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Applications

Seal-Bid Auctions E-Voting Randomness 
Generation

Contract 
Signing
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Sequential Problems

𝖭𝖢 ≠ 𝖯

{T-depth
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Can we construct efficient post-quantum 
timed cryptography?
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Our Results
• A new candidate “lattice-based” sequential function

• Evidence of sequentiality

• Cryptanalysis

• Application: Simple proof of sequential work

• Protocol & soundness analysis

• Open problems
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A New Sequential Function
• Input: a matrix  and a vector A ∈ ℤn×m

q x ∈ ℤn
q

• Compute:

• The binary decomposition u = G−1(x)

• Return A ⋅ u 𝗆𝗈𝖽 q

• Feed the output of the function as an input T times

m ≈ n ⋅ log q

fA(x) = y = A ⋅ G−1(x)
u ∈ {0,1}m[G

A] ⋅ u = [x
y]⟺
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The Strong Sequentiality Assumption
• For uniform  and , the T-fold recursive application of  is sequential


• In other words, it takes parallel time T to find  such that 

A x fA

u

u ≈ small
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Evidence of Sequentiality
• The function  is collision-resistantfA

• Simple reduction to the SIS problem w.r.t.  A

• The function  is uniformity-preserving (assuming LWE)fA

• {y : y ← ℤn
q} ≈ {A(x) : x ← ℤn

q}

• Consequently, so is it’s T-fold repetition 

• More heuristic evidence & cryptanalysis (see paper)
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Proofs of Sequential Work

P V
…

A, x
y

{0,1}

• Succinctness: V’s work is ~logT

• Soundness: No prover of depth << T can pass the verification
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T = 2t + 1
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The Protocol (Step 1)
• P sends the intermediate value  to Vut

• V checks that  is smallut

• The new relation is:

At ⋅
u0 ut+1
⋮ ⋮

ut−1 uT−1

=

−x0 −A ⋅ ut

0 0
⋮ ⋮
0 0

−G ⋅ ut xT
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The Protocol (Step 2)
• V sends a small  to Pr

• The new relation is:

At ⋅
u0 + ut+1 ⋅ r

⋮
ut−1 + uT−1 ⋅ r

=

−x0 − A ⋅ ut ⋅ r
0
⋮
0

−G ⋅ ut + xT ⋅ r
• Dimension halved, recurse!

• Verifier’s runtime ~log(T)
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Soundness
• (2, …, 2)-special soundness: Given a binary tree of accepting transcripts, one 

can recover a valid witness

• Can be shown if we sample the challenges 
from the appropriate domain (subtractive sets)

• [AF’22] There exists a depth-preserving extractor 
for the parallel-repeated protocol

• Can extract a valid transcript in time o(T)

• Contradiction!

r(1)
0 r(1)
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r(2)
0 r(2)

1 r(3)
0 r(3)

1
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Open Problems

• Efficient “lattice-based” VDF?

• Candidate construction: Valerio’s talk! 

• More evidence of sequentiality? 

• More applications? 

• Post-quantum security?

Thank you!


