Algebraic Reductions of Knowledge

Abhiram Kothapalli [Carnegie Mellon University], Bryan Parno [Carnegie Mellon University]
akothapalli@cmu.edu
ia.cr/2022/009

Arguments of Knowledge [GMR85]

An argument of knowledge allows a prover to interactively show to a verifier that it knows witness w such that $(u, w) \in R$.

A Shift in Perspective

```
[BDFG21], [RZ21], [ACR21],
[KST22], [BBBPWM18], [BC23],
[BCLMS21], [KS23], [CBBZ22],
[BCHO22], [Set20], [Bay13],
[BZ12], [BGH19], [CNRZZ22],
[BCS21], [BMMTV21], [AC20],
[LFKN92], [GKR15], [Lee21],
[Val08], [RZ22], [BCCGP16],
```

Emerging paradigm: The verifier does not fully resolve the prover's statement, but rather reduces it to a simpler statement to be checked.

Recursive Inner-Product Argument

"The basic step in our inner product argument is a 2-move reduction to a smaller statement."

- Bootle, Cerulli, Chaidos, Groth, and Petit,

Eurocrypt 2016

Recursive Inner-Product Argument

Length n inner-product
"The basic step in our inner product argument is a 2 -move reduction to a smaller statement."

- Bootle, Cerulli, Chaidos, Groth, and Petit,

Eurocrypt 2016

Recursive Inner-Product Argument

"The basic step in our inner product argument is a 2-move reduction to a smaller statement."

- Bootle, Cerulli, Chaidos, Groth, and Petit,

Eurocrypt 2016

Polynomial Aggregation

"If the prover has a witness for (\bar{P}, x, y), then it must have witnesses for $\left(\bar{P}, x_{1}, y_{1}\right), \ldots,\left(\bar{P}, x_{n}, y_{n}\right)$."

- Boneh, Drake, Fisch, and Gabizon,

Crypto 2021

Polynomial Aggregation

"If the prover has a witness for (\bar{P}, x, y), then it must have witnesses for $\left(\bar{P}, x_{1}, y_{1}\right), \ldots,\left(\bar{P}, x_{n}, y_{n}\right)$."

\author{

- Boneh, Drake, Fisch, and Gabizon,
}

Crypto 2021

Polynomial Aggregation

Polynomial
Aggregation
Scheme
[BGH19, BDFG21]
"If the prover has a witness for (\bar{P}, x, y), then it must have witnesses for $\left(\bar{P}, x_{1}, y_{1}\right), \ldots,\left(\bar{P}, x_{n}, y_{n}\right)$."

\author{

- Boneh, Drake, Fisch, and Gabizon,
}

Folding Schemes

"Intuitively, a folding scheme ... reduces the task of checking two instances in R to the task of checking a single instance in R."

Joint work with Setty and Tzialla,
Crypto 2022

Folding Schemes

"Intuitively, a folding scheme ... reduces the task of checking two instances in R to the task of checking a single instance in R."

Joint work with Setty and Tzialla,

Folding Schemes

"Intuitively, a folding scheme ... reduces the task of checking two instances in R to the task of checking a single instance in R."

Joint work with Setty and Tzialla,
Crypto 2022

Algebraic Arguments for NP

"We reduce R1CS constraint systems to three algebraic relations"

- Ràfols and Zapico,

Crypto 2021

Algebraic Arguments for NP

R1CS
"We reduce R1CS constraint systems to three algebraic relations"

- Ràfols and Zapico,

Crypto 2021

Algebraic Arguments for NP

"We reduce R1CS constraint systems to three algebraic relations"

- Ràfols and Zapico,

Crypto 2021

Modern Arguments are Reductions

Split-accumulation schemes reduce the task of checking n instances and accumulators into the task of checking single accumulator. [BCLMS21]
Aggregation schemes for polynomial commitments reduce the task of checking several openings to the task of checking a single opening. [BDFG21]
The ZeroCheck protocol reduces the task of checking that a polynomial vanishes on a set to a Sumcheck. [BTVW14, Set20, CBBZ22]
The tensor-product protocol reduces the task of checking an inner-product with a structured vector to the task of checking several univariate polynomial evaluations. [BCHO22]
The Hadamard-product protocol reduces the task of checking a Hadamard product to the task of checking an inner-product. [Bay13]

Inner-product arguments reduce the the task of checking the inner-product of size n vectors to checking the inner-product of size $n / 2$ vectors. [BCCGP16, BBBPWM18, BMMTV21, Lee21]
Checkable subspace sampling reduces the task of checking matrix evaluations to the task of checking vector evaluations. [RZ21]
Incrementally verifiable computation reduces the task of checking a succinct proof of n applications of function F and a succinct proof of m subsequent applications of F to the task of checking a succinct proof of $n+m$ applications of F. [Val08]
The zero-knowledge HPI argument reduces the task of checking a pre-image of a homomorphism y to the task of checking a pre-image of a randomized homomorphism y^{\prime}.[BDFG21]

Problem: Need a Unifying Theory

Problem: Need a Unifying Theory

Interactive reductions are universal; their definitions are not
making it difficult to compose compatible techniques hidden under incompatible abstractions.

Solution

We formalize reductions of knowledge as a common language
which serve as both a
unifying abstraction and a compositional framework.

Reductions of Knowledge: A Unifying Language

A reduction of knowledge interactively reduces the claim $\left(u_{1}, w_{1}\right) \in R_{1}$ to a $\operatorname{claim}\left(u_{2}, w_{2}\right) \in R_{2}$

Reductions of Knowledge: A Unifying Language

A reduction of knowledge interactively reduces the claim $\left(u_{1}, w_{1}\right) \in R_{1}$ to a $\operatorname{claim}\left(u_{2}, w_{2}\right) \in R_{2}$

Completeness
If the prover is provided satisfying w_{1} then it must output a satisfying w_{2}

Reductions of Knowledge: A Unifying Language

A reduction of knowledge interactively reduces the claim $\left(u_{1}, w_{1}\right) \in R_{1}$ to a $\operatorname{claim}\left(u_{2}, w_{2}\right) \in R_{2}$

Knowledge Soundness
If prover outputs satisfying w_{2} then it must almost certainly know a satisfying w_{1}

Completeness

If the prover is provided satisfying w_{1} then it must output a satisfying w_{2}

Knowledge Soundness

Consider P^{*} s.t. for $\left(u_{1}\right.$, st $)$

$$
\operatorname{Pr}\left[\left\langle P^{*}, V\right\rangle\left(u_{1}, \mathrm{st}\right) \in R_{2}\right]=\varepsilon
$$

Knowledge Soundness

Consider P^{*} s.t. for $\left(u_{1}\right.$, st $)$

$$
\operatorname{Pr}\left[\left\langle P^{*}, V\right\rangle\left(u_{1}, s t\right) \in R_{2}\right]=\varepsilon
$$

Then there exists an extractor E s.t.

$$
\operatorname{Pr}\left[\left(u_{1}, E\left(u_{1}, s t\right)\right) \in R_{1}\right] \approx \varepsilon
$$

Reconciling Reductions with Arguments

An argument of knowledge is a reduction of knowledge from R to $R_{\mathrm{T}}=\{$ ("true", "triv") $\}$.

First Example: Inner-Product Reduction [BCCGP16]

Define the Inner-Product Relation as

$$
R_{\mathrm{IP}}(n)=\left\{((G, \bar{A}), A) \in\left(\left(\mathbb{G}^{n}, \mathbb{G}\right), \mathbb{F}^{n}\right) \mid\langle G, A\rangle=\bar{A}\right\}
$$

First Example: Inner-Product Reduction [BCCGP16]

Define the Inner-Product Relation as
Characterized
by length n

$$
R_{\mathrm{IP}}(n)=\left\{((G, \bar{A}), A) \in\left(\left(\mathbb{G}^{n}, \mathbb{G}\right), \mathbb{F}^{n}\right) \mid\langle G, A\rangle=\bar{A}\right\}
$$

First Example: Inner-Product Reduction [BCCGP16]

Define the Inner-Product Relation as

Characterized
 by length n

$$
R_{\mathrm{IP}}(n)=\left\{\underset{\substack{\vdots \\ \vdots \\ \text { Statement }}}{\left.(G, \bar{A}), A) \in\left(\left(\mathbb{G}^{n}, \mathbb{G}\right), \mathbb{F}^{n}\right) \mid\langle G, A\rangle=\bar{A}\right\}}\right.
$$

First Example: Inner-Product Reduction [BCCGP16]

Define the Inner-Product Relation as
Characterized
by length n
Witness
$R_{\mathrm{IP}}(n)=\left\{\left.\left(\left(\begin{array}{c}\vdots \\ \vdots \\ \cdots \cdots \cdots \\ \vdots\end{array}\right), \bar{A}\right) \in\left(\left(\mathbb{G}^{n}, \mathbb{G}\right), \mathbb{F}^{n}\right) \right\rvert\,\langle G, A\rangle=\bar{A}\right\}$
Statement

First Example: Inner-Product Reduction [BCCGP16]

Define the Inner-Product Relation as
Characterized
by length n
Witness
$\left.\left.R_{\mathrm{IP}}(n)=\left\{\begin{array}{c}\vdots \\ \vdots \\ (G, \bar{A}), A \\ \cdots \ldots \ldots\end{array}\right) \in\left(\left(\mathbb{G}^{n}, \mathbb{G}\right), \mathbb{F}^{n}\right) \right\rvert\, \begin{array}{c}\langle G, A\rangle=\bar{A} \\ \vdots \\ \text { Statement }\end{array}\right\}$

First Example: Inner-Product Reduction [BCCGP16]

There exists a reduction of knowledge from $R_{\mathrm{IP}}(n)$ to $R_{\mathrm{IP}}(n / 2)$.

First Example: Inner-Product Reduction [BCCGP16]

There exists a reduction of knowledge from $R_{\mathrm{IP}}(n)$ to $R_{\mathrm{IP}}(n / 2)$.

First Example: Inner-Product Reduction [BCCGP16]

There exists a reduction of knowledge from $R_{\mathrm{IP}}(n)$ to $R_{\mathrm{IP}}(n / 2)$.

First Example: Inner-Product Reduction [BCCGP16]

There exists a reduction of knowledge from $R_{\mathrm{IP}}(n)$ to $R_{\mathrm{IP}}(n / 2)$.

First Example: Inner-Product Reduction [BCCGP16]

There exists a reduction of knowledge from $R_{\mathrm{IP}}(n)$ to $R_{\mathrm{IP}}(n / 2)$.

First Example: Inner-Product Reduction [BCCGP16]

There exists a reduction of knowledge from $R_{\mathrm{IP}}(n)$ to $R_{\mathrm{IP}}(n / 2)$.

First Example: Inner-Product Reduction [BCCGP16]

There exists a reduction of knowledge from $R_{\mathrm{IP}}(n)$ to $R_{\mathrm{IP}}(n / 2)$.

First Example: Inner-Product Reduction [BCCGP16]

There exists a reduction of knowledge from $R_{\mathrm{IP}}(n)$ to $R_{\mathrm{IP}}(n / 2)$.

First Example: Inner-Product Reduction [BCCGP16]

There exists a reduction of knowledge from $R_{\mathrm{IP}}(n)$ to $R_{\mathrm{IP}}(n / 2)$.

Problem: Simple Construction, Complex Proof

Problem: Simple Construction, Complex Proof

Problem: Simple Construction, Complex Proof

Problem: Simple Construction, Complex Proof

Solution: Sequential Composition Theorem

We prove that reductions are sequentially composable.

Solution: Sequential Composition Theorem

We prove that reductions are sequentially composable.

Solution: Sequential Composition Theorem

We prove that reductions are sequentially composable.

Solution: Sequential Composition Theorem

We prove that reductions are sequentially composable.

Solution: Sequential Composition Theorem

We prove that reductions are sequentially composable.

Inner-Product Argument with a Simple Proof

Simpler soundness proof: Invoke sequential composition.

Inner-Product Argument with a Simple Proof

Simpler soundness proof: Invoke sequential composition.

Inner-Product Argument with a Simple Proof

Simpler soundness proof: Invoke sequential composition.

Inner-Product Argument with a Simple Proof

Simpler soundness proof: Invoke sequential composition.

Inner-Product Argument with a Simple Proof

Simpler soundness proof: Invoke sequential composition.

Our Generalization: Tensor Reduction of Knowledge

> This generalizes techniques
> in [BCCGP16], [BBBPWM18], [BCS21], [BMMV21], [AC20], and [ACR21]

Theorem. There exists a reduction of knowledge that reduces the task of checking knowledge of w such that $u(w)=v$ for $u \in \operatorname{hom}\left(W^{n}, V\right)$ to the task of checking knowledge of w^{\prime} such that $u^{\prime}\left(w^{\prime}\right)=v^{\prime}$ for $u^{\prime} \in \operatorname{hom}(W, V)$.

$$
u(\widehat{w}) \stackrel{?}{=} v \longrightarrow \|(w) \stackrel{?}{=} v^{\prime}
$$

Second Example: Folding Schemes

An ℓ-folding scheme is a reduction of knowledge from $R^{\ell}=R \times \cdots \times R$ to R.

Problem: Simple Construction, Complex Proof [RZ22]

Consider a
2-folding
scheme
$\Pi_{2}: R^{2} \rightarrow R$

Problem: Simple Construction, Complex Proof [RZ22]

Consider a 2-folding scheme
$\Pi_{2}: R^{2} \rightarrow R$

Problem: Simple Construction, Complex Proof [RZ22]

Consider a 2-folding scheme
$\Pi_{2}: R^{2} \rightarrow R$

Problem: Simple Construction, Complex Proof [RZ22]

Consider a 2-folding scheme
$\Pi_{2}: R^{2} \rightarrow R$

Problem: Simple Construction, Complex Proof [RZ22]

Consider a 2-folding scheme
$\Pi_{2}: R^{2} \rightarrow R$

Problem: Simple Construction, Complex Proof [RZ22]

Solution: Parallel Composition Theorem

We prove that reductions can be composed in parallel.

Solution: Parallel Composition Theorem

We prove that reductions can be composed in parallel.

Solution: Parallel Composition Theorem

We prove that reductions can be composed in parallel.

Solution: Parallel Composition Theorem

We prove that reductions can be composed in parallel.

Solution: Parallel Composition Theorem

We prove that reductions can be composed in parallel.

$$
\Pi_{1} \times \Pi_{2}: R_{1} \times R_{3} \rightarrow R_{2} \times R_{4}
$$

Solution: Parallel Composition Theorem

We prove that reductions can be composed in parallel.

$$
\begin{gathered}
\Pi_{1} \times \Pi_{2}: R_{1} \times R_{3} \rightarrow R_{2} \times R_{4} \\
\vdots \\
\left\{\begin{array}{l|l}
\left(u_{1}, u_{3}\right),\left(w_{1}, w_{3}\right) & \begin{array}{l}
\left(u_{1}, w_{1}\right) \in R_{1} \\
\left(u_{3}, w_{3}\right) \in R_{3}
\end{array}
\end{array}\right\}
\end{gathered}
$$

Solution: Parallel Composition Theorem

We prove that reductions can be composed in parallel.

Tree Folding Scheme with a Simple Proof

Given $\Pi_{2}: R^{2} \rightarrow R$, then $\Pi_{\ell}=\Pi_{2} \circ\left(\Pi_{\ell / 2} \times \Pi_{\ell / 2}\right): R^{\ell} \rightarrow R$.

Tree Folding Scheme with a Simple Proof

Given $\Pi_{2}: R^{2} \rightarrow R$, then $\Pi_{\ell}=\Pi_{2} \circ\left(\Pi_{\ell / 2} \times \Pi_{\ell / 2}\right): R^{\ell} \rightarrow R$.

Tree Folding Scheme with a Simple Proof

Given $\Pi_{2}: R^{2} \rightarrow R$, then $\Pi_{\ell}=\Pi_{2} \circ\left(\Pi_{\ell / 2} \times \Pi_{\ell / 2}\right): R^{\ell} \rightarrow R$.

Tree Folding Scheme with a Simple Proof

Given $\Pi_{2}: R^{2} \rightarrow R$, then $\Pi_{\ell}=\Pi_{2} \circ\left(\Pi_{\ell / 2} \times \Pi_{\ell / 2}\right): R^{\ell} \rightarrow R$.

Tree Folding Scheme with a Simple Proof

Given $\Pi_{2}: R^{2} \rightarrow R$, then $\Pi_{\ell}=\Pi_{2} \circ\left(\Pi_{\ell / 2} \times \Pi_{\ell / 2}\right): R^{\ell} \rightarrow R$.

Taming the Complexity of Modern Arguments

Taming the Complexity of Modern Arguments

Reductions of knowledge serve as both a unifying abstraction and a compositional framework.

References

[BCLMS21] Bünz, Chiesa, Lin, Mishra, Spooner. Proof Carrying Data without Succinct Arguments.
[BDFG21] Boneh, Drake, Fisch, Gabizon. Halo Infinite: Recursive zkSNARKs from any Additive Polynomial Commitment Scheme.
[BCCGP16] Bootle, Cerulli, Chaidos, Groth, Petit. Efficient ZeroKnowledge Arguments for Arithmetic Circuits in the Discrete Log Setting.
[RZ21] Ràfols and Zapico. An Algebraic Framework for Universal and Updatable SNARKs.
[KST22] Kothapalli, Setty, Tzialla. Nova: Recursive Zero-Knowledge Arguments from Folding Schemes.
[CNRZZ22] Campanelli, Nitulescu, Rafols, Zacharakis, Zapico. Linear-map vector commitments and their practical applications.
[LFKN92] Lund, Fortnow, Karloff, Nisan. Algebraic methods for interactive proof systems.
[BBBPWM18] Bünz, Bootle, Boneh, Poelstra, Wuille, and Maxwell. Bulletproofs: Short Proofs for Confidential Transactions and More.
[BMMTV21] Bünz, Maller, Mishra, Tyagi, and Vesely. Proofs for inner pairing products and applications.
[WTSTW18] Wahby, Tzialla, Shelat, Thaler, and Walfish. Doubly-efficient zkSNARKs without trusted setup.
[BTVW14] Blumberg, Thaler, Vu, and Walfish. Verifiable computation using multiple provers.
[GMR85] Goldwasser, Micali, and Rackoff. The knowledge complexity of interactive proof systems.
[Lee21] Lee. Dory: Efficient, Transparent arguments for Generalised Inner Products and Polynomial Commitments.
[BZ12] Bayer, and Groth. Efficient zero-knowledge argument for correctness of a shuffle.
[CBBZ22] Chen, Bünz, Boneh, Zhang. HyperPlonk: Plonk with Linear-Time Prover and High-Degree Custom Gates.
[Set20] Setty. Spartan: Efficient and general-purpose zkSNARKs without trusted setup.
[BCHO22] Gemini: Bootle, Chiesa, Hu, Orrù. Elastic SNARKs for Diverse Environments.
[Bay13] Bayer. Practical Zero-Knowledge Protocols Based on the Discrete Logarithm Assumption.
[BCS21] Bootle, Chiesa, and Sotiraki. Sumcheck Arguments and their Applications.
[RZ22] Ràfols, and Zacharakis. Folding Schemes with Selective Verification.
[KS23] Kothapalli, and Setty. HyperNova: Recursive arguments for customizable constraint systems.
[Val08] Valiant. Incrementally Verifiable Computation or Proofs of Knowledge Imply Time/Space Efficiency.
[BGH19] Bowe, Grigg, Hopwood. Recursive proof composition without a trusted setup.
[AC20] Attema and Cramer. Compressed-protocol theory and practical application to plug \& play secure algorithmics.
[ACR21] Attema, Cramer, and Rambaud. Compressed Sigma protocols for bilinear group arithmetic circuits and application to logarithmic transparent threshold signatures.
[GKR15] Goldwasser, Tauman Kalai, and Rothblum. Delegating computation: interactive proofs for muggles
[BFLS91] Babai, Fortnow, Levin, and Szegedy. Checking computations in polylogarithmic time.
[BC23] Bünz, and Chen. ProtoStar: Generic Efficient Accumulation/ Folding for Special Sound Protocols

