Lattice-Based Timed Cryptography

<u>Giulio Malavolta</u> (Max Planck Institute —> Bocconi University)

Joint work with Russell Lai

0

--- Solution!

 \bigcirc

Time-Lock Puzzles

Solution!

 \bigcirc

- Time-Lock Puzzles
- Proofs of Sequential Work

Solution!

 \bigcirc

- Time-Lock Puzzles
- Proofs of Sequential Work
- Verifiable Delay Functions

Solution!

Applications

Seal-Bid Auctions

E-Voting

Randomness Generation

Contract Signing

More Applications

enic

ethereum

Hardness vs Fine-Grained Hardness

Hardness vs Fine-Grained Hardness

One-Way Problems

 $P \neq NP$

Hardness vs Fine-Grained Hardness

One-Way Problems

 $P \neq NP$

Sequential Problems

 $NC \neq P$

Unstructured

Structured

Real-World

Structured

Unstructured

Repeated Squaring

 $f_N(x) = x^2 \mod N$

Real-World

Real-World

Isogeny Shortcut

 $f_{\Phi}(x) = \Phi(x)$

Real-World

Isogeny Shortcut

$$(x) = \Phi(x)$$

Universal Functions

Obfuscation, FHE

Enter Quantum Computing

Real-World

Isogeny Shortcut

$$f(x) = \Phi(x)$$

Universal Functions

Obfuscation, FHE

Enter Quantum Computing

Real-World

Isogeny Shortcut

$$f(x) = \Phi(x)$$

Universal Functions

Obfuscation, FHE

Ente	er Quantum (Com
uctured		
Str		Isoge
		$f_{\Phi}($
ured	Random Oracles	
nstruct	$f_{\mathcal{H}}(x) = \mathcal{H}(x)$	
	Real-World	

puting

eny Shortcut

$$f(x) = \Phi(x)$$

Universal Functions

Obfuscation, FHE

En	te	r Quantum	Com
Structured			
Unstructured		Random Oracles $f_{\mathcal{H}}(x) = \mathcal{H}(x)$	Isoge $f_{\Phi}(x)$
		Real-World	

puting

Universal Functions

Obfuscation, FHE

Can we construct efficient post-quantum timed cryptography?

A new candidate "lattice-based" sequential function

- A new candidate "lattice-based" sequential function
 - Evidence of sequentiality

- A new candidate "lattice-based" sequential function
 - Evidence of sequentiality
 - Cryptanalysis

- A new candidate "lattice-based" sequential function
 - Evidence of sequentiality
 - Cryptanalysis
- Application: Simple proof of sequential work

- A new candidate "lattice-based" sequential function
 - Evidence of sequentiality
 - Cryptanalysis
- Application: Simple proof of sequential work
 - Protocol & soundness analysis

- A new candidate "lattice-based" sequential function
 - Evidence of sequentiality
 - Cryptanalysis
- Application: Simple proof of sequential work
 - Protocol & soundness analysis
- Open problems

• Input: a matrix $\mathbf{A} \in \mathbb{Z}_q^{n \times m}$ and a vector $\mathbf{x} \in \mathbb{Z}_q^n$

- Input: a matrix $\mathbf{A} \in \mathbb{Z}_q^{n \times m}$ and a vector $\mathbf{x} \in \mathbb{Z}_q^n$
- Compute:

- Input: a matrix $\mathbf{A} \in \mathbb{Z}_q^{n \times m}$ and a vector $\mathbf{x} \in \mathbb{Z}_q^n$
- Compute:
 - The binary decomposition $\mathbf{u} = \mathbf{G}^{-1}(\mathbf{x})$

- Input: a matrix $\mathbf{A} \in \mathbb{Z}_q^{n \times m}$ and a vector $\mathbf{x} \in \mathbb{Z}_q^n$
- Compute:
 - The binary decomposition $\mathbf{u} = \mathbf{G}^{-1}(\mathbf{x})$
 - Return $\mathbf{A} \cdot \mathbf{u} \mod q$

- Input: a matrix $\mathbf{A} \in \mathbb{Z}_q^{n \times m}$ and a vector $\mathbf{x} \in \mathbb{Z}_q^n$
- Compute:
 - The binary decomposition $\mathbf{u} = \mathbf{G}^{-1}(\mathbf{x})$
 - Return $\mathbf{A} \cdot \mathbf{u} \mod q$
- Feed the output of the function as an input T times

- Input: a matrix $\mathbf{A} \in \mathbb{Z}_{q}^{n \times m}$ and a vector $\mathbf{x} \in \mathbb{Z}_{q}^{n}$
- Compute:
 - The binary decomposition $\mathbf{u} = \mathbf{G}^{-1}(\mathbf{x})$
 - Return $\mathbf{A} \cdot \mathbf{u} \mod q$
- Feed the output of the function as an input T times

$f_{\mathbf{A}}(\mathbf{x}) = \mathbf{y} = \mathbf{A} \cdot \mathbf{G}^{-1}(\mathbf{x})$

- Input: a matrix $\mathbf{A} \in \mathbb{Z}_{a}^{n \times m}$ and a vector $\mathbf{x} \in \mathbb{Z}_{a}^{n}$
- Compute:
 - The binary decomposition $\mathbf{u} = \mathbf{G}^{-1}(\mathbf{x})$
 - Return $\mathbf{A} \cdot \mathbf{u} \mod q$
- Feed the output of the function as an input T times

$f_{\mathbf{A}}(\mathbf{x}) = \mathbf{y} = \mathbf{A} \cdot \mathbf{G}^{-1}(\mathbf{x}) \iff$

 $m \approx n \cdot \log q$

$\mathbf{u} \in \{0,1\}^m$

The Sequentiality Assumption
The Sequentiality Assumption

• For uniform A and x, the T-fold recursive application of f_A is sequential

The Sequentiality Assumption

- For uniform A and x, the T-fold recursive application of f_A is sequential
- In other words, it takes parallel time T to find u such that

The Sequentiality Assumption

- For uniform A and x, the T-fold recursive application of f_A is sequential
- In other words, it takes parallel time T to find u such that

The Strong Sequentiality Assumption

- For uniform A and x, the T-fold recursive application of f_A is sequential
- In other words, it takes parallel time T to find u such that

- The function $f_{\mathbf{A}}$ is collision-resistant

- The function $f_{\mathbf{A}}$ is collision-resistant
 - Simple reduction to the SIS problem w.r.t. A

- The function $f_{\mathbf{A}}$ is collision-resistant
 - Simple reduction to the SIS problem w.r.t. A
- The function $f_{\mathbf{A}}$ is uniformity-preserving (assuming LWE)

- The function $f_{\mathbf{A}}$ is collision-resistant
 - Simple reduction to the SIS problem w.r.t. A
- The function $f_{\mathbf{A}}$ is uniformity-preserving (assuming LWE)
 - { $\mathbf{y}: \mathbf{y} \leftarrow \mathbb{Z}_q^n$ } $\approx {\mathbf{A}(\mathbf{x}): \mathbf{x} \leftarrow \mathbb{Z}_q^n}$

- The function $f_{\mathbf{A}}$ is collision-resistant
 - Simple reduction to the SIS problem w.r.t. A
- The function $f_{\mathbf{A}}$ is uniformity-preserving (assuming LWE)
 - $\{\mathbf{y}:\mathbf{y}\leftarrow\mathbb{Z}_q^n\}\approx\{\mathbf{A}(\mathbf{x}):\mathbf{x}\leftarrow\mathbb{Z}_q^n\}$
 - Consequently, so is it's T-fold repetition

- The function $f_{\mathbf{A}}$ is collision-resistant
 - Simple reduction to the SIS problem w.r.t. A
- The function $f_{\mathbf{A}}$ is uniformity-preserving (assuming LWE)
 - $\{\mathbf{y}:\mathbf{y}\leftarrow\mathbb{Z}_a^n\}\approx\{\mathbf{A}(\mathbf{x}):\mathbf{x}\leftarrow\mathbb{Z}_a^n\}$
 - Consequently, so is it's T-fold repetition
- More heuristic evidence & cryptanalysis (see paper)

Proofs of Sequential Work

Proofs of Sequential Work

Succinctness: V's work is ~logT

Proofs of Sequential Work

- Succinctness: V's work is ~logT
- Soundness: No prover of depth << T can pass the verification

Self-Symmetry

Self-Symmetry

-G A

•••

Self-Symmetry

T = 2t + 1

• P sends the intermediate value \mathbf{u}_t to V

- P sends the intermediate value \mathbf{u}_t to V
- V checks that \mathbf{u}_t is small

- P sends the intermediate value \mathbf{u}_t to V
- V checks that \mathbf{u}_t is small
- The new relation is:

- P sends the intermediate value u, to V
- V checks that \mathbf{u}_t is small
- The new relation is:

• V sends a small r to P

- V sends a small r to P
- The new relation is:

- V sends a small r to P
- The new relation is:

- V sends a small r to P
- The new relation is:

• Dimension halved, recurse!

- V sends a small r to P
- The new relation is:

- Dimension halved, recurse!
- Verifier's runtime ~log(T)

(2, ..., 2)-special soundness: Given can recover a valid witness

• (2, ..., 2)-special soundness: Given a binary tree of accepting transcripts, one

- can recover a valid witness
 - Can be shown if we sample the challenges from the appropriate domain (subtractive sets)

• (2, ..., 2)-special soundness: Given a binary tree of accepting transcripts, one

- (2, ..., 2)-special soundness: Given a binary tree of accepting transcripts, one can recover a valid witness
 - Can be shown if we sample the challenges from the appropriate domain (subtractive sets)
- [AF'22] There exists a depth-preserving extractor for the parallel-repeated protocol

- (2, ..., 2)-special soundness: Given a binary tree of accepting transcripts, one can recover a valid witness
 - Can be shown if we sample the challenges from the appropriate domain (subtractive sets)
- [AF'22] There exists a depth-preserving extractor for the parallel-repeated protocol
- Can extract a valid transcript in time o(T)

- (2, ..., 2)-special soundness: Given a binary tree of accepting transcripts, one can recover a valid witness
 - Can be shown if we sample the challenges from the appropriate domain (subtractive sets)
- [AF'22] There exists a depth-preserving extractor for the parallel-repeated protocol
- Can extract a valid transcript in time o(T)
 - Contradiction!

Open Problems

Open Problems

• Efficient "lattice-based" VDF?
- Efficient "lattice-based" VDF?
 - Candidate construction: Valerio's talk!

- Efficient "lattice-based" VDF?
 - Candidate construction: Valerio's talk!
- More evidence of sequentiality?

- Efficient "lattice-based" VDF?
 - Candidate construction: Valerio's talk!
- More evidence of sequentiality?
- More applications?

- Efficient "lattice-based" VDF?
 - Candidate construction: Valerio's talk!
- More evidence of sequentiality?
- More applications?
- Post-quantum security?

- Efficient "lattice-based" VDF?
 - Candidate construction: Valerio's talk!
- More evidence of sequentiality?
- More applications?
- Post-quantum security?

Thank you!

