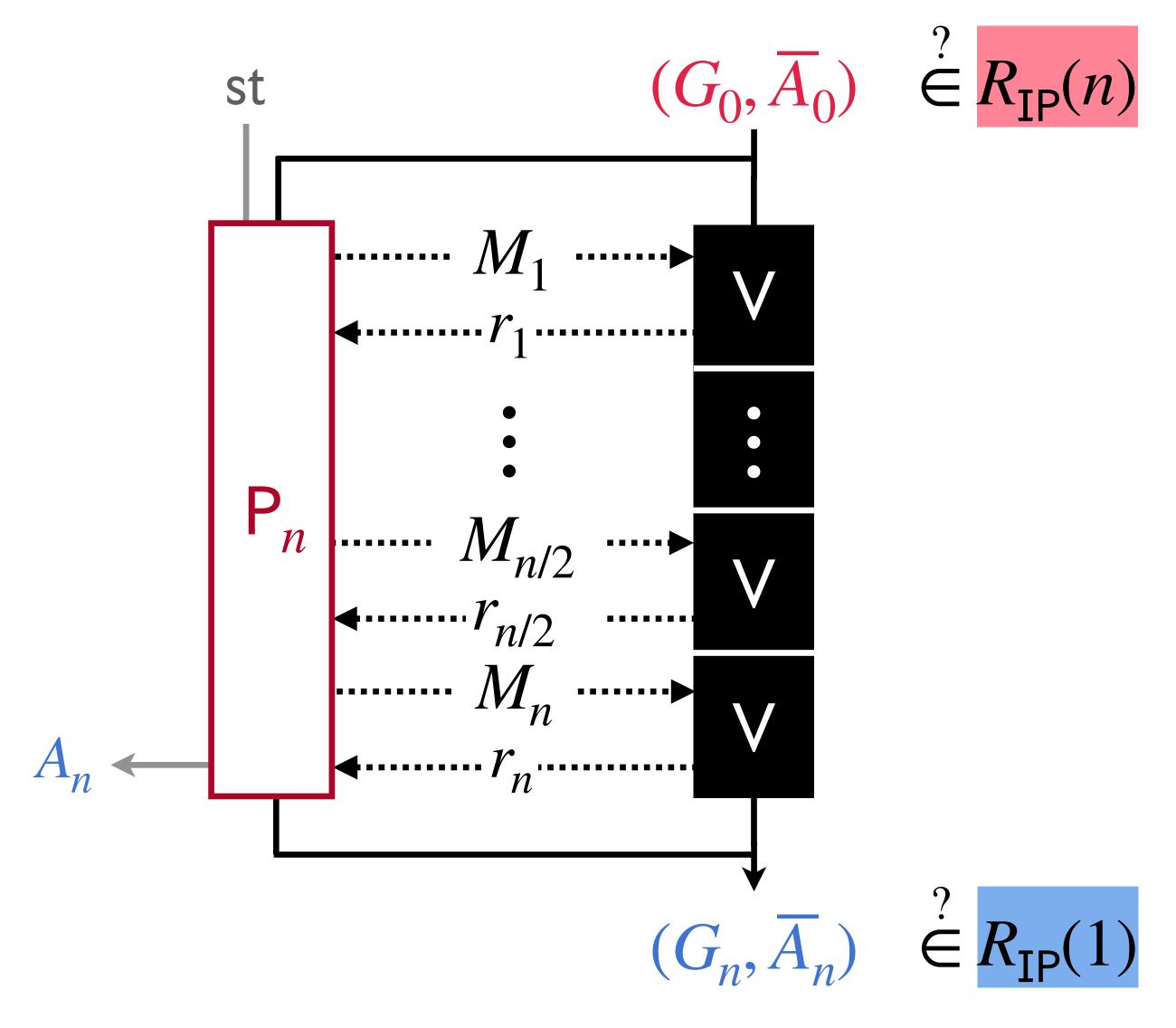
First Example: Inner-Product Reduction [BCCGP16]

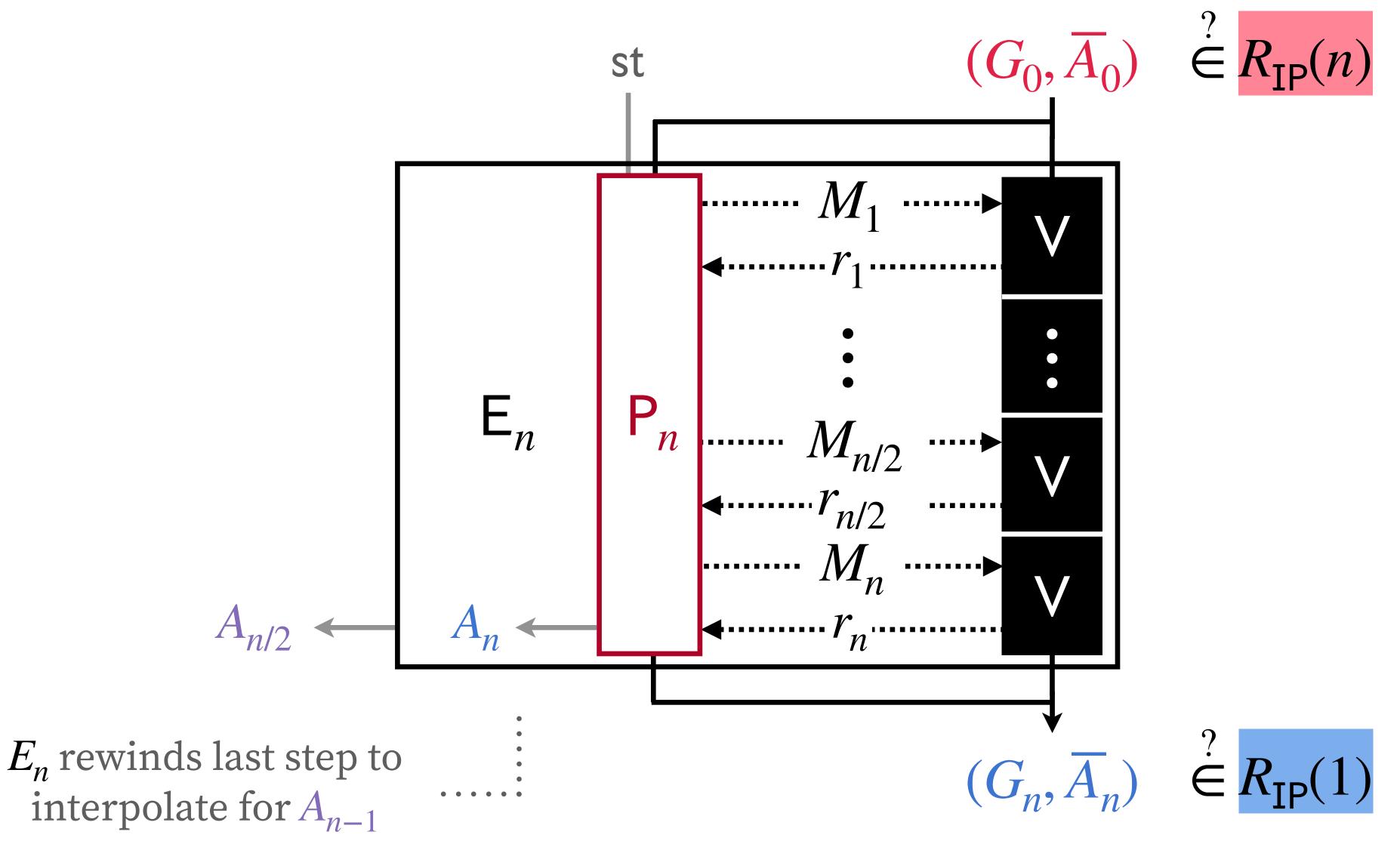
There exists a reduction of knowledge from $R_{TP}(n)$ to $R_{TP}(n/2)$.

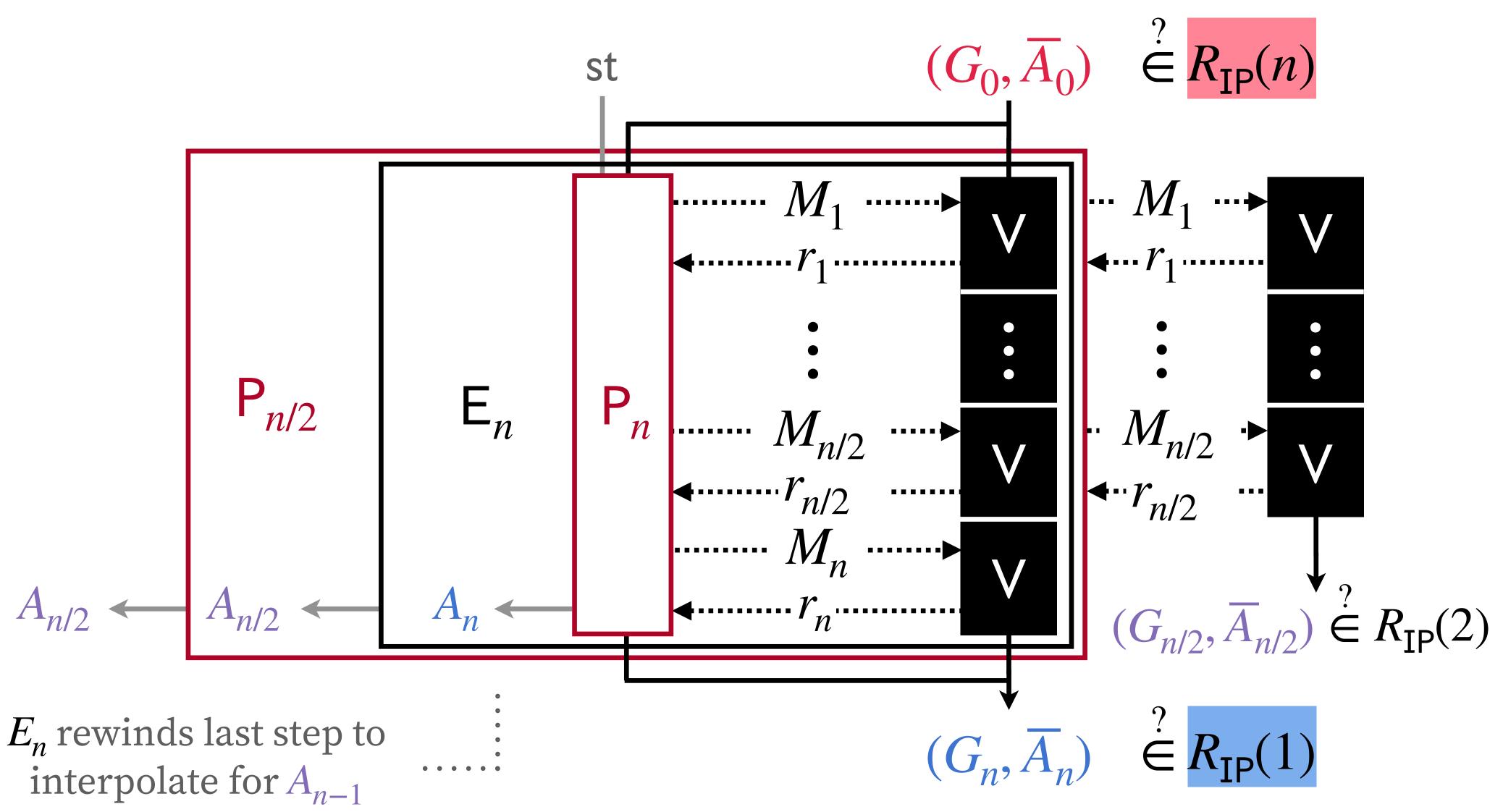
 $A_{ij} \leftarrow G_i(A_j)$ for $i, j \in \{1, 2\}$

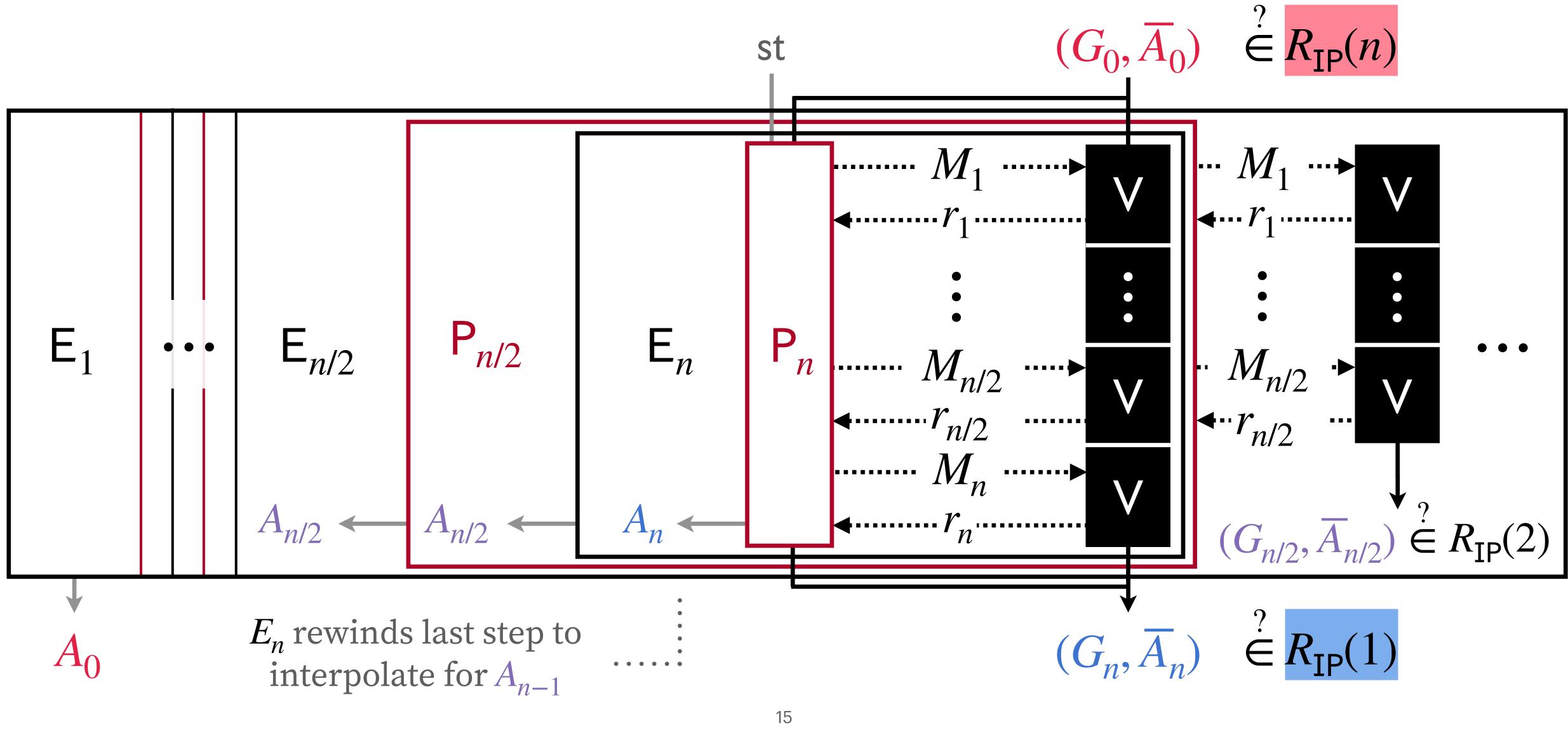
 $A' \leftarrow A_1 + r \cdot A_2$





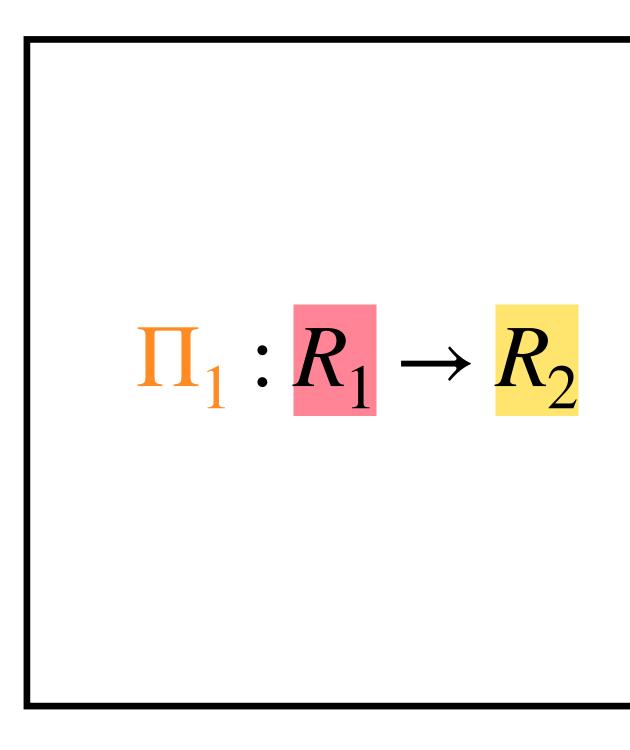




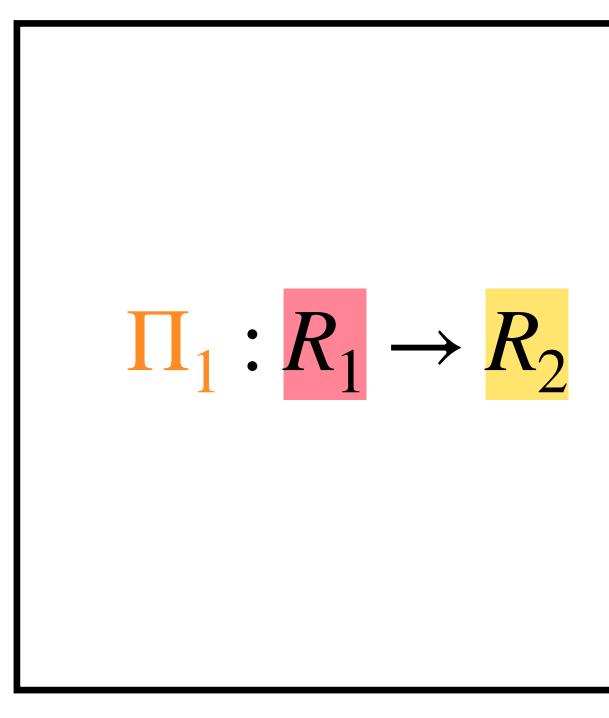


We prove that reductions are sequentially composable.

We prove that reductions are sequentially composable.

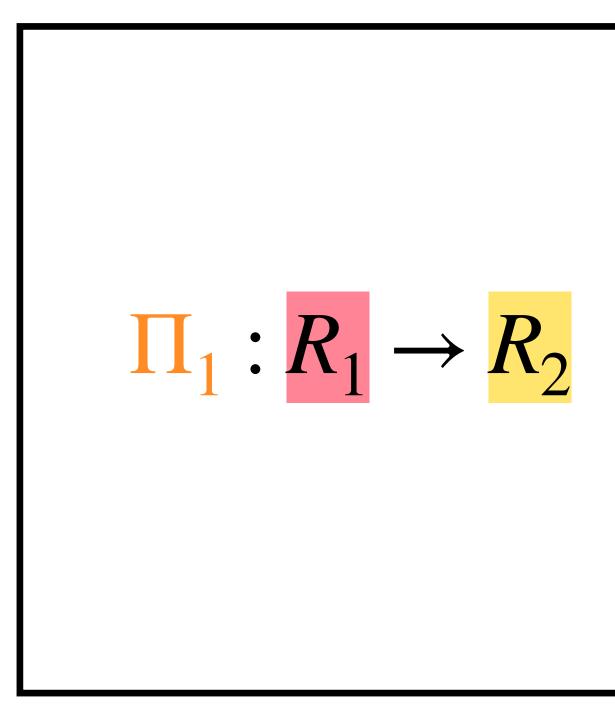


We prove that reductions are sequentially composable.



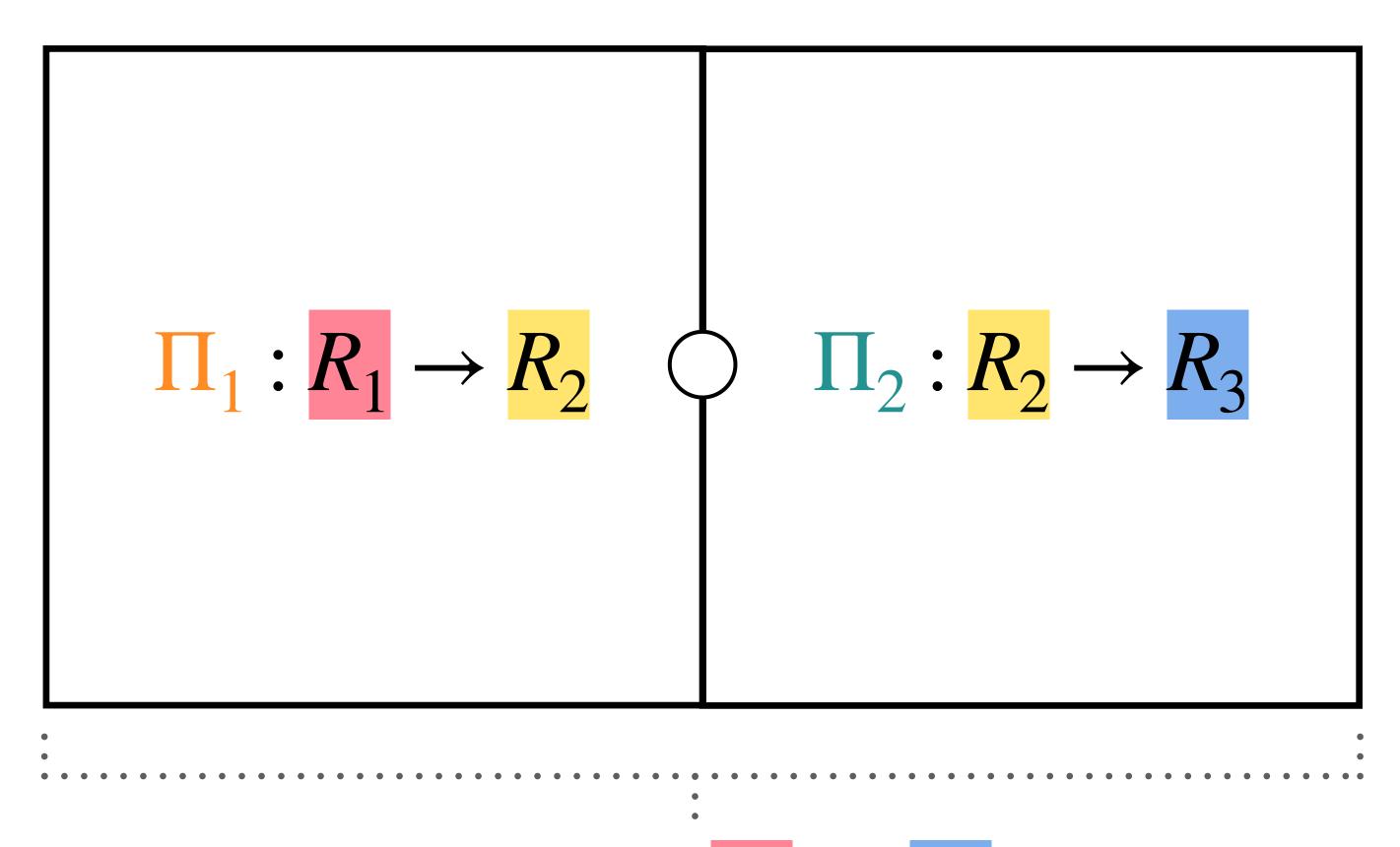
 $\Pi_1: \mathbb{R}_1 \to \mathbb{R}_2 \qquad \Pi_2: \mathbb{R}_2 \to \mathbb{R}_3$

We prove that reductions are sequentially composable.

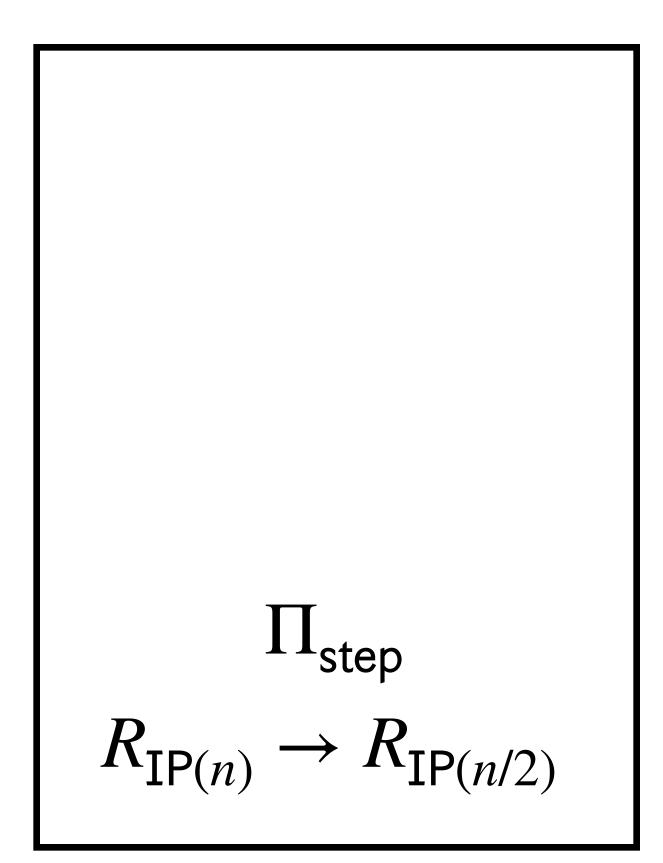


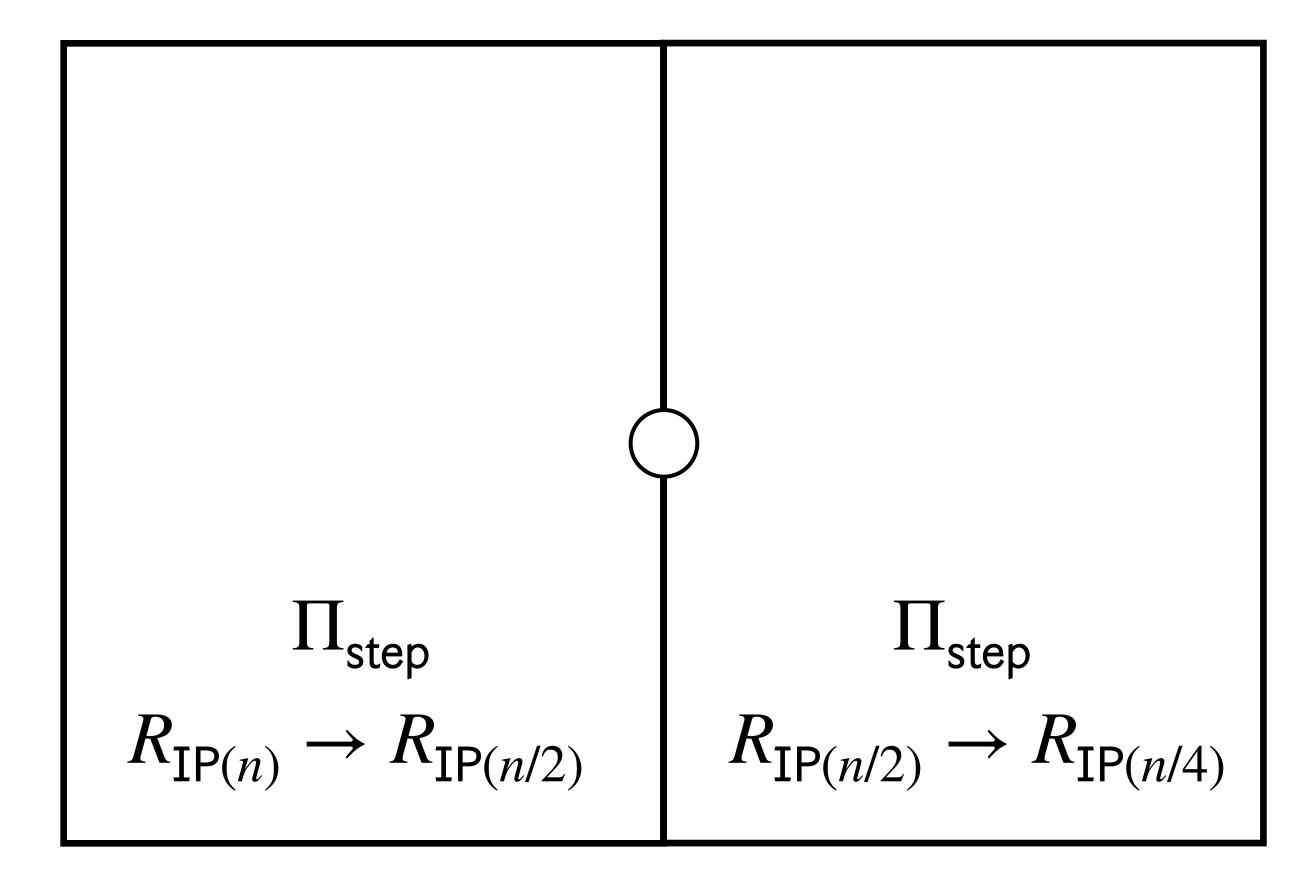
 $\Pi_1: \mathbb{R}_1 \to \mathbb{R}_2 \quad \bigcirc \quad \Pi_2: \mathbb{R}_2 \to \mathbb{R}_3$

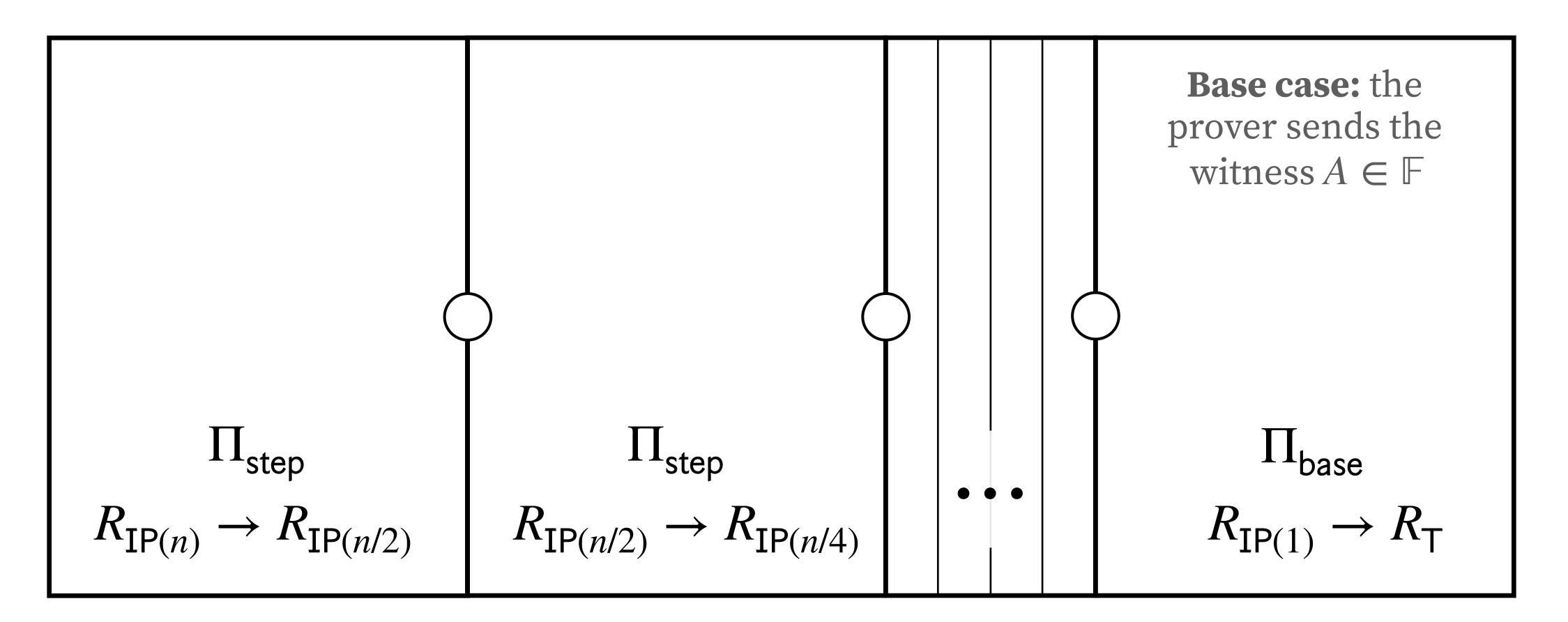
We prove that reductions are sequentially composable.



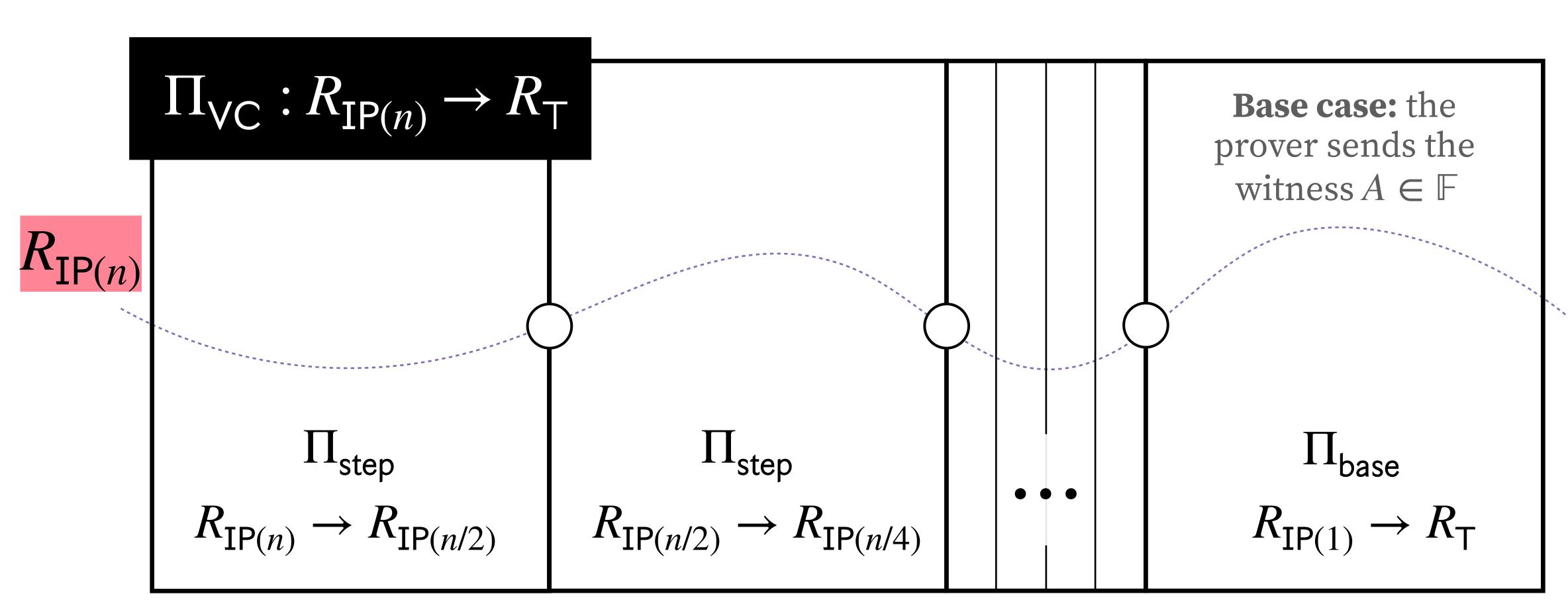
$$R_1: \mathbb{R}_1 \to \mathbb{R}_3$$







Inner-Product Argument with a Simple Proof Simpler soundness proof: Invoke sequential composition.



Our Generalization: Tensor Reduction of Knowledge

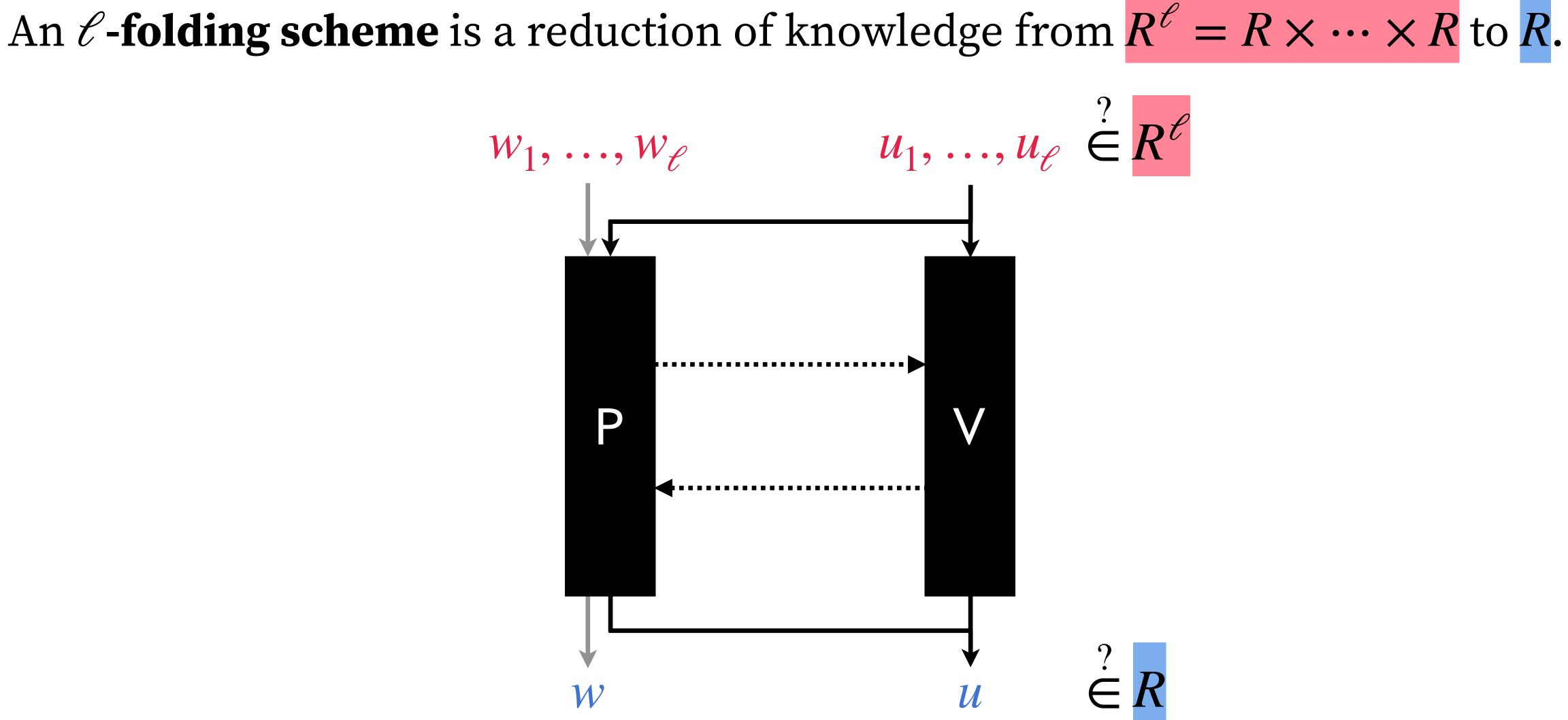
Theorem. There exists a reduction of knowledge that reduces the task of checking knowledge of w such that u(w) = v for $u \in hom(W^n, V)$ to the task of checking knowledge of w' such that u'(w') = v' for $u' \in hom(W, V)$.

$$\mathcal{U} \left(\mathcal{W} \right) \stackrel{?}{=} \mathcal{V}$$

This generalizes techniques in [BCCGP16], [BBBPWM18], [BCS21], [BMMTV21], [AC20], and [ACR21]

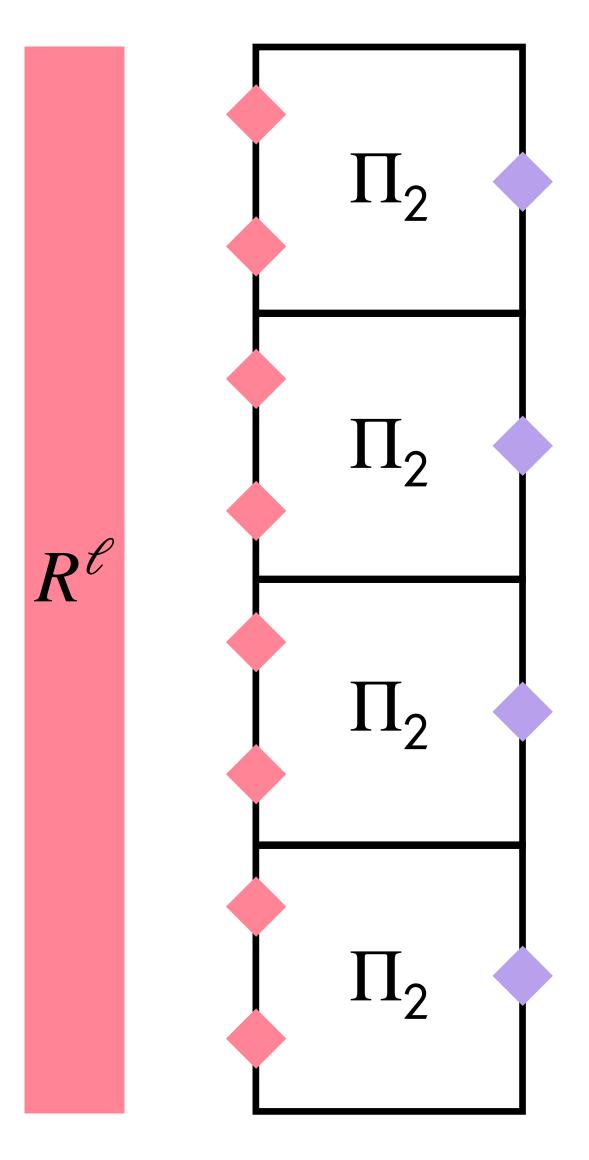
$$u' \left(w' \right) \stackrel{?}{=} v'$$

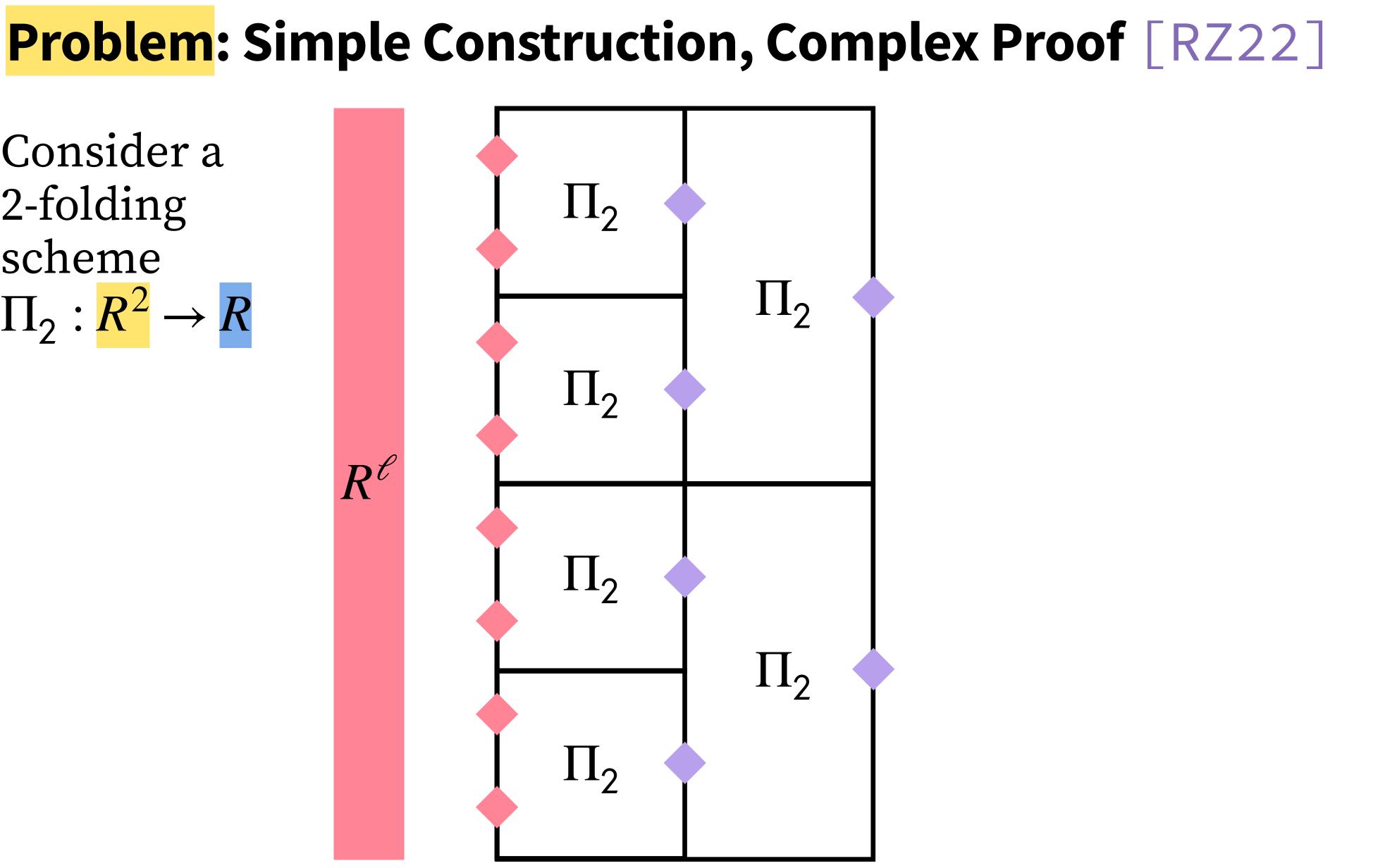
Second Example: Folding Schemes An ℓ -folding scheme is a reduction of kr

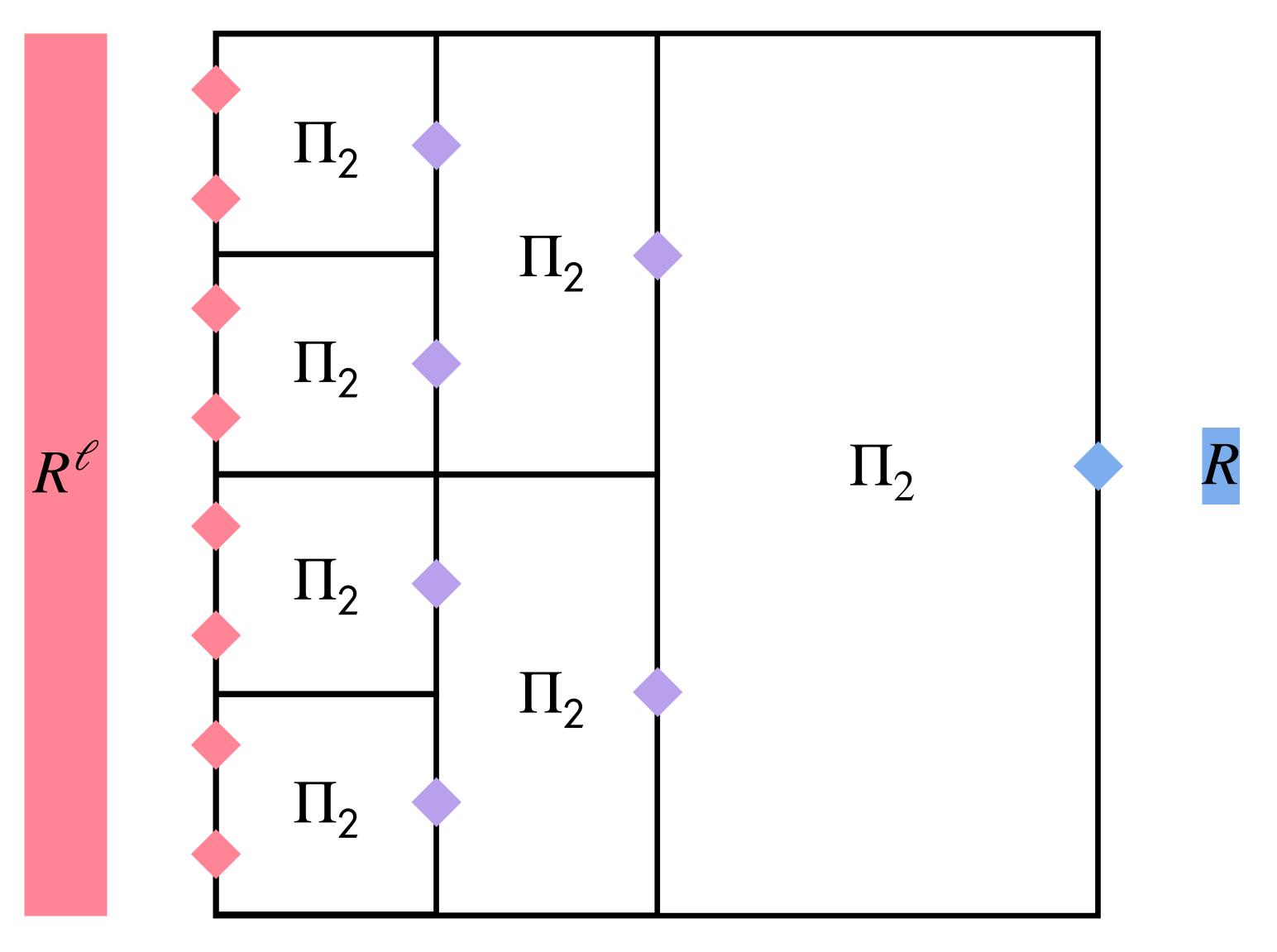


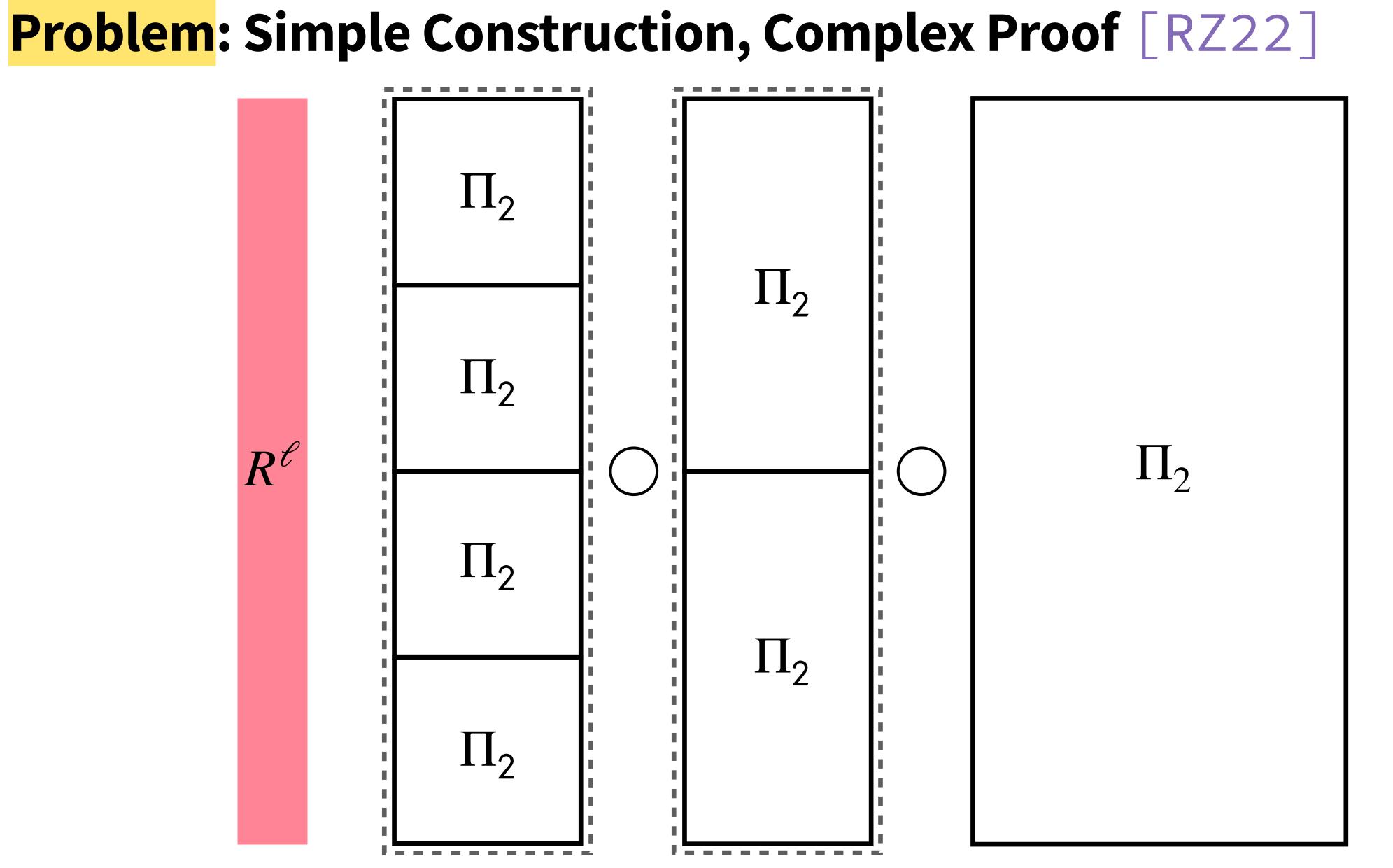
Consider a 2-folding scheme $\Pi_2: \mathbb{R}^2 \to \mathbb{R}$

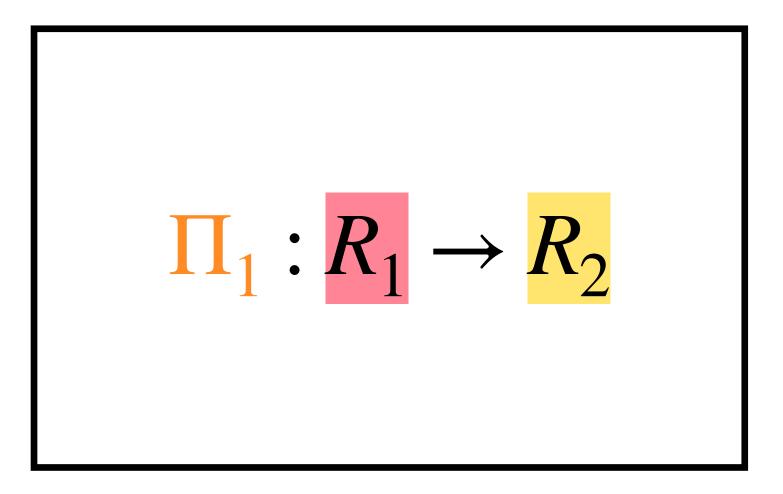
 R^{ℓ}

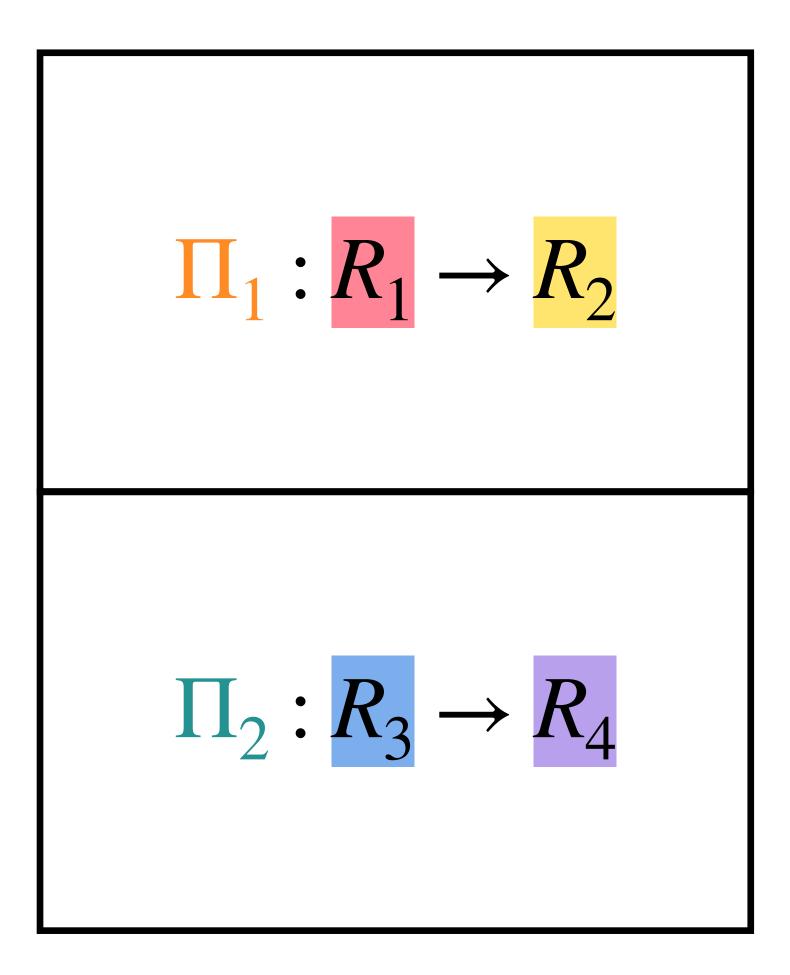


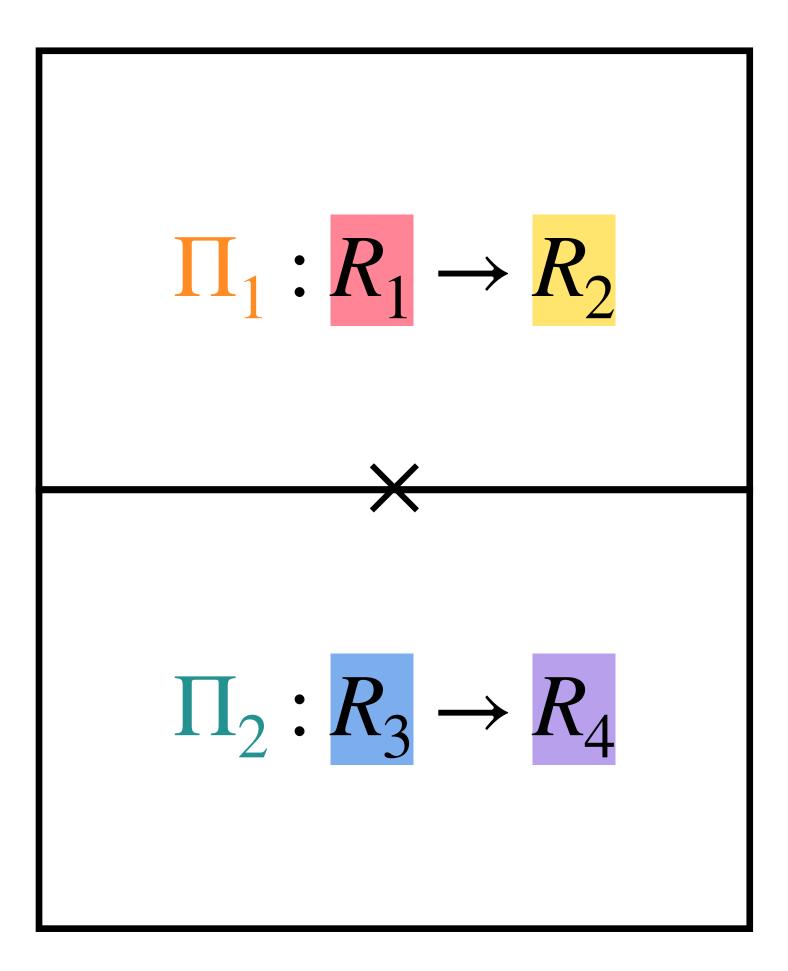




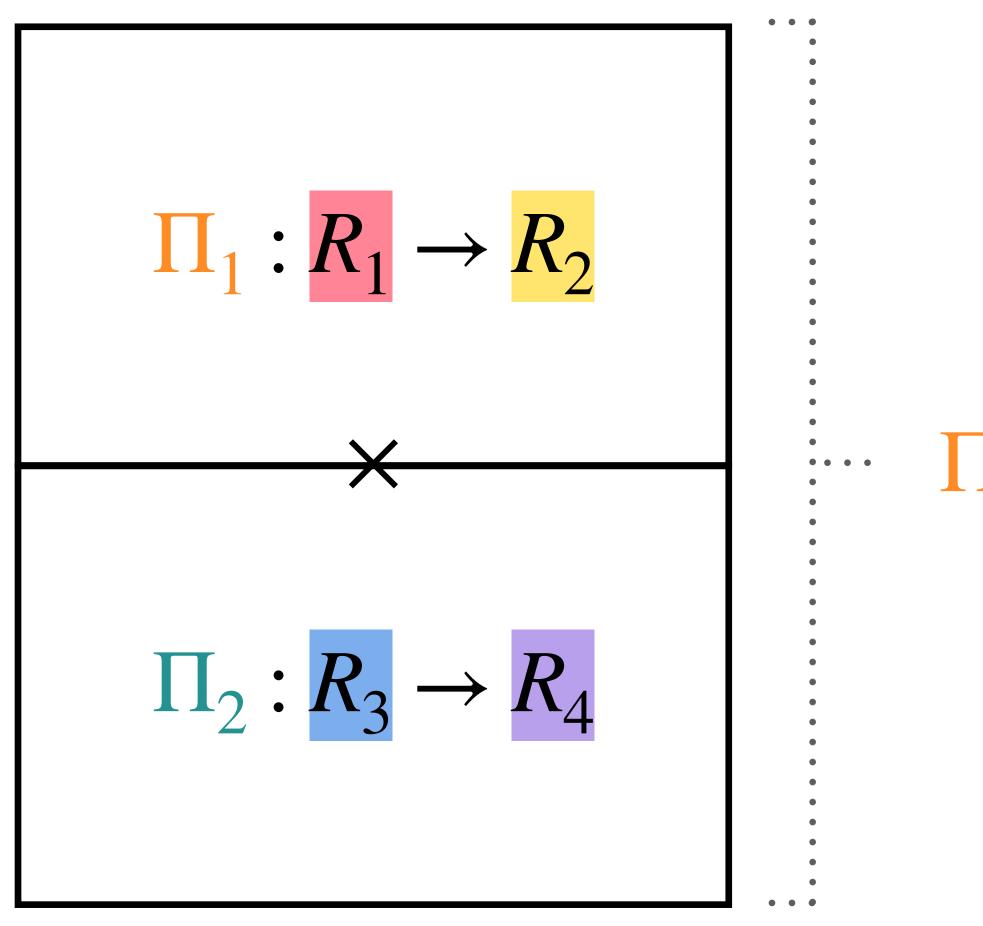




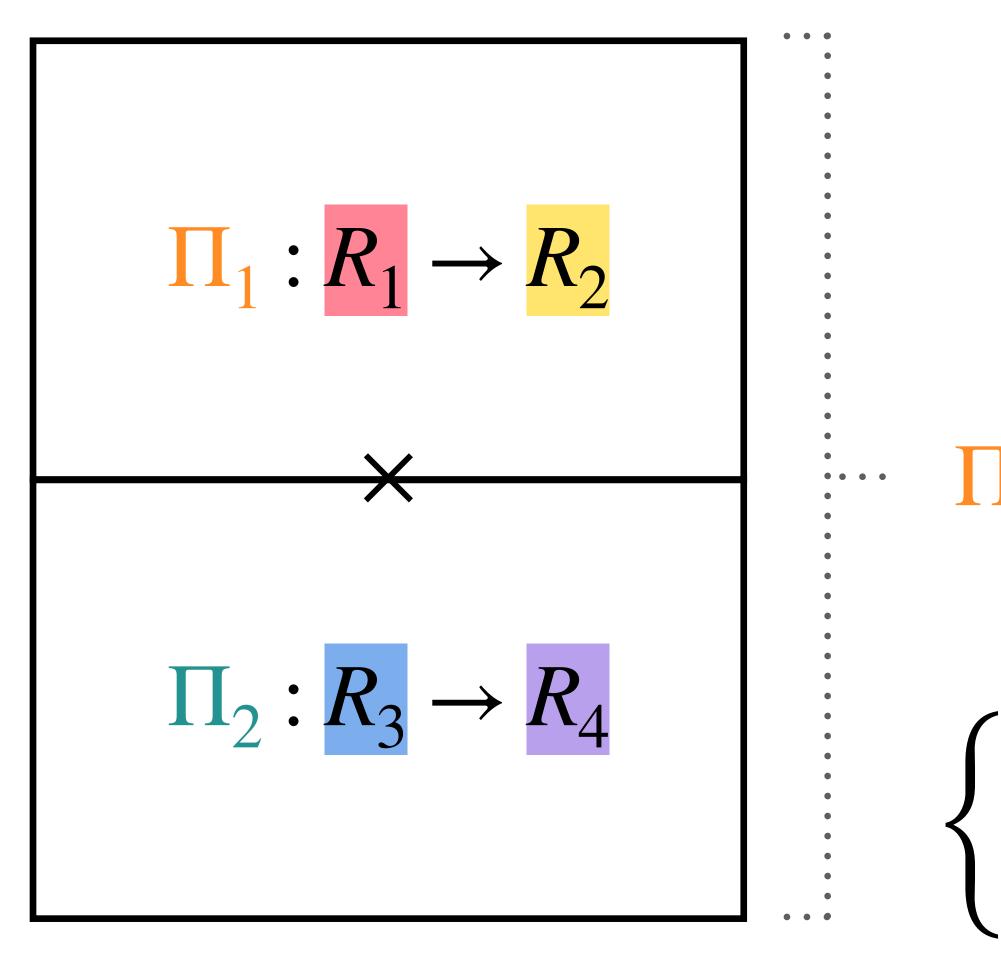




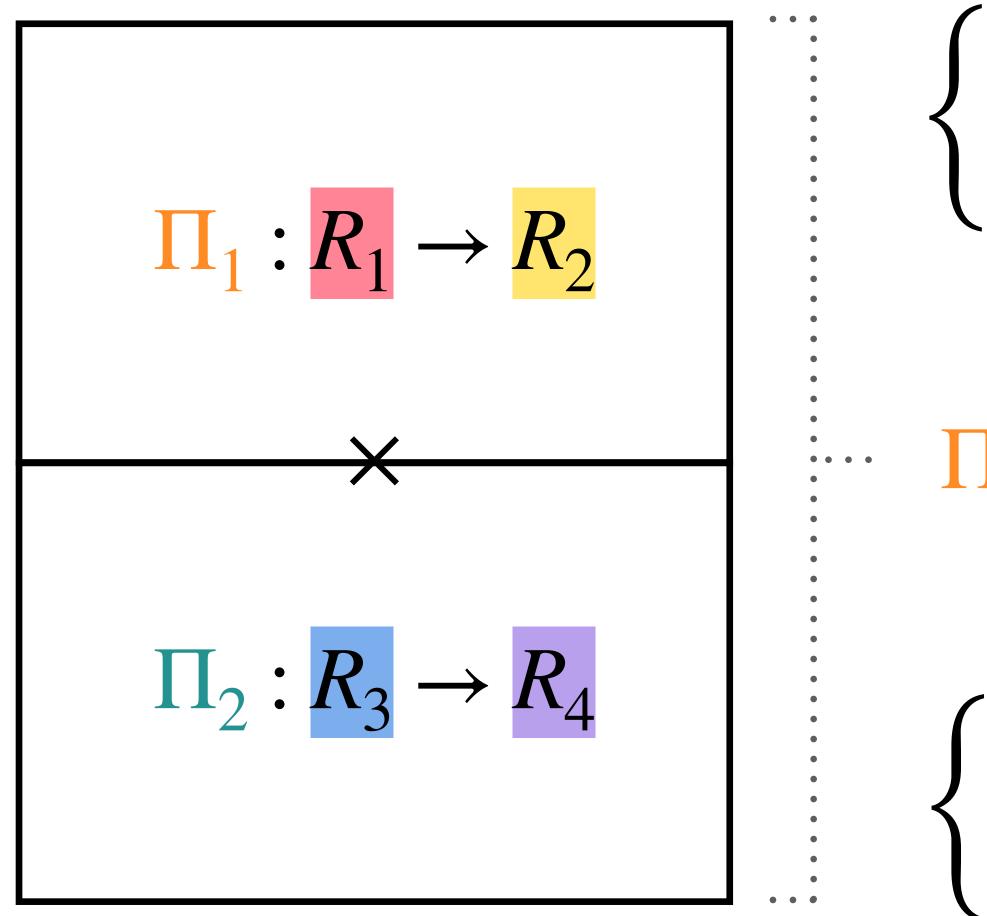
We prove that reductions can be composed in parallel.



 $\Pi_1 \times \Pi_2 : \mathbb{R}_1 \times \mathbb{R}_3 \to \mathbb{R}_2 \times \mathbb{R}_4$



 $\Pi_1 \times \Pi_2 : \mathbb{R}_1 \times \mathbb{R}_3 \to \mathbb{R}_2 \times \mathbb{R}_4$ $\left\{ \begin{array}{c} (u_1, u_3), (w_1, w_3) \\ (u_3, w_3) \in \mathbb{R}_3 \end{array} \right\}$



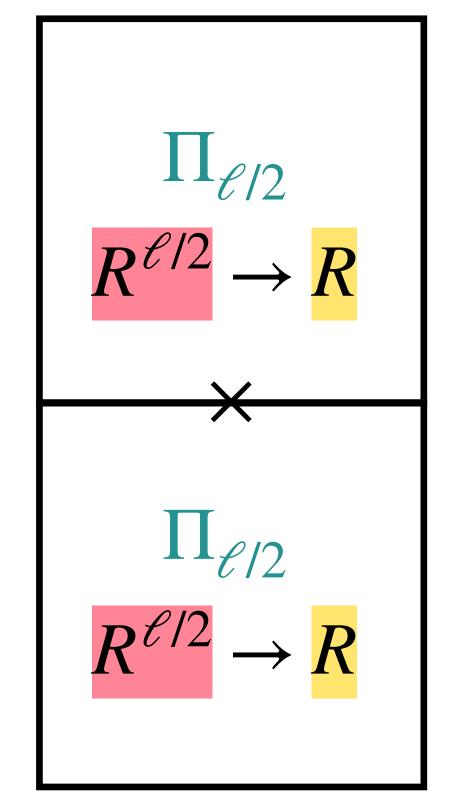
$$(u_{2}, u_{4}), (w_{2}, w_{4}) \begin{vmatrix} (u_{2}, w_{2}) \in R_{2} \\ (u_{4}, w_{4}) \in R_{4} \end{vmatrix}$$
$$\vdots$$
$$\vdots$$
$$(u_{1} \times \Pi_{2} : R_{1} \times R_{3} \to R_{2} \times R_{4}$$
$$\vdots$$
$$\vdots$$
$$(u_{1}, u_{3}), (w_{1}, w_{3}) \begin{vmatrix} (u_{1}, w_{1}) \in R_{1} \\ (u_{3}, w_{3}) \in R_{3} \end{vmatrix}$$

Given $\Pi_2: \mathbb{R}^2 \to \mathbb{R}$, then $\Pi_{\mathcal{L}} = \Pi_2 \circ (\Pi_{\mathcal{L}} \times \Pi_{\mathcal{L}}): \mathbb{R}^{\mathcal{L}} \to \mathbb{R}$.

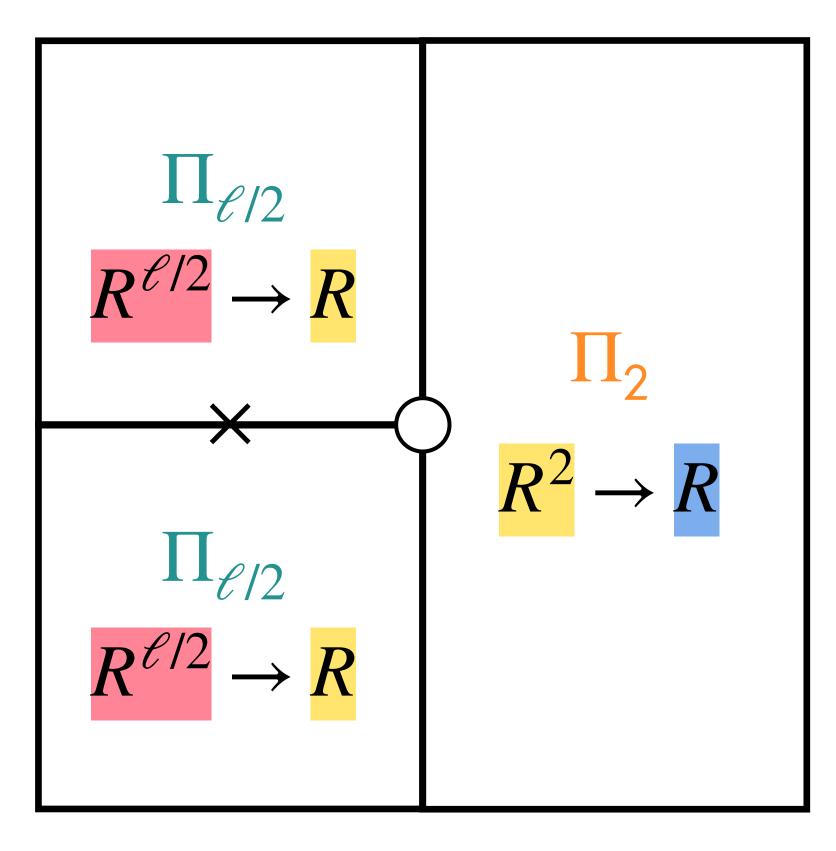
Given $\Pi_2: \mathbb{R}^2 \to \mathbb{R}$, then $\Pi_{\mathcal{C}} = \Pi_2 \circ (\Pi_{\mathcal{C}/2} \times \Pi_{\mathcal{C}/2}): \mathbb{R}^{\mathcal{C}} \to \mathbb{R}$.



Given $\Pi_2: \mathbb{R}^2 \to \mathbb{R}$, then $\Pi_{\mathcal{C}} = \Pi_2 \circ (\Pi_{\mathcal{C}/2} \times \Pi_{\mathcal{C}/2}): \mathbb{R}^{\mathcal{C}} \to \mathbb{R}$.

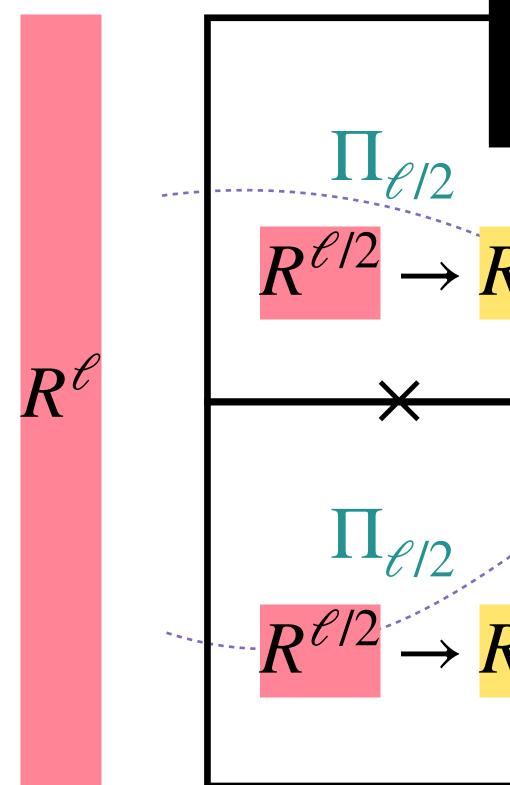


Given $\Pi_2 : \mathbb{R}^2 \to \mathbb{R}$, then $\Pi_{\mathcal{C}} = \Pi_2 \circ (\Gamma$



$$\mathbf{I}_{\ell/2} \times \Pi_{\ell/2}) : \mathbb{R}^{\ell} \to \mathbb{R}.$$

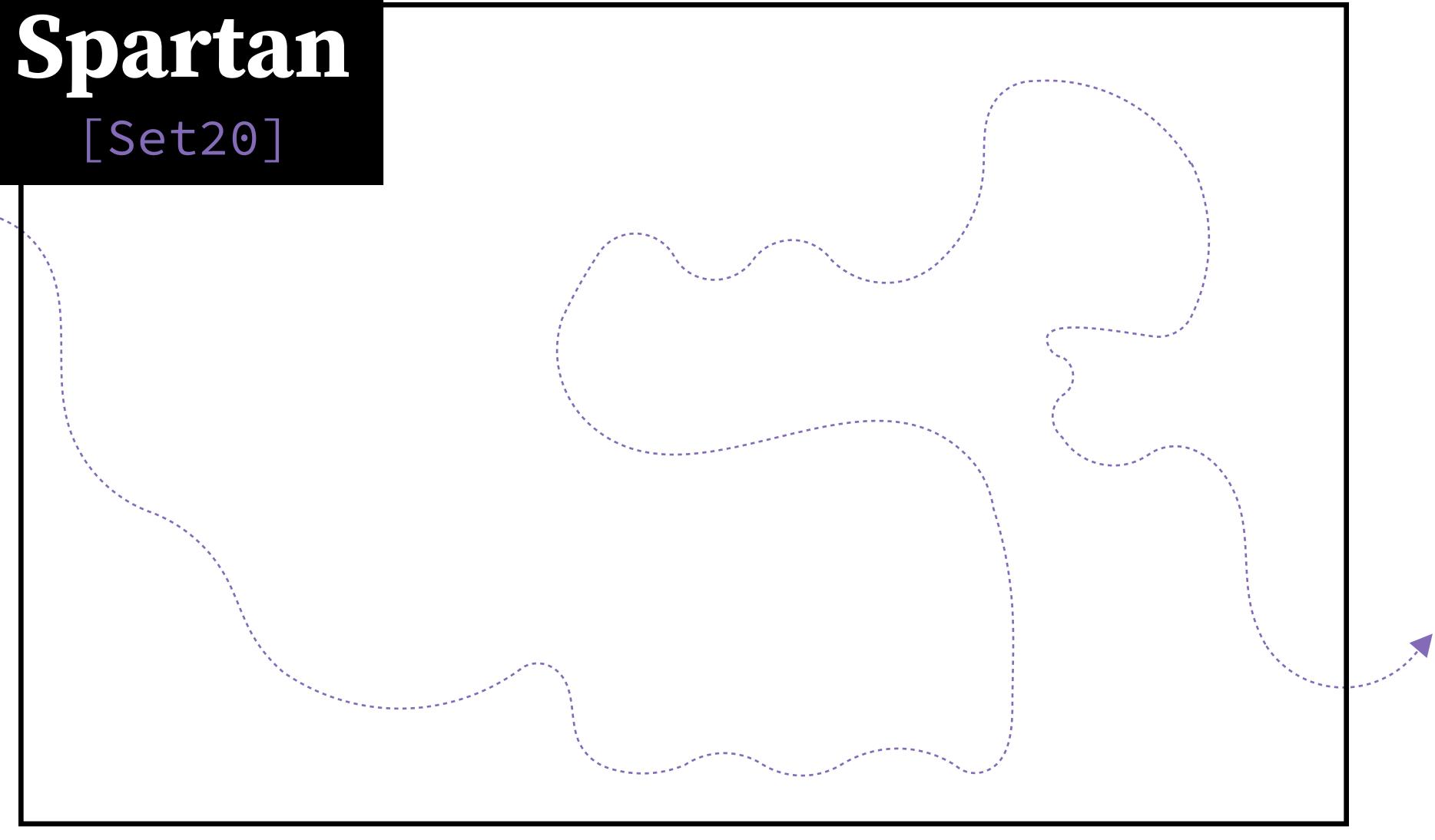
Given $\Pi_2: \mathbb{R}^2 \to \mathbb{R}$, then $\Pi_{\mathcal{C}} = \Pi_2 \circ (\Gamma$



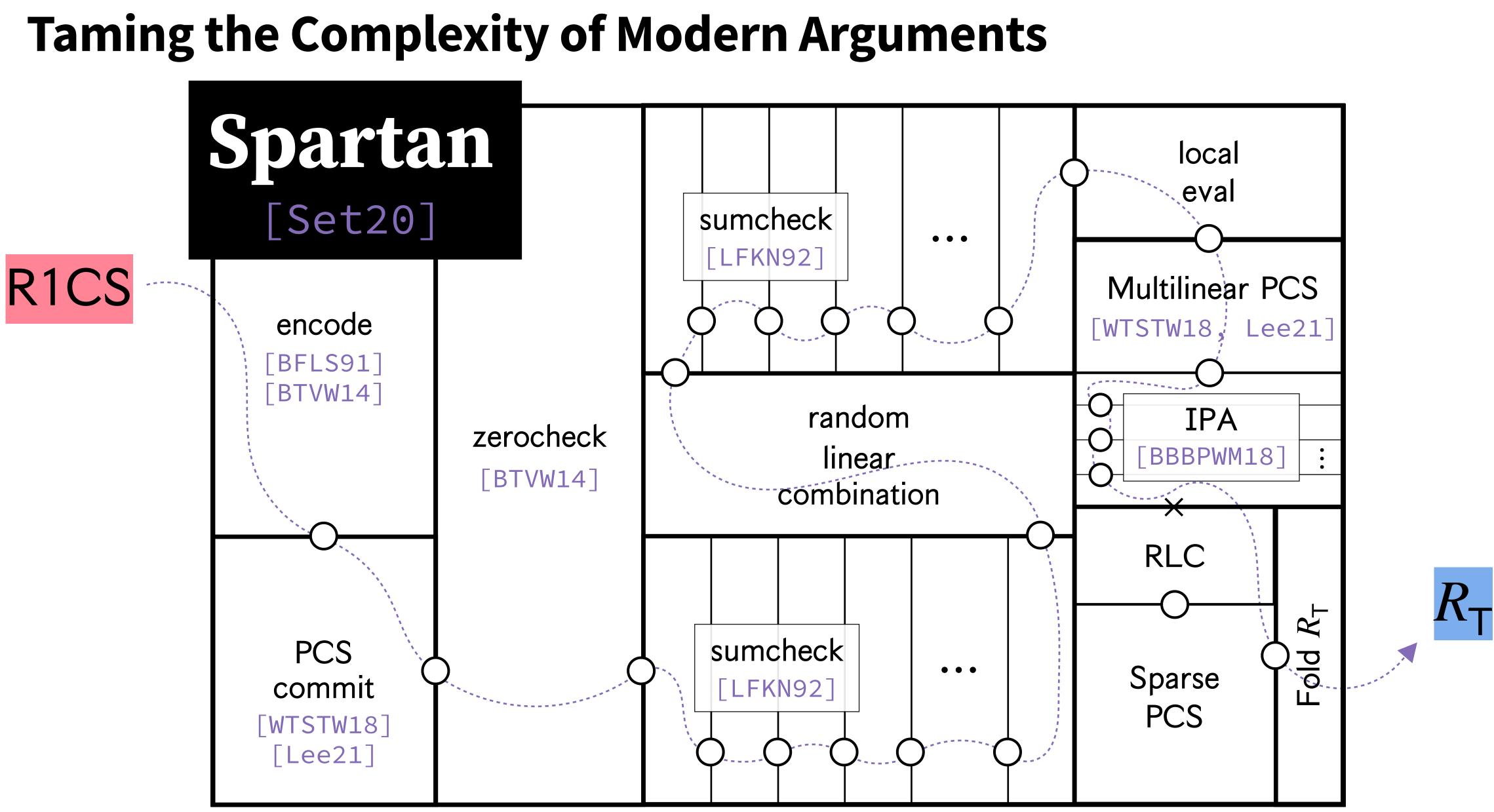
$$\mathbf{I}_{\ell/2} \times \Pi_{\ell/2}) : \mathbb{R}^{\ell} \to \mathbb{R}.$$

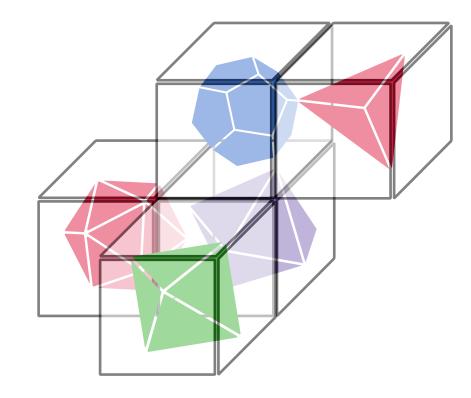
$$\Pi_{\mathcal{C}} : R^{\mathcal{C}} \to R$$

Taming the Complexity of Modern Arguments



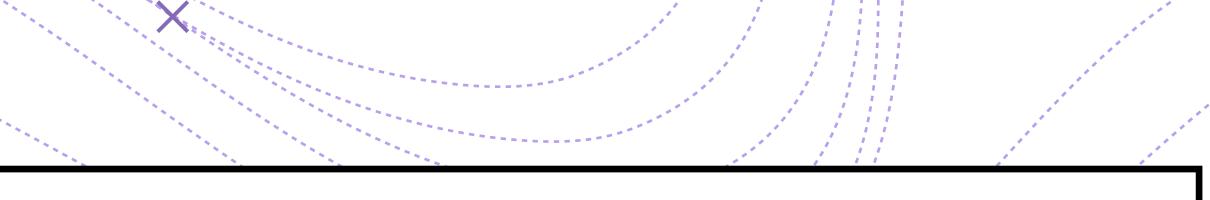
R_T



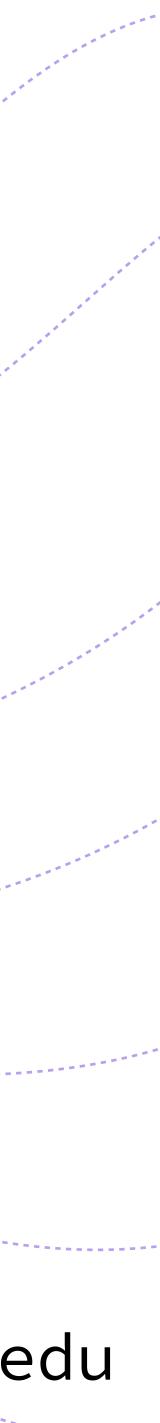


Reductions of knowledge serve as both a unifying abstraction and a compositional framework.

ia.cr/2022/009



akothapalli@cmu.edu



References

[BCLMS21] Bünz, Chiesa, Lin, Mishra, Spooner. Proof Carrying Data without Succinct Arguments.

[BDFG21] Boneh, Drake, Fisch, Gabizon. Halo Infinite: Recursive zkSNARKs from any Additive Polynomial Commitment Scheme.

[BCCGP16] Bootle, Cerulli, Chaidos, Groth, Petit. Efficient Zero-Knowledge Arguments for Arithmetic Circuits in the Discrete Log Setting.

[RZ21] Ràfols and Zapico. An Algebraic Framework for Universal and Updatable SNARKs.

[KST22] Kothapalli, Setty, Tzialla. Nova: Recursive Zero-Knowledge Arguments from Folding Schemes.

[CNRZZ22] Campanelli, Nitulescu, Rafols, Zacharakis, Zapico. Linear-map vector commitments and their practical applications.

[LFKN92] Lund, Fortnow, Karloff, Nisan. Algebraic methods for interactive proof systems.

[BBBPWM18] Bünz, Bootle, Boneh, Poelstra, Wuille, and Maxwell. Bulletproofs: Short Proofs for Confidential Transactions and More.

[BMMTV21] Bünz, Maller, Mishra, Tyagi, and Vesely. Proofs for inner pairing products and applications.

[WTSTW18] Wahby, Tzialla, Shelat, Thaler, and Walfish. Doubly-efficient zkSNARKs without trusted setup.

[BTVW14] Blumberg, Thaler, Vu, and Walfish. Verifiable computation using multiple provers.

[GMR85] Goldwasser, Micali, and Rackoff. The knowledge complexity of interactive proof systems.

[Lee21] Lee. Dory: Efficient, Transparent arguments for Generalised Inner Products and Polynomial Commitments.

[BZ12] Bayer, and Groth. Efficient zero-knowledge argument for correctness of a shuffle.

[CBBZ22] Chen, Bünz, Boneh, Zhang. HyperPlonk: Plonk with Linear-Time Prover and High-Degree Custom Gates. [Set20] Setty. Spartan: Efficient and general-purpose zkSNARKs without trusted setup. [BCH022] Gemini: Bootle, Chiesa, Hu, Orrù. Elastic SNARKs for Diverse Environments. [Bay13] Bayer. Practical Zero-Knowledge Protocols Based on the Discrete Logarithm Assumption. [BCS21] Bootle, Chiesa, and Sotiraki. Sumcheck Arguments and their Applications. [RZ22] Ràfols, and Zacharakis. Folding Schemes with Selective Verification. [KS23] Kothapalli, and Setty. HyperNova: Recursive arguments for customizable constraint systems. [Val08] Valiant. Incrementally Verifiable Computation or Proofs of Knowledge Imply Time/Space Efficiency. [BGH19] Bowe, Grigg, Hopwood. Recursive proof composition without a trusted setup. [AC20] Attema and Cramer. Compressed-protocol theory and practical application to plug & play secure algorithmics. [ACR21] Attema, Cramer, and Rambaud. Compressed Sigma protocols for bilinear group arithmetic circuits and application to logarithmic transparent threshold signatures. [GKR15] Goldwasser, Tauman Kalai, and Rothblum. Delegating computation: interactive proofs for muggles [BFLS91] Babai, Fortnow, Levin, and Szegedy. Checking computations in polylogarithmic time. [BC23] Bünz, and Chen. ProtoStar: Generic Efficient Accumulation/ Folding for Special Sound Protocols

26