
Algebraic

Reductions of

Knowledge
Abhiram Kothapalli [Carnegie Mellon University],

Bryan Parno [Carnegie Mellon University]

ia.cr/2022/009
akothapalli@cmu.edu

Arguments of Knowledge [GMR85]

2

An argument of knowledge allows a prover to interactively show to a verifier
that it knows witness such that .w (u, w) ∈ R

𝖯 𝖵

w u

𝗍𝗋𝗎𝖾/𝖿𝖺𝗅𝗌𝖾

𝖼𝗈𝗆𝗆𝗂𝗍

𝖼𝗁𝖺𝗅𝗅𝖾𝗇𝗀𝖾

𝗋𝖾𝗌𝗉𝗈𝗇𝗌𝖾

?
∈ R

3

Emerging paradigm: The verifier does not fully
resolve the prover’s statement, but rather

reduces it to a simpler statement to be checked.

[BDFG21], [RZ21], [ACR21],
[KST22], [BBBPWM18], [BC23],
[BCLMS21], [KS23], [CBBZ22],
[BCHO22], [Set20], [Bay13],
[BZ12], [BGH19], [CNRZZ22],
[BCS21], [BMMTV21], [AC20],
[LFKN92], [GKR15], [Lee21],
[Val08], [RZ22], [BCCGP16],
+

A Shift in Perspective

4

“The basic step in our inner product argument is a 2-move reduction to a
smaller statement.”

- Bootle, Cerulli, Chaidos, Groth, and Petit,

Eurocrypt 2016

Recursive Inner-Product Argument

4

“The basic step in our inner product argument is a 2-move reduction to a
smaller statement.”

- Bootle, Cerulli, Chaidos, Groth, and Petit,

Eurocrypt 2016

Recursive Inner-Product Argument

A

G

A?=

Length inner-productn

4

“The basic step in our inner product argument is a 2-move reduction to a
smaller statement.”

- Bootle, Cerulli, Chaidos, Groth, and Petit,

Eurocrypt 2016

Recursive Inner-Product Argument

A

G

A?=

Length inner-productn

Inner-Product Step

[BCCGP16]

G′￼

A′￼
A′￼

?=

Length inner-productn/2

5

Polynomial Aggregation

- Boneh, Drake, Fisch, and Gabizon,

Crypto 2021

“If the prover has a witness for , then it must have witnesses for
.”

(P, x, y)
(P, x1, y1), …, (P, xn, yn)

x1 x2 xn

?= yn
?= y2

P

?= y1

5

Polynomial Aggregation

- Boneh, Drake, Fisch, and Gabizon,

Crypto 2021

“If the prover has a witness for , then it must have witnesses for
.”

(P, x, y)
(P, x1, y1), …, (P, xn, yn)

x1 x2 xn

?= yn
?= y2

P

?= y1

5

Polynomial
Aggregation

Scheme

[BGH19, BDFG21]

x

?= y

P

Polynomial Aggregation

- Boneh, Drake, Fisch, and Gabizon,

Crypto 2021

“If the prover has a witness for , then it must have witnesses for
.”

(P, x, y)
(P, x1, y1), …, (P, xn, yn)

Folding Schemes

6

“Intuitively, a folding scheme … reduces the task of checking two instances
in to the task of checking a single instance in .”
R R

- Joint work with Setty and Tzialla,

- Crypto 2022

Folding Schemes

6

“Intuitively, a folding scheme … reduces the task of checking two instances
in to the task of checking a single instance in .”
R R

- Joint work with Setty and Tzialla,

- Crypto 2022

u2 w2

?= 1

R+

+×

×

×

u1 w1

?= 1

R+

+×

×

×

Folding Schemes

6

“Intuitively, a folding scheme … reduces the task of checking two instances
in to the task of checking a single instance in .”
R R

- Joint work with Setty and Tzialla,

- Crypto 2022

Folding

Scheme

[KST22]

u w

?= 1

R+

+×

×

×

u2 w2

?= 1

R+

+×

×

×

u1 w1

?= 1

R+

+×

×

×

Algebraic Arguments for NP

7

“We reduce R1CS constraint systems to three algebraic relations”

- Ràfols and Zapico,

Crypto 2021

Algebraic Arguments for NP

7

R1CS

◯
?=

“We reduce R1CS constraint systems to three algebraic relations”

- Ràfols and Zapico,

Crypto 2021

Algebraic Arguments for NP

7

R1CS

◯
?=

“We reduce R1CS constraint systems to three algebraic relations”

- Ràfols and Zapico,

Crypto 2021

R1CS

Reduction
[RZ21]

Inner-
Product

Hadamard-
Product

Checkable

Subspace

Sampling

?= ?=◯

Modern Arguments are Reductions

8

Split-accumulation schemes reduce the task of
checking instances and accumulators into the task
of checking single accumulator. [BCLMS21]

Aggregation schemes for polynomial commitments
reduce the task of checking several openings to the
task of checking a single opening. [BDFG21]

The ZeroCheck protocol reduces the task of
checking that a polynomial vanishes on a set to a
Sumcheck. [BTVW14, Set20, CBBZ22]

The tensor-product protocol reduces the task of
checking an inner-product with a structured vector
to the task of checking several univariate
polynomial evaluations. [BCHO22]

The Hadamard-product protocol reduces the task
of checking a Hadamard product to the task of
checking an inner-product. [Bay13]

n
Inner-product arguments reduce the the task of
checking the inner-product of size vectors to
checking the inner-product of size vectors.
[BCCGP16, BBBPWM18, BMMTV21, Lee21]

Checkable subspace sampling reduces the task of
checking matrix evaluations to the task of checking
vector evaluations. [RZ21]

Incrementally verifiable computation reduces the
task of checking a succinct proof of applications of
function and a succinct proof of m subsequent
applications of to the task of checking a succinct
proof of applications of . [Val08]

The zero-knowledge HPI argument reduces the
task of checking a pre-image of a homomorphism
to the task of checking a pre-image of a randomized
homomorphism .[BDFG21]

n
n/2

n
F

F
n + m F

y

y′￼

9

Interactive reductions
are universal; their
definitions are not

making it difficult to compose
compatible techniques hidden

under incompatible abstractions.

Problem: Need a Unifying Theory

9

Interactive reductions
are universal; their
definitions are not

making it difficult to compose
compatible techniques hidden

under incompatible abstractions.

which serve as both a
unifying abstraction and a
compositional framework.

We formalize reductions
of knowledge as a
common language

Solution

Problem: Need a Unifying Theory

A reduction of knowledge interactively reduces the claim to a
claim

(u1, w1) ∈ R1
(u2, w2) ∈ R2

Reductions of Knowledge: A Unifying Language

10

𝖯 𝖵

?
∈ R1

?
∈ R2

u1w1

u2w2

A reduction of knowledge interactively reduces the claim to a
claim

(u1, w1) ∈ R1
(u2, w2) ∈ R2

Reductions of Knowledge: A Unifying Language

10

𝖯 𝖵
If the prover is
provided satisfying
then it must output a
satisfying

w1

w2

Completeness

?
∈ R1

?
∈ R2

u1w1

u2w2

A reduction of knowledge interactively reduces the claim to a
claim

(u1, w1) ∈ R1
(u2, w2) ∈ R2

Reductions of Knowledge: A Unifying Language

10

𝖯 𝖵
If the prover is
provided satisfying
then it must output a
satisfying

w1

w2

Completeness

If prover outputs
satisfying then it

must almost certainly
know a satisfying

w2

w1

Knowledge Soundness

?
∈ R1

?
∈ R2

u1w1

u2w2

 Pr[⟨P*, V⟩(u1, 𝗌𝗍) ∈ R2] = ε

Knowledge Soundness

11

𝖯* 𝖵

Consider s.t. for P* (u1, 𝗌𝗍)

u1𝗌𝗍

u2w2

 Pr[⟨P*, V⟩(u1, 𝗌𝗍) ∈ R2] = ε

Knowledge Soundness

11

𝖯* 𝖵

Consider s.t. for P* (u1, 𝗌𝗍)

u1𝗌𝗍

 Pr[(u1, E(u1, 𝗌𝗍)) ∈ R1] ≈ ε

Then there exists an extractor s.t.E

 𝖤𝗑𝗍𝗋𝖺𝖼𝗍𝗈𝗋 E

w1

u2w2

w u
?
∈ R

 ∈ R⊤

𝖯 𝖵

“ ”𝗍𝗋𝗎𝖾“ ”𝗍𝗋𝗂𝗏

Reconciling Reductions with Arguments

12

An argument of knowledge is a reduction of knowledge from to
 “ ” “ ” .

R
R⊤ = {(𝗍𝗋𝗎𝖾 , 𝗍𝗋𝗂𝗏)}

 R𝖨𝖯(n) = {((G, A), A) ∈ ((𝔾n, 𝔾), 𝔽 n) ∣ ⟨G, A⟩ = A}

13

Define the Inner-Product Relation as

First Example: Inner-Product Reduction [BCCGP16]

 R𝖨𝖯(n) = {((G, A), A) ∈ ((𝔾n, 𝔾), 𝔽 n) ∣ ⟨G, A⟩ = A}

13

Define the Inner-Product Relation as

First Example: Inner-Product Reduction [BCCGP16]

Characterized

by length n

 R𝖨𝖯(n) = {((G, A), A) ∈ ((𝔾n, 𝔾), 𝔽 n) ∣ ⟨G, A⟩ = A}

13

Define the Inner-Product Relation as

First Example: Inner-Product Reduction [BCCGP16]

Statement

Characterized

by length n

 R𝖨𝖯(n) = {((G, A), A) ∈ ((𝔾n, 𝔾), 𝔽 n) ∣ ⟨G, A⟩ = A}

13

Define the Inner-Product Relation as

First Example: Inner-Product Reduction [BCCGP16]

Statement

Witness
Characterized

by length n

 R𝖨𝖯(n) = {((G, A), A) ∈ ((𝔾n, 𝔾), 𝔽 n) ∣ ⟨G, A⟩ = A}

13

Define the Inner-Product Relation as

First Example: Inner-Product Reduction [BCCGP16]

Statement

Witness

Satisfying
Condition

Characterized

by length n

?
∈ R𝖨𝖯(n)

First Example: Inner-Product Reduction [BCCGP16]

14

𝖯 𝖵

There exists a reduction of knowledge from to .R𝖨𝖯(n) R𝖨𝖯(n/2)

(G, A)A

 for Aij ← Gi(Aj) i, j ∈ {1,2}

?
∈ R𝖨𝖯(n)

First Example: Inner-Product Reduction [BCCGP16]

14

𝖯 𝖵

There exists a reduction of knowledge from to .R𝖨𝖯(n) R𝖨𝖯(n/2)

(G, A)A

 for Aij ← Gi(Aj) i, j ∈ {1,2}

?
∈ R𝖨𝖯(n)

First Example: Inner-Product Reduction [BCCGP16]

14

𝖯 𝖵

 A11, A22
 A12, A21

There exists a reduction of knowledge from to .R𝖨𝖯(n) R𝖨𝖯(n/2)

(G, A)A

 r $← 𝔽 for Aij ← Gi(Aj) i, j ∈ {1,2}

?
∈ R𝖨𝖯(n)

First Example: Inner-Product Reduction [BCCGP16]

14

𝖯 𝖵

 A11, A22
 A12, A21

There exists a reduction of knowledge from to .R𝖨𝖯(n) R𝖨𝖯(n/2)

(G, A)A

 r $← 𝔽 for Aij ← Gi(Aj) i, j ∈ {1,2}

?
∈ R𝖨𝖯(n)

First Example: Inner-Product Reduction [BCCGP16]

14

𝖯 𝖵

 A11, A22
 A12, A21

There exists a reduction of knowledge from to .R𝖨𝖯(n) R𝖨𝖯(n/2)

 r

(G, A)A

 G′￼← G1 + r ⋅ G2

 r $← 𝔽 for Aij ← Gi(Aj) i, j ∈ {1,2}

?
∈ R𝖨𝖯(n)

First Example: Inner-Product Reduction [BCCGP16]

14

𝖯 𝖵

 A11, A22
 A12, A21

There exists a reduction of knowledge from to .R𝖨𝖯(n) R𝖨𝖯(n/2)

 r

(G, A)A

 G′￼← G1 + r ⋅ G2

 A′￼← A1 + r ⋅ A2

 r $← 𝔽 for Aij ← Gi(Aj) i, j ∈ {1,2}

?
∈ R𝖨𝖯(n)

First Example: Inner-Product Reduction [BCCGP16]

14

𝖯 𝖵

 A11, A22
 A12, A21

There exists a reduction of knowledge from to .R𝖨𝖯(n) R𝖨𝖯(n/2)

 r

(G, A)A

 A′￼← A11 + r ⋅ (A12 + A21)
 + r2 ⋅ A22

 G′￼← G1 + r ⋅ G2

 A′￼← A1 + r ⋅ A2

 r $← 𝔽 for Aij ← Gi(Aj) i, j ∈ {1,2}

?
∈ R𝖨𝖯(n)

First Example: Inner-Product Reduction [BCCGP16]

14

𝖯 𝖵

 A11, A22
 A12, A21

There exists a reduction of knowledge from to .R𝖨𝖯(n) R𝖨𝖯(n/2)

 r

(G, A)A

 A′￼← A11 + r ⋅ (A12 + A21)
 + r2 ⋅ A22

 G′￼← G1 + r ⋅ G2

 A′￼← A1 + r ⋅ A2

 r $← 𝔽 for Aij ← Gi(Aj) i, j ∈ {1,2}

?
∈ R𝖨𝖯(n)

First Example: Inner-Product Reduction [BCCGP16]

14

𝖯 𝖵

 A11, A22
 A12, A21

There exists a reduction of knowledge from to .R𝖨𝖯(n) R𝖨𝖯(n/2)

 r

(G, A)A

?
∈ R𝖨𝖯(n/2)(G′￼, A′￼)A′￼

?
∈ R𝖨𝖯(1)

?
∈ R𝖨𝖯(n)

Problem: Simple Construction, Complex Proof

15

𝖯n

𝗌𝗍

An

(Gn, An)

(G0, A0)

 r1

 M1

 rn

 Mn

 ⋮
 rn/2

 Mn/2

𝖵

𝖵

𝖵

 ⋮

?
∈ R𝖨𝖯(1)

?
∈ R𝖨𝖯(n)

Problem: Simple Construction, Complex Proof

15

𝖯n

𝗌𝗍

An

(Gn, An)

(G0, A0)

 r1

 M1

 rn

 Mn

 ⋮
 rn/2

 Mn/2

𝖵

𝖵

𝖵

 ⋮

 rewinds last step to
interpolate for

En
An−1

An/2

𝖤n

?
∈ R𝖨𝖯(1)

?
∈ R𝖨𝖯(n)

Problem: Simple Construction, Complex Proof

15

𝖯n/2

An/2

𝖵

𝖵

 ⋮
 r1

 M1

 ⋮

 rn/2

 Mn/2

(Gn/2, An/2)
?
∈ R𝖨𝖯(2)

𝖯n

𝗌𝗍

An

(Gn, An)

(G0, A0)

 r1

 M1

 rn

 Mn

 ⋮
 rn/2

 Mn/2

𝖵

𝖵

𝖵

 ⋮

 rewinds last step to
interpolate for

En
An−1

An/2

𝖤n

?
∈ R𝖨𝖯(1)

?
∈ R𝖨𝖯(n)

Problem: Simple Construction, Complex Proof

15

𝖯n/2

An/2

𝖵

𝖵

 ⋮
 r1

 M1

 ⋮

 rn/2

 Mn/2

(Gn/2, An/2)
?
∈ R𝖨𝖯(2)

𝖯n

𝗌𝗍

An

(Gn, An)

(G0, A0)

 r1

 M1

 rn

 Mn

 ⋮
 rn/2

 Mn/2

𝖵

𝖵

𝖵

 ⋮

 rewinds last step to
interpolate for

En
An−1

An/2

𝖤n ⋯𝖤1 ⋯ 𝖤n/2

A0

16

Solution: Sequential Composition Theorem

We prove that reductions are sequentially composable.

16

Solution: Sequential Composition Theorem

 Π1 : R1 → R2

We prove that reductions are sequentially composable.

16

Solution: Sequential Composition Theorem

 Π1 : R1 → R2 Π2 : R2 → R3

We prove that reductions are sequentially composable.

16

Solution: Sequential Composition Theorem

 Π1 : R1 → R2 Π2 : R2 → R3

We prove that reductions are sequentially composable.

16

Solution: Sequential Composition Theorem

 Π1 : R1 → R2 Π2 : R2 → R3

 Π2 ∘ Π1 : R1 → R3

We prove that reductions are sequentially composable.

Inner-Product Argument with a Simple Proof

17

Simpler soundness proof: Invoke sequential composition.

Inner-Product Argument with a Simple Proof

17

Simpler soundness proof: Invoke sequential composition.

Π𝗌𝗍𝖾𝗉

R𝖨𝖯(n) → R𝖨𝖯(n/2)

Inner-Product Argument with a Simple Proof

17

Simpler soundness proof: Invoke sequential composition.

Π𝗌𝗍𝖾𝗉

R𝖨𝖯(n) → R𝖨𝖯(n/2)

Π𝗌𝗍𝖾𝗉

R𝖨𝖯(n/2) → R𝖨𝖯(n/4)

Inner-Product Argument with a Simple Proof

17

Simpler soundness proof: Invoke sequential composition.

Π𝗌𝗍𝖾𝗉

R𝖨𝖯(n) → R𝖨𝖯(n/2)

Π𝗌𝗍𝖾𝗉

R𝖨𝖯(n/2) → R𝖨𝖯(n/4)
⋯ Π𝖻𝖺𝗌𝖾

R𝖨𝖯(1) → R𝖳

Base case: the
prover sends the

witness A ∈ 𝔽

Inner-Product Argument with a Simple Proof

17

Simpler soundness proof: Invoke sequential composition.

Π𝗌𝗍𝖾𝗉

R𝖨𝖯(n) → R𝖨𝖯(n/2)

Π𝗌𝗍𝖾𝗉

R𝖨𝖯(n/2) → R𝖨𝖯(n/4)
⋯ Π𝖻𝖺𝗌𝖾

R𝖨𝖯(1) → R𝖳

Base case: the
prover sends the

witness A ∈ 𝔽

R𝖨𝖯(n)

R𝖳

 Π𝖵𝖢 : R𝖨𝖯(n) → R⊤

Our Generalization: Tensor Reduction of Knowledge

18

Theorem. There exists a reduction of knowledge that
reduces the task of checking knowledge of such that

 for to the task of checking
knowledge of such that for .

w
u(w) = v u ∈ hom(Wn, V)

w′￼ u′￼(w′￼) = v′￼ u′￼ ∈ hom(W, V)

()

?= vu w ()

?= v′￼u′￼ w′￼

This generalizes techniques
in [BCCGP16], [BBBPWM18],
[BCS21] , [BMMTV21] ,
[AC20], and [ACR21]

𝖯 𝖵

?
∈ Rℓ

?
∈ R

u1, …, uℓw1, …, wℓ

uw

Second Example: Folding Schemes

19

An -folding scheme is a reduction of knowledge from to .ℓ Rℓ = R × ⋯ × R R

Problem: Simple Construction, Complex Proof [RZ22]

20

Consider a

2-folding

scheme

 Π𝟤 : R2 → R

Problem: Simple Construction, Complex Proof [RZ22]

Rℓ

20

Consider a

2-folding

scheme

 Π𝟤 : R2 → R

Problem: Simple Construction, Complex Proof [RZ22]

Rℓ

20

Consider a

2-folding

scheme

 Π𝟤 : R2 → R

Π𝟤

Π𝟤

Π𝟤

Π𝟤

Problem: Simple Construction, Complex Proof [RZ22]

Rℓ

20

Consider a

2-folding

scheme

 Π𝟤 : R2 → R Π𝟤

Π𝟤

Π𝟤

Π𝟤

Π𝟤

Π𝟤

Problem: Simple Construction, Complex Proof [RZ22]

Rℓ

20

Consider a

2-folding

scheme

 Π𝟤 : R2 → R

RΠ2

Π𝟤

Π𝟤

Π𝟤

Π𝟤

Π𝟤

Π𝟤

Π𝟤

Π𝟤

Π𝟤

Π𝟤

Problem: Simple Construction, Complex Proof [RZ22]

21

Π2

Π𝟤

Π𝟤

RRℓ

22

Solution: Parallel Composition Theorem

We prove that reductions can be composed in parallel.

22

Solution: Parallel Composition Theorem

 Π1 : R1 → R2

We prove that reductions can be composed in parallel.

22

Solution: Parallel Composition Theorem

 Π1 : R1 → R2

 Π2 : R3 → R4

We prove that reductions can be composed in parallel.

22

Solution: Parallel Composition Theorem

 Π1 : R1 → R2

 Π2 : R3 → R4

×

We prove that reductions can be composed in parallel.

22

Solution: Parallel Composition Theorem

 Π1 : R1 → R2

 Π2 : R3 → R4

×

We prove that reductions can be composed in parallel.

 Π1 × Π2 : R1 × R3 → R2 × R4

22

Solution: Parallel Composition Theorem

 Π1 : R1 → R2

 Π2 : R3 → R4

×

We prove that reductions can be composed in parallel.

 Π1 × Π2 : R1 × R3 → R2 × R4

{ } (u1, w1) ∈ R1

 (u3, w3) ∈ R3
 (u1, u3), (w1, w3)

22

Solution: Parallel Composition Theorem

 Π1 : R1 → R2

 Π2 : R3 → R4

×

We prove that reductions can be composed in parallel.

 Π1 × Π2 : R1 × R3 → R2 × R4

{ } (u1, w1) ∈ R1

 (u3, w3) ∈ R3
 (u1, u3), (w1, w3)

{ } (u2, w2) ∈ R2

 (u4, w4) ∈ R4
 (u2, u4), (w2, w4)

Tree Folding Scheme with a Simple Proof

Given , then) .Π𝟤 : R2 → R Πℓ = Π2 ∘ (Πℓ/2 × Πℓ/2 : Rℓ → R

23

Tree Folding Scheme with a Simple Proof

Given , then) .Π𝟤 : R2 → R Πℓ = Π2 ∘ (Πℓ/2 × Πℓ/2 : Rℓ → R

23

Πℓ/2

 Rℓ/2 → R

Tree Folding Scheme with a Simple Proof

Given , then) .Π𝟤 : R2 → R Πℓ = Π2 ∘ (Πℓ/2 × Πℓ/2 : Rℓ → R

23

Πℓ/2

 Rℓ/2 → R

Πℓ/2

 Rℓ/2 → R

×

Tree Folding Scheme with a Simple Proof

Given , then) .Π𝟤 : R2 → R Πℓ = Π2 ∘ (Πℓ/2 × Πℓ/2 : Rℓ → R

23

Πℓ/2

 Rℓ/2 → R

Πℓ/2

 Rℓ/2 → R

×
Π𝟤

 R2 → R

Tree Folding Scheme with a Simple Proof

Given , then) .Π𝟤 : R2 → R Πℓ = Π2 ∘ (Πℓ/2 × Πℓ/2 : Rℓ → R

23

Πℓ/2

 Rℓ/2 → R

Πℓ/2

 Rℓ/2 → R

×
Π𝟤

 R2 → R
RRℓ

Πℓ : Rℓ → R

Taming the Complexity of Modern Arguments

24

𝖱𝟣𝖢𝖲

R𝖳

Spartan
[Set20]

Taming the Complexity of Modern Arguments

24

𝖱𝟣𝖢𝖲

R𝖳

𝖾𝗇𝖼𝗈𝖽𝖾

𝗋𝖺𝗇𝖽𝗈𝗆
𝗅𝗂𝗇𝖾𝖺𝗋

𝖼𝗈𝗆𝖻𝗂𝗇𝖺𝗍𝗂𝗈𝗇

𝗅𝗈𝖼𝖺𝗅
𝖾𝗏𝖺𝗅

⋯

𝗌𝗎𝗆𝖼𝗁𝖾𝖼𝗄 ⋯[LFKN92]

𝗌𝗎𝗆𝖼𝗁𝖾𝖼𝗄
[LFKN92]

𝖬𝗎𝗅𝗍𝗂𝗅𝗂𝗇𝖾𝖺𝗋 𝖯𝖢𝖲

𝖨𝖯𝖠

[WTSTW18, Lee21]

[BBBPWM18]

×
⋮

𝖥𝗈
𝗅𝖽

R 𝖳

[BFLS91]
[BTVW14]

𝖯𝖢𝖲
𝖼𝗈𝗆𝗆𝗂𝗍

[WTSTW18]
[Lee21]

𝖱𝖫𝖢

𝗓𝖾𝗋𝗈𝖼𝗁𝖾𝖼𝗄
[BTVW14]

𝖲𝗉𝖺𝗋𝗌𝖾
𝖯𝖢𝖲

Spartan
[Set20]

×

×

×

25ia.cr/2022/009 akothapalli@cmu.edu

Reductions of knowledge serve as both a

unifying abstraction and a compositional framework.

References
[BCLMS21] Bünz, Chiesa, Lin, Mishra, Spooner. Proof Carrying Data
without Succinct Arguments.

[BDFG21] Boneh, Drake, Fisch, Gabizon. Halo Infinite: Recursive
zkSNARKs from any Additive Polynomial Commitment Scheme.

[BCCGP16] Bootle, Cerulli, Chaidos, Groth, Petit. Efficient Zero-
Knowledge Arguments for Arithmetic Circuits in the Discrete Log
Setting.

[RZ21] Ràfols and Zapico. An Algebraic Framework for Universal and
Updatable SNARKs.

[KST22] Kothapalli, Setty, Tzialla. Nova: Recursive Zero-Knowledge
Arguments from Folding Schemes.

[CNRZZ22] Campanelli, Nitulescu, Rafols, Zacharakis, Zapico. Linear-map
vector commitments and their practical applications.

[LFKN92] Lund, Fortnow, Karloff, Nisan. Algebraic methods for
interactive proof systems.

[BBBPWM18] Bünz, Bootle, Boneh, Poelstra, Wuille, and Maxwell.
Bulletproofs: Short Proofs for Confidential Transactions and More.

[BMMTV21] Bünz, Maller, Mishra, Tyagi, and Vesely. Proofs for inner
pairing products and applications.

[WTSTW18] Wahby, Tzialla, Shelat, Thaler, and Walfish. Doubly-efficient
zkSNARKs without trusted setup.

[BTVW14] Blumberg, Thaler, Vu, and Walfish. Verifiable computation
using multiple provers.

[GMR85] Goldwasser, Micali, and Rackoff. The knowledge complexity of
interactive proof systems.

[Lee21] Lee. Dory: Efficient, Transparent arguments for Generalised
Inner Products and Polynomial Commitments.

[BZ12] Bayer, and Groth. Efficient zero-knowledge argument for
correctness of a shuffle.

26

[CBBZ22] Chen, Bünz, Boneh, Zhang. HyperPlonk: Plonk with Linear-Time
Prover and High-Degree Custom Gates.

[Set20] Setty. Spartan: Efficient and general-purpose zkSNARKs without
trusted setup.

[BCHO22] Gemini: Bootle, Chiesa, Hu, Orrù. Elastic SNARKs for Diverse
Environments.

[Bay13] Bayer. Practical Zero-Knowledge Protocols Based on the Discrete
Logarithm Assumption.

[BCS21] Bootle, Chiesa, and Sotiraki. Sumcheck Arguments and their
Applications.

[RZ22] Ràfols, and Zacharakis. Folding Schemes with Selective
Verification.

[KS23] Kothapalli, and Setty. HyperNova: Recursive arguments for
customizable constraint systems.

[Val08] Valiant. Incrementally Verifiable Computation or Proofs of
Knowledge Imply Time/Space Efficiency.

[BGH19] Bowe, Grigg, Hopwood. Recursive proof composition without a
trusted setup.

[AC20] Attema and Cramer. Compressed-protocol theory and practical
application to plug & play secure algorithmics.

[ACR21] Attema, Cramer, and Rambaud. Compressed Sigma protocols for
bilinear group arithmetic circuits and application to logarithmic
transparent threshold signatures.

[GKR15] Goldwasser, Tauman Kalai, and Rothblum. Delegating computation:
interactive proofs for muggles

[BFLS91] Babai, Fortnow, Levin, and Szegedy. Checking computations in
polylogarithmic time.

[BC23] Bünz, and Chen. ProtoStar: Generic Efficient Accumulation/
Folding for Special Sound Protocols

