Algebraic
Reductions of
Knowledge

Abhiram Kothapalli [Carnegie Mellon University],
Bryan Parno [Carnegie Mellon University]

akothapalli@cmu.edu
1a.cr/2022/009

Arguments of Knowledge | GMR85 |

An argument of knowledge allows a prover to interactively show to a verifier
that it knows witness w such that (u, w) € R.

true/false

A Shift in Perspective

'BDFG21], [RZ21], [ACR21’
'KST22], [BBBPWM18], [BC23"
'BCLMS21], [KS23], [CBBZ22-
'BCHO22], [Set20], [Bayl3:
'BZ12], [BGH19], [CNRZZ22-
'BCS21], [BMMTV21], [AC20°
LFKN92], [GKR15], [Lee2l-
'Vale8], [Rz22], [BCCGP16"

+

A I Y 2 Y I Y Y 2 Y B]

Emerging paradigm: The verifier does not fully
resolve the prover’s statement, but rather
reduces it to a simpler statement to be checked.

Recursive Inner-Product Argument

“The basic step in our inner product argument is a 2-move reduction to a
smaller statement.”

- Bootle, Cerulli, Chaidos, Groth, and Petit,
Eurocrypt 2016

Recursive Inner-Product Argument

G

Length n 1nner-product

“The basic step in our inner product argument is a 2-move reduction to a
smaller statement.”

- Bootle, Cerulli, Chaidos, Groth, and Petit,
Eurocrypt 2016

Recursive Inner-Product Argument

G
- Inner-Product Step | (5’
g g [BCCGP16] — E
N e
A= |A —_— A= |A
Length n 1nner-product Length n/2 inner-product

“The basic step in our inner product argument is a 2-move reduction to a
smaller statement.”

- Bootle, Cerulli, Chaidos, Groth, and Petit,
Eurocrypt 2016

Polynomial Aggregation

“If the prover has a witness for (P, x, y), then it must have witnesses for
(P9 xl? yl)? IR (Pa xna yn)'”

- Boneh, Drake, Fisch, and Gabizon,
Crypto 2021

Polynomial Aggregation

7 7 2

EZM N :yn

“If the prover has a witness for (P, x, y), then it must have witnesses for
(Pa xla yl)a R (Pa xna yn)'”

- Boneh, Drake, Fisch, and Gabizon,
Crypto 2021

Polynomial Aggregation

9 ? 9
=)V =N = Vn Polynomial
5 ’ Aggregation

P Scheme

[BGH19, BDFG21]
———————————————————

“If the prover has a witness for (P, x, y), then it must have witnesses for
(Pa xla yl)? R (Pa xna yn)°”

- Boneh, Drake, Fisch, and Gabizon,
Crypto 2021

Folding Schemes

“Intuitively, a folding scheme ... reduces the task of checking two instances
in R to the task of checking a single instance in R.”

Joint work with Setty and Tzialla,
Crypto 2022

Folding Schemes

“Intuitively, a folding scheme ... reduces the task of checking two instances
in R to the task of checking a single instance in R.”

Joint work with Setty and Tzialla,
Crypto 2022

Folding Schemes

Folding
Scheme
| KST22 |

“Intuitively, a folding scheme ... reduces the task of checking two instances
in R to the task of checking a single instance in R.”

Joint work with Setty and Tzialla,
Crypto 2022

Algebraic Arguments for NP

“We reduce R1CS constraint systems to three algebraic relations”

- Rafols and Zapico,
Crypto 2021

Algebraic Arguments for NP

|12

R1CS

“We reduce R1CS constraint systems to three algebraic relations”

- Rafols and Zapico,
Crypto 2021

Algebraic Arguments for NP

|12

— R1CS
Reduction
- [RZ21]

—_—

R1CS

“We reduce R1CS constraint systems to three algebraic relations”

ITnner-

?

[]

Product

Hadamard-

|-

Product

Checkable
Subspace
Sampling

- Rafols and Zapico,

Crypto 2021

Modern Arguments are Reductions

Split-accumulation schemes reduce the task of
checking n instances and accumulators into the task
of checking single accumulator. [BCLMS21 |

Aggregation schemes for polynomial commitments
reduce the task of checking several openings to the

task of checking a single opening. [BDFG21 |

The ZeroCheck protocol reduces the task of
checking that a polynomial vanishes on a set to a

Sumcheck. [BTVW14, Set20, CBBZ22]

The tensor-product protocol reduces the task of
checking an inner-product with a structured vector
to the task of checking several univariate

polynomial evaluations. [BCHO22 |

The Hadamard-product protocol reduces the task
of checking a Hadamard product to the task of

checking an inner-product. [Bay13]

Inner-product arguments reduce the the task of
checking the inner-product of size n vectors to

checking the inner-product of size n/2 vectors.
[BCCGP16, BBBPWM18, BMMTV21l, Lee21]

Checkable subspace sampling reduces the task of
checking matrix evaluations to the task of checking

vector evaluations. [RZ21 |

Incrementally verifiable computation reduces the
task of checking a succinct proof of n applications of
function /' and a succinct proof of m subsequent
applications of F' to the task of checking a succinct
proof of n + m applications of F. [Val08]

The zero-knowledge HPI argument reduces the

task of checking a pre-image of a homomorphism y
to the task of checking a pre-image ofiasrandomized

homomorphism y".[BDFG21 |

Problem: Need a Unifying Theory

e : .:.\,{{
Y\
| =

Interactive reductions -
are universal; their
definitions are not

making it difficult to compose
compatible techniques hidden
under incompatible abstractions.

Problem: Need a Unifying Theory

B ZL)
Solution
Interactive reductions " We formalize reductions
are universal; their of knowledge as a
definitions are not common language
making it difficult to compose which serve as both a
compatible techniques hidden and a

under incompatible abstractions. S compositional framework.

9

Reductions of Knowledge: A Unifying Language

A reduction of knowledge interactively reduces the claim («,, w,) € R{ to a
claim (u,, w,) € Ry

?

10

Reductions of Knowledge: A Unifying Language

A reduction of knowledge interactively reduces the claim («,, w,) € R{ to a
claim (u,, w,) € Ry)
Wi Uy = Rl

Completeness

If the prover is
provided satisfying w,
then it must output a
satisfying w,

10

Reductions of Knowledge: A Unifying Language

A reduction of knowledge interactively reduces the claim («,, w,) € R{ to a

claim (u,, w,) € Ry

Knowledge Soundness

If prover outputs
satistying w, then it
must almost certainly
know a satistying w,

Wi

10

?
u, € IRy

Completeness

If the prover is
provided satisfying w,
then it must output a
satisfying w,

Knowledge Soundness

st Uy

Consider P* s.t. for (1, st)

Pr(P*, V)(uy, st) € Ry| =

[

Knowledge Soundness

st Uy

Consider P* s.t. for (u,, st) Extractor £

Pr(P*, V)(uy, st) € Ry| =

Then there exists an extractor £ s.t.

Pr(u,, E(u,, st)) € Ry] ~

[

Reconciling Reductions with Arguments

An argument of knowledge is a reduction of knowledge from R to
R+ = {(“true”, “triv”)}.)
W u ER

cctrivv cctruen e RT

12

First Example: Inner-Product Reduction | BCCGP16 |

Define the Inner-Product Relation as

Rip(17) = {((G,K), A) c ((@ ,G),F) (G,A) =K}

13

First Example: Inner-Product Reduction | BCCGP16 |

Define the Inner-Product Relation as

Characterized
by length

R = {(m, 1) e (6.8,5)|(6.4) }

13

First Example: Inner-Product Reduction | BCCGP16 |

Define the Inner-Product Relation as

Characterized
by length

RIP(.:S — ((G,K), A) c ((@ . G),F) (G,A)=A

Statement

13

First Example: Inner-Product Reduction | BCCGP16 |

Define the Inner-Product Relation as

Characterized
by length Witness

RIP(.:S = ((G,K), A) c ((@ ,G),F) (G, Ay =A

Statement

13

First Example: Inner-Product Reduction | BCCGP16 |

Define the Inner-Product Relation as

Characterized
by length Witness

Statement Satisfying
Condition

13

First Example: Inner-Product Reduction | BCCGP16 |

There exists a reduction of knowledge from Ryp(72) to Ryp(n2/2).

A (G,A) é R;p(n)

14

First Example: Inner-Product Reduction | BCCGP16 |

There exists a reduction of knowledge from Ryp(72) to Ryp(n2/2).

A (G,A) é R;p(n)

A« G(A) fori,j € (1,2}

14

First Example: Inner-Product Reduction | BCCGP16 |

There exists a reduction of knowledge from Ryp(72) to Ryp(n2/2).

A (G,A) é R;p(n)

A« G(A) fori,j € (1,2}

14

First Example: Inner-Product Reduction | BCCGP16 |

There exists a reduction of knowledge from Ryp(72) to Ryp(n2/2).

A (G,A) é R;p(n)

A« G(A) fori,j € (1,2}

14

First Example: Inner-Product Reduction | BCCGP16 |

There exists a reduction of knowledge from Ryp(72) to Ryp(n2/2).

A (G,A) é R;p(n)

A« G(A) fori,j € (1,2}

14

First Example: Inner-Product Reduction | BCCGP16 |

There exists a reduction of knowledge from Ryp(72) to Ryp(n2/2).

A (G,A) é R;p(n)

A« G(A) fori,j € (1,2}

14

First Example: Inner-Product Reduction | BCCGP16 |

There exists a reduction of knowledge from Ryp(72) to Ryp(n2/2).

A (G,A) é R;p(n)

A« G(A) fori,j € (1,2}

A/(_Al_l‘ ‘A2

14

First Example: Inner-Product Reduction | BCCGP16 |

There exists a reduction of knowledge from Ryp(72) to Ryp(n2/2).

A (G,A) é R;p(n)

A« G(A) fori,j € (1,2}

A/(_Al_l‘ ‘A2

14

First Example: Inner-Product Reduction | BCCGP16 |

There exists a reduction of knowledge from Ryp(72) to Ryp(n2/2).

A (G,A) é R;p(n)

A« G(A) fori,j € (1,2}

A/(_Al_l‘ ‘A2

— ?
A’ (G, A) € Rp(nl2)

14

Problem: Simple Construction, Complex Proof

— ?
st (G, Ay)) € Ryp(n)

(Gna Xn) é RIP(I)

15

Problem: Simple Construction, Complex Proof

— ?
st (G, Ay)) € Ryp(n)

An/ 2

E, rewinds last step to (G A) é R;o(1)
interpolate forA,_, 77 : S .

15

Problem: Simple Construction, Complex Proof

— ?
st (G, Ay)) € Ryp(n)

IDn/2
_ ?
Aun Ann (Gos Ayp) € Ryp(2)
E, rewinds last step to (G A) é R;o(1)
...... : n°“in IP

interpolate for A,

15

Problem: Simple Construction, Complex Proof

— ?
st (G, Ay)) € Ryp(n)

E, || En -

An/ 2 An/ 2

E rewinds last step to — ?
Ao : S 5 (G,,A,) € Rp(l)

interpolate for A,

15

Solution: Sequential Composition Theorem

We prove that reductions are sequentially composable.

16

Solution: Sequential Composition Theorem

We prove that reductions are sequentially composable.

16

Solution: Sequential Composition Theorem

We prove that reductions are sequentially composable.

16

Solution: Sequential Composition Theorem

We prove that reductions are sequentially composable.

16

Solution: Sequential Composition Theorem

We prove that reductions are sequentially composable.

Inner-Product Argument with a Simple Proof

Simpler soundness proof: Invoke sequential composition.

17

Inner-Product Argument with a Simple Proof

Simpler soundness proof: Invoke sequential composition.

11

step

RIP(n) — RIP(n/z)

17

Inner-Product Argument with a Simple Proof

Simpler soundness proof: Invoke sequential composition.

I1 I1

step step

RIP(n) — RIP(n/z) RIP(n/z) — RIP(n/4)

17

Inner-Product Argument with a Simple Proof

Simpler soundness proof: Invoke sequential composition.

Base case: the
prover sends the

witness A € [

11

step 1_Istep 1—[base

Ripiy = Ripiu) Rip(uay = Ripuay Rippy = Ry

17

Inner-Product Argument with a Simple Proof

Simpler soundness proof: Invoke sequential composition.

HVC X RIP(n) —> RT Base case: the
prover sends the
witness A € [

RIP(n) — RIP(n/z) RIP(n/z) — RIP(n/4) RIP(I) — Ry

17

Our Generalization: Tensor Reduction of Knowledge

This generalizes techniques
in [BCCGP16], [BBBPWM18],
'BCS21], [BMMTV21],
"'AC207, and [ACR21]

Theorem. There exists a reduction of knowledge that
reduces the task of checking knowledge of w such that

u(w) =v for u € hom(W", V)to the task of checking
knowledge of w’'such that u'(w’) = v'for u” € hom(W, V).

18

Second Example: Folding Schemes
An /-folding scheme is a reduction of knowledge from R = R X -+ X R to R.

)
Wiy eeey Wy Upy oees Uy c R

19

Problem: Simple Construction, Complex Proof | R722 |

Consider a
2-folding
scheme

I, :R*—> R

20

Problem: Simple Construction, Complex Proof | R722 |

Consider a
2-folding
scheme

I, :R*—> R

20

Problem: Simple Construction, Complex Proof | R722 |

Consider a |
2-folding | TI,
scheme

I, :R*—> R

=

1

=

1

=

i

20

Problem: Simple Construction, Complex Proof | R722 |

Consider a
2-folding
scheme

I, :R*—> R

| T, \
‘ \ HZ

| T,

|1,

‘ \ 1_12
|11, | |

Problem: Simple Construction, Complex Proof | R722 |

Consider a
2-folding
scheme

I, :R*—> R

20

Problem: Slmple Constructlon, Complex Proof R722 |

Solution: Parallel Composition Theorem

We prove that reductions can be composed in parallel.

22

Solution: Parallel Composition Theorem

We prove that reductions can be composed in parallel.

22

Solution: Parallel Composition Theorem

We prove that reductions can be composed in parallel.

22

Solution: Parallel Composition Theorem

We prove that reductions can be composed in parallel.

22

Solution: Parallel Composition Theorem

We prove that reductions can be composed in parallel.

22

Solution: Parallel Composition Theorem

We prove that reductions can be composed in parallel.

(u, w) € Ry
(i3, W3) € Ry

{ (uy, uz), (W, w3)

22

Solution: Parallel Composition Theorem

We prove that reductions can be composed in parallel.

{(9”4)9(9W4)

ooooooooooooooo

()) S RZ
(1, Wy) E R,

ooooooooooooooo

(u, w) € Ry
(i3, W3) € Ry

{ (uy, uz), (W, w3)

22

Tree Folding Scheme with a Simple Proof

Giveﬂ . R2 —> R, then Hf — O (Hf/z X Hf/z) . Rf —> R.

23

Tree Folding Scheme with a Simple Proof

Giveﬂ . R2 —> R, then Hf — O (Hf/2 X Hf/z) . Rf —> R.

23

Tree Folding Scheme with a Simple Proof

Giveﬂ . R2 —> R, then Hf — O (Hf/2 X Hf/z) . Rf —> R.

23

Tree Folding Scheme with a Simple Proof

Giveﬂ . R2 —> R, then Hf — O (Hf/z X Hf/z) . Rf —> R.

23

Tree Folding Scheme with a Simple Proof

Giveﬂ . R2 —> R, then Hf — O (Hf/z X Hf/z) . Rf —> R.

23

Taming the Complexity of Modern Arguments

’
4
4
4
- .
L 4 ~
4 ~ ‘—--~~ L4
A X4 . 4 ~ 4
4 X4
)) 4 A S -
4 4
‘ 4 ‘. s
. ’ N .
'Y ' 4 o s 'S 4
' ¢ ~ o -’ IS .’
¢ - - .--_-’
' ’
y ’
1 ’
] ’
1 ,
1]
1 []
1 I
1 1
] 1
1 1
1 | |
1 \ Y
1 A)
1 “
1 .
' . -
) A 3 - -~~
. - ~
A -~ - ~
~ - ~
A) ~ - «
1} ~ nm=" N
‘ L R s A g
N A3
. .
. 3
. A}
A3 A}
$~ [}
§~ 1
~ \)
-
~a I
§~ 'Y
5~ 1
- 1
Q‘ 1
. 1
[N 1
. 1
A} 1
s 1
. 1
\‘ 1
N 1
. 1
'Y 1
‘+]
3 1
A 1
MR o= =4 [
§~ ’¢ -~ 1
N e A 1
~ - A\
~ L d]
~ . 1
~ - 1
D IS - 1
s - 1
i N e 1
1]
1 1
N [|
s I
’
. -
N - ‘_—- --..~ ¢
2N e” s e’ ~s 4
N.. ‘,I §~ ‘f - "
S Eram== Srmmm=” -

24

-
" Ermmm=="

~
-

-
-
- mm ==
--

Taming the Complexity of Modern Arguments

encode

t [BFLS91]
- [BTVW14]

commit

[WTSTW1S8 |
| Lee21]

sumcheck

Multilinear PCS
[WTSTW18, Lee21]

zerocheck
[BTVW14]

sumcheck
[LFKN92]

1
1
1
1

)

A 3

A Y

) ------ C

24

=

Reductions of knowledge serve as both a

unifying abstraction and a compositional framework.

1a.¢cr/2022/009 25 X akothapalli@cmu.edu

References

|BCLMS21] Bunz, Chiesa, Lin, Mishra, Spooner. Proof Carrying Data
without Succinct Arguments.

BDFG21] Boneh, Drake, Fisch, Gabizon. Halo Infinite: Recursive
zkSNARKs from any Additive Polynomial Commitment Scheme.

|BCCGP16] Bootle, Cerulli, Chaidos, Groth, Petit. Efficient Zero-
Knowledge Arguments for Arithmetic Circuits 1in the Discrete Log
Setting.

[RZ21] Rafols and Zapico. An Algebraic Framework for Universal and

Updatable SNARKs.

|KST22] Kothapalli, Setty, Tzialla.
Arguments from Folding Schemes.

Nova: Recursive Zero-Knowledge

|CNRzz22] Campanelli, Nitulescu, Rafols, Zacharakis, Zapico.
vector commitments and their practical applications.

[LFKNS92] Lund, Fortnow, Karloff,
interactive proof systems.

|BBBPWM18] Bunz, Bootle, Boneh, Poelstra, Wuille, and Maxwell.
Bulletproofs: Short Proofs for Confidential Transactions and More.

[BMMTV21] BuUnz, Maller, Mishra,
pairing products and applications.

(WTSTW18] Wahby, Tzialla, Shelat, Thaler, and Walfish. Doubly-efficient
zkSNARKs without trusted setup.

[BTVW14] Blumberg, Thaler, Vu,
using multiple provers.

|GMR85] Goldwasser, Micali,
interactive proof systems.

Linear—-map

Nisan. Algebraic methods for

and Vesely. Proofs for 1inner

Tyagi,

and Walfish. Verifiable computation

and Rackoff. The knowledge complexity of

Lee21] Lee. Dory: Efficient, Transparent arguments for Generalised
Inner Products and Polynomial Commitments.
'Bz12] Bayer, and Groth. Efficient zero-knowledge argument for

correctness of a shuffle.

26

|CBBZ22] Chen, Bunz, Boneh, Zhang. Plonk with Linear-Time

Prover and High-Degree Custom Gates.

HyperPlonk:

[Set20] Setty.
trusted setup.

[BCHO22] Gemini:
Environments.

Spartan: Efficient and general-purpose zkSNARKs without

Bootle, Chiesa, Hu, Orru. Elastic SNARKs for Diverse

Bayl1l3] Bayer. Practical Zero-Knowledge Protocols Based on the Discrete
Logarithm Assumption.

BCS21] Bootle, Chiesa, and Sotiraki. Sumcheck Arguments and their
Applications.

[RZ22] Rafols, and Zacharakis. Folding Schemes with Selective
Verification.

KS23] Kothapalli, and Setty. HyperNova: Recursive arguments for
customizable constraint systems.

[Valo8] Valiant. Incrementally Verifiable Computation or Proofs of

Knowledge Imply Time/Space Efficiency.

BGH19] Bowe, Grigg, Hopwood. Recursive proof composition without a
trusted setup.
|AC20] Attema and Cramer. Compressed-protocol theory and practical

application to plug & play secure algorithmics.

|ACR21] Attema, Cramer, and Rambaud.
bilinear group arithmetic circuits
transparent threshold signatures.

Compressed Sigma protocols for
and application to logarithmic

|GKR15] Goldwasser, Tauman Kalai, and Rothblum. Delegating computation:
interactive proofs for muggles

[BFLS91] Babai, Fortnow, Levin, and Szegedy. Checking computations 1in
polylogarithmic time.
'BC23] Bunz, and Chen. ProtoStar: Generic Efficient Accumulation/

Folding for Special Sound Protocols

