
Lattice-Based Timed
Cryptography

Giulio Malavolta  
(Max Planck Institute —> Bocconi University)

Joint work with Russell Lai

Timed Cryptography

0 T

Solution!

Timed Cryptography

0 T

Solution!

• Time-Lock Puzzles

Timed Cryptography

0 T

Solution!

• Time-Lock Puzzles

• Proofs of Sequential Work

Timed Cryptography

0 T

Solution!

• Time-Lock Puzzles

• Proofs of Sequential Work

• Verifiable Delay Functions

Applications

Seal-Bid Auctions E-Voting Randomness 
Generation

Contract 
Signing

More Applications

Hardness vs Fine-Grained Hardness

Hardness vs Fine-Grained Hardness

One-Way Problems

𝖯 ≠ 𝖭𝖯

{poly-size

Hardness vs Fine-Grained Hardness

One-Way Problems

𝖯 ≠ 𝖭𝖯

{poly-size

Sequential Problems

𝖭𝖢 ≠ 𝖯

{T-depth

Landscape of Sequential Problems

Real-World Theory-World

St
ru

ct
ur

ed
U

ns
tru

ct
ur

ed

Landscape of Sequential Problems

Real-World Theory-World

St
ru

ct
ur

ed
U

ns
tru

ct
ur

ed

Repeated Squaring 
 

fN(x) = x2 𝗆𝗈𝖽 N

Landscape of Sequential Problems

Real-World Theory-World

St
ru

ct
ur

ed
U

ns
tru

ct
ur

ed

Repeated Squaring 
 

fN(x) = x2 𝗆𝗈𝖽 N

Random Oracles 
 

fℋ(x) = ℋ(x)

Landscape of Sequential Problems

Real-World Theory-World

St
ru

ct
ur

ed
U

ns
tru

ct
ur

ed

Repeated Squaring 
 

fN(x) = x2 𝗆𝗈𝖽 N

Random Oracles 
 

fℋ(x) = ℋ(x)

Isogeny Shortcut 
 

fΦ(x) = Φ(x)

Landscape of Sequential Problems

Real-World Theory-World

St
ru

ct
ur

ed
U

ns
tru

ct
ur

ed

Repeated Squaring 
 

fN(x) = x2 𝗆𝗈𝖽 N

Random Oracles 
 

fℋ(x) = ℋ(x)

Isogeny Shortcut 
 

fΦ(x) = Φ(x)

Universal Functions 
 

Obfuscation, FHE

Enter Quantum Computing

Real-World Theory-World

St
ru

ct
ur

ed
U

ns
tru

ct
ur

ed

Repeated Squaring 
 

fN(x) = x2 𝗆𝗈𝖽 N

Random Oracles 
 

fℋ(x) = ℋ(x)

Isogeny Shortcut 
 

fΦ(x) = Φ(x)

Universal Functions 
 

Obfuscation, FHE

Enter Quantum Computing

Real-World Theory-World

St
ru

ct
ur

ed
U

ns
tru

ct
ur

ed

Repeated Squaring 
 

fN(x) = x2 𝗆𝗈𝖽 N

Random Oracles 
 

fℋ(x) = ℋ(x)

Isogeny Shortcut 
 

fΦ(x) = Φ(x)

Universal Functions 
 

Obfuscation, FHE

Enter Quantum Computing

Real-World Theory-World

St
ru

ct
ur

ed
U

ns
tru

ct
ur

ed Random Oracles 
 

fℋ(x) = ℋ(x)

Isogeny Shortcut 
 

fΦ(x) = Φ(x)

Universal Functions 
 

Obfuscation, FHE

Enter Quantum Computing

Real-World Theory-World

St
ru

ct
ur

ed
U

ns
tru

ct
ur

ed Random Oracles 
 

fℋ(x) = ℋ(x)

Isogeny Shortcut 
 

fΦ(x) = Φ(x)

Universal Functions 
 

Obfuscation, FHE

Can we construct efficient post-quantum
timed cryptography?

Our Results

Our Results
• A new candidate “lattice-based” sequential function

Our Results
• A new candidate “lattice-based” sequential function

• Evidence of sequentiality

Our Results
• A new candidate “lattice-based” sequential function

• Evidence of sequentiality

• Cryptanalysis

Our Results
• A new candidate “lattice-based” sequential function

• Evidence of sequentiality

• Cryptanalysis

• Application: Simple proof of sequential work

Our Results
• A new candidate “lattice-based” sequential function

• Evidence of sequentiality

• Cryptanalysis

• Application: Simple proof of sequential work

• Protocol & soundness analysis

Our Results
• A new candidate “lattice-based” sequential function

• Evidence of sequentiality

• Cryptanalysis

• Application: Simple proof of sequential work

• Protocol & soundness analysis

• Open problems

A New Sequential Function

A New Sequential Function
• Input: a matrix and a vector A ∈ ℤn×m

q x ∈ ℤn
q

m ≈ n ⋅ log q

A New Sequential Function
• Input: a matrix and a vector A ∈ ℤn×m

q x ∈ ℤn
q

• Compute:

m ≈ n ⋅ log q

A New Sequential Function
• Input: a matrix and a vector A ∈ ℤn×m

q x ∈ ℤn
q

• Compute:

• The binary decomposition u = G−1(x)

m ≈ n ⋅ log q

A New Sequential Function
• Input: a matrix and a vector A ∈ ℤn×m

q x ∈ ℤn
q

• Compute:

• The binary decomposition u = G−1(x)

• Return A ⋅ u 𝗆𝗈𝖽 q

m ≈ n ⋅ log q

A New Sequential Function
• Input: a matrix and a vector A ∈ ℤn×m

q x ∈ ℤn
q

• Compute:

• The binary decomposition u = G−1(x)

• Return A ⋅ u 𝗆𝗈𝖽 q

• Feed the output of the function as an input T times

m ≈ n ⋅ log q

A New Sequential Function
• Input: a matrix and a vector A ∈ ℤn×m

q x ∈ ℤn
q

• Compute:

• The binary decomposition u = G−1(x)

• Return A ⋅ u 𝗆𝗈𝖽 q

• Feed the output of the function as an input T times

m ≈ n ⋅ log q

fA(x) = y = A ⋅ G−1(x)

A New Sequential Function
• Input: a matrix and a vector A ∈ ℤn×m

q x ∈ ℤn
q

• Compute:

• The binary decomposition u = G−1(x)

• Return A ⋅ u 𝗆𝗈𝖽 q

• Feed the output of the function as an input T times

m ≈ n ⋅ log q

fA(x) = y = A ⋅ G−1(x)
u ∈ {0,1}m[G

A] ⋅ u = [x
y]⟺

The Sequentiality Assumption

The Sequentiality Assumption
• For uniform and , the T-fold recursive application of is sequentialA x fA

The Sequentiality Assumption
• For uniform and , the T-fold recursive application of is sequentialA x fA

• In other words, it takes parallel time T to find such that u

The Sequentiality Assumption
• For uniform and , the T-fold recursive application of is sequentialA x fA

• In other words, it takes parallel time T to find such that u

u ∈ {0,1}m

−G
A −G

A
⋱

−G
A

⋅ u =

−x
0
⋮
0
y

The Strong Sequentiality Assumption
• For uniform and , the T-fold recursive application of is sequential

• In other words, it takes parallel time T to find such that

A x fA

u

u ≈ small

−G
A −G

A
⋱

−G
A

⋅ u =

−x
0
⋮
0
y

Evidence of Sequentiality

Evidence of Sequentiality
• The function is collision-resistantfA

Evidence of Sequentiality
• The function is collision-resistantfA

• Simple reduction to the SIS problem w.r.t.  A

Evidence of Sequentiality
• The function is collision-resistantfA

• Simple reduction to the SIS problem w.r.t.  A

• The function is uniformity-preserving (assuming LWE)fA

Evidence of Sequentiality
• The function is collision-resistantfA

• Simple reduction to the SIS problem w.r.t.  A

• The function is uniformity-preserving (assuming LWE)fA

• {y : y ← ℤn
q} ≈ {A(x) : x ← ℤn

q}

Evidence of Sequentiality
• The function is collision-resistantfA

• Simple reduction to the SIS problem w.r.t.  A

• The function is uniformity-preserving (assuming LWE)fA

• {y : y ← ℤn
q} ≈ {A(x) : x ← ℤn

q}

• Consequently, so is it’s T-fold repetition 

Evidence of Sequentiality
• The function is collision-resistantfA

• Simple reduction to the SIS problem w.r.t.  A

• The function is uniformity-preserving (assuming LWE)fA

• {y : y ← ℤn
q} ≈ {A(x) : x ← ℤn

q}

• Consequently, so is it’s T-fold repetition 

• More heuristic evidence & cryptanalysis (see paper)

Proofs of Sequential Work

P V
…

A, x
y

{0,1}

Proofs of Sequential Work

P V
…

A, x
y

{0,1}

• Succinctness: V’s work is ~logT

Proofs of Sequential Work

P V
…

A, x
y

{0,1}

• Succinctness: V’s work is ~logT

• Soundness: No prover of depth << T can pass the verification

Self-Symmetry

Self-Symmetry

AT =

−G
A −G

A
⋱

−G
A

Self-Symmetry

AT =

−G
A −G

A
⋱

−G
A

=

At

−G
A

At

T = 2t + 1

The Protocol (Step 1)

The Protocol (Step 1)
• P sends the intermediate value to Vut

The Protocol (Step 1)
• P sends the intermediate value to Vut

• V checks that is smallut

The Protocol (Step 1)
• P sends the intermediate value to Vut

• V checks that is smallut

• The new relation is:

The Protocol (Step 1)
• P sends the intermediate value to Vut

• V checks that is smallut

• The new relation is:

At ⋅
u0 ut+1
⋮ ⋮

ut−1 uT−1

=

−x0 −A ⋅ ut

0 0
⋮ ⋮
0 0

−G ⋅ ut xT

The Protocol (Step 2)

The Protocol (Step 2)
• V sends a small to Pr

The Protocol (Step 2)
• V sends a small to Pr

• The new relation is:

The Protocol (Step 2)
• V sends a small to Pr

• The new relation is:

At ⋅
u0 + ut+1 ⋅ r

⋮
ut−1 + uT−1 ⋅ r

=

−x0 − A ⋅ ut ⋅ r
0
⋮
0

−G ⋅ ut + xT ⋅ r

The Protocol (Step 2)
• V sends a small to Pr

• The new relation is:

At ⋅
u0 + ut+1 ⋅ r

⋮
ut−1 + uT−1 ⋅ r

=

−x0 − A ⋅ ut ⋅ r
0
⋮
0

−G ⋅ ut + xT ⋅ r
• Dimension halved, recurse!

The Protocol (Step 2)
• V sends a small to Pr

• The new relation is:

At ⋅
u0 + ut+1 ⋅ r

⋮
ut−1 + uT−1 ⋅ r

=

−x0 − A ⋅ ut ⋅ r
0
⋮
0

−G ⋅ ut + xT ⋅ r
• Dimension halved, recurse!

• Verifier’s runtime ~log(T)

Soundness

Soundness
• (2, …, 2)-special soundness: Given a binary tree of accepting transcripts, one

can recover a valid witness

r(1)
0 r(1)

1

r(2)
0 r(2)

1 r(3)
0 r(3)

1

… …

Soundness
• (2, …, 2)-special soundness: Given a binary tree of accepting transcripts, one

can recover a valid witness

• Can be shown if we sample the challenges 
from the appropriate domain (subtractive sets) r(1)

0 r(1)
1

r(2)
0 r(2)

1 r(3)
0 r(3)

1

… …

Soundness
• (2, …, 2)-special soundness: Given a binary tree of accepting transcripts, one

can recover a valid witness

• Can be shown if we sample the challenges 
from the appropriate domain (subtractive sets)

• [AF’22] There exists a depth-preserving extractor 
for the parallel-repeated protocol

r(1)
0 r(1)

1

r(2)
0 r(2)

1 r(3)
0 r(3)

1

… …

Soundness
• (2, …, 2)-special soundness: Given a binary tree of accepting transcripts, one

can recover a valid witness

• Can be shown if we sample the challenges 
from the appropriate domain (subtractive sets)

• [AF’22] There exists a depth-preserving extractor 
for the parallel-repeated protocol

• Can extract a valid transcript in time o(T)

r(1)
0 r(1)

1

r(2)
0 r(2)

1 r(3)
0 r(3)

1

… …

Soundness
• (2, …, 2)-special soundness: Given a binary tree of accepting transcripts, one

can recover a valid witness

• Can be shown if we sample the challenges 
from the appropriate domain (subtractive sets)

• [AF’22] There exists a depth-preserving extractor 
for the parallel-repeated protocol

• Can extract a valid transcript in time o(T)

• Contradiction!

r(1)
0 r(1)

1

r(2)
0 r(2)

1 r(3)
0 r(3)

1

… …

Open Problems

Open Problems

• Efficient “lattice-based” VDF?

Open Problems

• Efficient “lattice-based” VDF?

• Candidate construction: Valerio’s talk! 

Open Problems

• Efficient “lattice-based” VDF?

• Candidate construction: Valerio’s talk! 

• More evidence of sequentiality? 

Open Problems

• Efficient “lattice-based” VDF?

• Candidate construction: Valerio’s talk! 

• More evidence of sequentiality? 

• More applications? 

Open Problems

• Efficient “lattice-based” VDF?

• Candidate construction: Valerio’s talk! 

• More evidence of sequentiality? 

• More applications? 

• Post-quantum security?

Open Problems

• Efficient “lattice-based” VDF?

• Candidate construction: Valerio’s talk! 

• More evidence of sequentiality? 

• More applications? 

• Post-quantum security?

Thank you!

