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Can we construct efficient post-quantum

timed cryptography?
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n

+ Input: a matrix A € Z7*" and a vector X € Z

 Compute:
* [he binary decomposition u = G_I(X)
e Return A - u mod ¢

* Feed the output of the function as an input T times

m=n-loggqg
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The Strong Sequentiality Assumption

e |n other words, it takes parallel time T to find u such that
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» The function f, is collision-resistant

» Simple reduction to the SIS problem w.r.t. A

» The function f, is uniformity-preserving (assuming LWE)
e Yy < Z} #{AX) 1 X « Z]

 Consequently, so is it’s T-fold repetition

* More heuristic evidence & cryptanalysis (see paper)
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Proofs of Sequential Work

A, X

e Succinctness: V’s work is ~logT

 Soundness: No prover of depth << T can pass the verification
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« P sends the intermediate value u, to V

 V checks that u, is small
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The Protocol (Step 2)

e Vsendsasmall rto P
* The new relation is:
—Xg—A-u,-r
Uy T Uy - 7 0

A , .
W_; + Uy 7 0
—G'llt-l-XT'r'

e Dimension halved, recurse!

* Verifier’s runtime ~log(T)
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Soundness

¢ (2, ..., 2)-special soundness: Given a binary tree of accepting transcripts, one
can recover a valid witness

e Can be shown if we sample the challenges

from the appropriate domain (subtractive sets) (1) (1)
0 1

o [AF’22] There exists a depth-preserving extractor
for the parallel-repeated protocol

» Can extract a valid transcript in time o(T) @ NE) (3) (3)
0 1 0 1
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 Contradiction!
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* More evidence of sequentiality?
 More applications?

* Post-quantum security?

Thank you!



