Lattice-Based Timed Cryptography

Giulio Malavolta

(Max Planck Institute -> Bocconi University)

Joint work with Russell Lai

Timed Cryptography

Solution!

Timed Cryptography

- Time-Lock Puzzles

Solution!

Timed Cryptography

- Time-Lock Puzzles
- Proofs of Sequential Work

Solution!

Timed Cryptography

- Time-Lock Puzzles
- Proofs of Sequential Work
- Verifiable Delay Functions

Solution!

Applications

Seal-Bid Auctions

E-Voting

Randomness
Generation

Contract
Signing

More Applications

chia

ethereum

Hardness vs Fine-Grained Hardness

Hardness vs Fine-Grained Hardness

One-Way Problems

Hardness vs Fine-Grained Hardness

One-Way Problems

Sequential Problems

$P \neq N P$
$N C \neq P$

Landscape of Sequential Problems

Landscape of Sequential Problems

Landscape of Sequential Problems

Landscape of Sequential Problems

Repeated Squaring
$f_{N}(x)=x^{2} \bmod N$

Isogeny Shortcut

$$
f_{\Phi}(x)=\Phi(x)
$$

Random Oracles

$$
f_{\mathscr{H}}(x)=\mathscr{H}(x)
$$

Landscape of Sequential Problems

Repeated Squaring
$f_{N}(x)=x^{2} \bmod N$

Universal Functions
Obfuscation, FHE

Random Oracles

$$
f_{\mathscr{H}}(x)=\mathscr{H}(x)
$$

Enter Quantum Computing

Enter Quantum Computing

Enter Quantum Computing

Random Oracles

$f_{\mathscr{F}}(x)=\mathscr{H}(x)$

Real-World

$$
f_{\Phi}(x)=\Phi(x)
$$

Universal Functions
Obfuscation, FHE

Enter Quantum Computing

Universal Functions
Obfuscation, FHE

Real-World
Theory-World

Can we construct efficient post-quantum timed cryptography?

Our Results

Our Results

- A new candidate "lattice-based" sequential function

Our Results

- A new candidate "lattice-based" sequential function
- Evidence of sequentiality

Our Results

- A new candidate "lattice-based" sequential function
- Evidence of sequentiality
- Cryptanalysis

Our Results

- A new candidate "lattice-based" sequential function
- Evidence of sequentiality
- Cryptanalysis
- Application: Simple proof of sequential work

Our Results

- A new candidate "lattice-based" sequential function
- Evidence of sequentiality
- Cryptanalysis
- Application: Simple proof of sequential work
- Protocol \& soundness analysis

Our Results

- A new candidate "lattice-based" sequential function
- Evidence of sequentiality
- Cryptanalysis
- Application: Simple proof of sequential work
- Protocol \& soundness analysis
- Open problems

A New Sequential Function

A New Sequential Function

- Input: a matrix $\mathbf{A} \in \mathbb{Z}_{q}^{n \times m}$ and a vector $\mathbf{x} \in \mathbb{Z}_{q}^{n}$

$$
m \approx n \cdot \log q
$$

A New Sequential Function

- Input: a matrix $\mathbf{A} \in \mathbb{Z}_{q}^{n \times m}$ and a vector $\mathbf{x} \in \mathbb{Z}_{q}^{n}$ $m \approx n \cdot \log q$
- Compute:

A New Sequential Function

- Input: a matrix $\mathbf{A} \in \mathbb{Z}_{q}^{n \times m}$ and a vector $\mathbf{x} \in \mathbb{Z}_{q}^{n}$
- Compute:
- The binary decomposition $\mathbf{u}=\mathbf{G}^{-1}(\mathbf{x})$

A New Sequential Function

- Input: a matrix $\mathbf{A} \in \mathbb{Z}_{q}^{n \times m}$ and a vector $\mathbf{x} \in \mathbb{Z}_{q}^{n}$
- Compute:
- The binary decomposition $\mathbf{u}=\mathbf{G}^{-1}(\mathbf{x})$
- Return $\mathbf{A} \cdot \mathbf{u} \bmod q$

A New Sequential Function

- Input: a matrix $\mathbf{A} \in \mathbb{Z}_{q}^{n \times m}$ and a vector $\mathbf{x} \in \mathbb{Z}_{q}^{n}$
- Compute:
- The binary decomposition $\mathbf{u}=\mathbf{G}^{-1}(\mathbf{x})$
- Return A $\mathbf{u} \bmod q$
- Feed the output of the function as an input T times

A New Sequential Function

$$
m \approx n \cdot \log q
$$

- Input: a matrix $\mathbf{A} \in \mathbb{Z}_{q}^{n \times m}$ and a vector $\mathbf{x} \in \mathbb{Z}_{q}^{n}$
- Compute:
- The binary decomposition $\mathbf{u}=\mathbf{G}^{-1}(\mathbf{x})$
- Return A. ul mod q
- Feed the output of the function as an input T times

$$
f_{\mathbf{A}}(\mathbf{x})=\mathbf{y}=\mathbf{A} \cdot \mathbf{G}^{-1}(\mathbf{x})
$$

A New Sequential Function

- Input: a matrix $\mathbf{A} \in \mathbb{Z}_{q}^{n \times m}$ and a vector $\mathbf{x} \in \mathbb{Z}_{q}^{n}$
- Compute:
- The binary decomposition $\mathbf{u}=\mathbf{G}^{-1}(\mathbf{x})$
- Return A. ul mod q
- Feed the output of the function as an input T times

$$
f_{\mathbf{A}}(\mathbf{x})=\mathbf{y}=\mathbf{A} \cdot \mathbf{G}^{-1}(\mathbf{x}) \Longleftrightarrow\left[\begin{array}{l}
\mathbf{G} \\
\mathbf{A}
\end{array}\right] \cdot \mathbf{u}=\left[\begin{array}{l}
\mathbf{x} \\
\mathbf{y}
\end{array}\right] \quad \mathbf{u} \in\{0,1\}^{m}
$$

The Sequentiality Assumption

The Sequentiality Assumption

- For uniform \mathbf{A} and \mathbf{x}, the T-fold recursive application of $f_{\mathbf{A}}$ is sequential

The Sequentiality Assumption

- For uniform \mathbf{A} and \mathbf{x}, the T-fold recursive application of $f_{\mathbf{A}}$ is sequential
- In other words, it takes parallel time T to find \mathbf{u} such that

The Sequentiality Assumption

- For uniform \mathbf{A} and \mathbf{x}, the T-fold recursive application of $f_{\mathbf{A}}$ is sequential
- In other words, it takes parallel time T to find \mathbf{u} such that

The Strong Sequentiality Assumption

- For uniform \mathbf{A} and \mathbf{x}, the T-fold recursive application of $f_{\mathbf{A}}$ is sequential
- In other words, it takes parallel time T to find \mathbf{u} such that

$$
\left[\begin{array}{cccc}
-\mathbf{G} & & & \\
\mathbf{A} & -\mathbf{G} & & \\
& \mathbf{A} & & \\
& & \ddots & \\
& & & -\mathbf{G} \\
& & & \mathbf{A}
\end{array}\right] \cdot \mathbf{u}=\left[\begin{array}{c}
-\mathbf{x} \\
0 \\
\vdots \\
0 \\
\mathbf{y}
\end{array}\right] \mathbf{u} \approx \text { small }
$$

Evidence of Sequentiality

Evidence of Sequentiality

- The function $f_{\mathbf{A}}$ is collision-resistant

Evidence of Sequentiality

- The function $f_{\mathbf{A}}$ is collision-resistant
- Simple reduction to the SIS problem w.r.t. A

Evidence of Sequentiality

- The function $f_{\mathbf{A}}$ is collision-resistant
- Simple reduction to the SIS problem w.r.t. A
- The function $f_{\mathbf{A}}$ is uniformity-preserving (assuming LWE)

Evidence of Sequentiality

- The function $f_{\mathbf{A}}$ is collision-resistant
- Simple reduction to the SIS problem w.r.t. A
- The function $f_{\mathbf{A}}$ is uniformity-preserving (assuming LWE)
- $\left\{\mathbf{y}: \mathbf{y} \leftarrow \mathbb{Z}_{q}^{n}\right\} \approx\left\{\mathbf{A}(\mathbf{x}): \mathbf{x} \leftarrow \mathbb{Z}_{q}^{n}\right\}$

Evidence of Sequentiality

- The function $f_{\mathbf{A}}$ is collision-resistant
- Simple reduction to the SIS problem w.r.t. A
- The function $f_{\mathbf{A}}$ is uniformity-preserving (assuming LWE)
- $\left\{\mathbf{y}: \mathbf{y} \leftarrow \mathbb{Z}_{q}^{n}\right\} \approx\left\{\mathbf{A}(\mathbf{x}): \mathbf{x} \leftarrow \mathbb{Z}_{q}^{n}\right\}$
- Consequently, so is it's T-fold repetition

Evidence of Sequentiality

- The function $f_{\mathbf{A}}$ is collision-resistant
- Simple reduction to the SIS problem w.r.t. A
- The function $f_{\mathbf{A}}$ is uniformity-preserving (assuming LWE)
- $\left\{\mathbf{y}: \mathbf{y} \leftarrow \mathbb{Z}_{q}^{n}\right\} \approx\left\{\mathbf{A}(\mathbf{x}): \mathbf{x} \leftarrow \mathbb{Z}_{q}^{n}\right\}$
- Consequently, so is it's T-fold repetition
- More heuristic evidence \& cryptanalysis (see paper)

Proofs of Sequential Work

Proofs of Sequential Work

- Succinctness: V's work is ~logT

Proofs of Sequential Work

- Succinctness: V's work is ~logT
- Soundness: No prover of depth \ll T can pass the verification

Self-Symmetry

Self-Symmetry

$$
\mathbf{A}_{T}=\left[\begin{array}{cccc}
-\mathbf{G} & & & \\
\mathbf{A} & -\mathbf{G} & & \\
& \mathbf{A} & \ddots & \\
& & & -\mathbf{G} \\
& & & \mathbf{A}
\end{array}\right]
$$

Self-Symmetry

$$
T=2 t+1
$$

The Protocol (Step 1)

The Protocol (Step 1)

- P sends the intermediate value \mathbf{u}_{t} to V

The Protocol (Step 1)

- P sends the intermediate value \mathbf{u}_{t} to V
- V checks that \mathbf{u}_{t} is small

The Protocol (Step 1)

- P sends the intermediate value \mathbf{u}_{t} to V
- V checks that \mathbf{u}_{t} is small
- The new relation is:

The Protocol (Step 1)

- P sends the intermediate value \mathbf{u}_{t} to V
- V checks that \mathbf{u}_{t} is small
- The new relation is:

$$
\mathbf{A}_{t} \cdot\left[\begin{array}{cc}
\mathbf{u}_{0} & \mathbf{u}_{t+1} \\
\vdots & \vdots \\
\mathbf{u}_{t-1} & \mathbf{u}_{T-1}
\end{array}\right]=\left[\begin{array}{cc}
-\mathbf{x}_{0} & -\mathbf{A} \cdot \mathbf{u}_{t} \\
0 & 0 \\
\vdots & \vdots \\
0 & 0 \\
-\mathbf{G} \cdot \mathbf{u}_{t} & \mathbf{x}_{T}
\end{array}\right]
$$

The Protocol (Step 2)

The Protocol (Step 2)

- V sends a small r to P

The Protocol (Step 2)

- V sends a small r to P
- The new relation is:

The Protocol (Step 2)

- V sends a small r to P
- The new relation is:

$$
\mathbf{A}_{t} \cdot\left[\begin{array}{c}
\mathbf{u}_{0}+\mathbf{u}_{t+1} \cdot r \\
\vdots \\
\mathbf{u}_{t-1}+\mathbf{u}_{T-1} \cdot r
\end{array}\right]=\left[\begin{array}{c}
-\mathbf{x}_{0}-\mathbf{A} \cdot \mathbf{u}_{t} \cdot r \\
0 \\
\vdots \\
0 \\
-\mathbf{G} \cdot \mathbf{u}_{t}+\mathbf{x}_{T} \cdot r
\end{array}\right]
$$

The Protocol (Step 2)

- V sends a small r to P
- The new relation is:

$$
\mathbf{A}_{t} \cdot\left[\begin{array}{c}
\mathbf{u}_{0}+\mathbf{u}_{t+1} \cdot r \\
\vdots \\
\mathbf{u}_{t-1}+\mathbf{u}_{T-1} \cdot r
\end{array}\right]=\left[\begin{array}{c}
-\mathbf{x}_{0}-\mathbf{A} \cdot \mathbf{u}_{t} \cdot r \\
0 \\
\vdots \\
0 \\
-\mathbf{G} \cdot \mathbf{u}_{t}+\mathbf{x}_{T} \cdot r
\end{array}\right]
$$

- Dimension halved, recurse!

The Protocol (Step 2)

- V sends a small r to P
- The new relation is:

$$
\mathbf{A}_{t} \cdot\left[\begin{array}{c}
\mathbf{u}_{0}+\mathbf{u}_{t+1} \cdot r \\
\vdots \\
\mathbf{u}_{t-1}+\mathbf{u}_{T-1} \cdot r
\end{array}\right]=\left[\begin{array}{c}
-\mathbf{x}_{0}-\mathbf{A} \cdot \mathbf{u}_{t} \cdot r \\
0 \\
\vdots \\
0 \\
-\mathbf{G} \cdot \mathbf{u}_{t}+\mathbf{x}_{T} \cdot r
\end{array}\right]
$$

- Dimension halved, recurse!
- Verifier's runtime $\sim \log (T)$

Soundness

Soundness

- (2, ..., 2)-special soundness: Given a binary tree of accepting transcripts, one can recover a valid witness

Soundness

- (2, ..., 2)-special soundness: Given a binary tree of accepting transcripts, one can recover a valid witness
- Can be shown if we sample the challenges from the appropriate domain (subtractive sets)

Soundness

- (2, ..., 2)-special soundness: Given a binary tree of accepting transcripts, one can recover a valid witness
- Can be shown if we sample the challenges from the appropriate domain (subtractive sets)
- [AF'22] There exists a depth-preserving extractor for the parallel-repeated protocol

Soundness

- (2, ..., 2)-special soundness: Given a binary tree of accepting transcripts, one can recover a valid witness
- Can be shown if we sample the challenges from the appropriate domain (subtractive sets)
- [AF'22] There exists a depth-preserving extractor for the parallel-repeated protocol
- Can extract a valid transcript in time o(T)

Soundness

- (2, .., 2)-special soundness: Given a binary tree of accepting transcripts, one can recover a valid witness
- Can be shown if we sample the challenges from the appropriate domain (subtractive sets)
- [AF'22] There exists a depth-preserving extractor for the parallel-repeated protocol
- Can extract a valid transcript in time o(T)
- Contradiction!

Open Problems

Open Problems

- Efficient "lattice-based" VDF?

Open Problems

- Efficient "lattice-based" VDF?
- Candidate construction: Valerio's talk!

Open Problems

- Efficient "lattice-based" VDF?
- Candidate construction: Valerio's talk!
- More evidence of sequentiality?

Open Problems

- Efficient "lattice-based" VDF?
- Candidate construction: Valerio's talk!
- More evidence of sequentiality?
- More applications?

Open Problems

- Efficient "lattice-based" VDF?
- Candidate construction: Valerio's talk!
- More evidence of sequentiality?
- More applications?
- Post-quantum security?

Open Problems

- Efficient "lattice-based" VDF?
- Candidate construction: Valerio's talk!
- More evidence of sequentiality?
- More applications?
- Post-quantum security?

Thank you!

