Combined Fault and Leakage Resilience: Composability, Constructions and Compiler

Sebastian Berndt Thomas Eisenbarth Sebastian Faust Marc Gourjon Maximilian Orlt Okan Seker

Fault and Side-Channel Attacks

Fault and Side-Channel Attacks

Classical setting: Black-box model

 Classical setting: Black-box model
 ▶ Adversary learns Input/Output E.g. plain-text/cipher-text (M, C)

Classical setting: Black-box model

Adversary learns Input/Output E.g. plain-text/cipher-text (M, C)

Real Adversary is more powerful

Classical setting: Black-box model

Adversary learns Input/Output E.g. plain-text/cipher-text (M, C)

Real Adversary is more powerful

- Side-Channel Attack
 - E.g. Power consumption

Fault and Side-Channel Attacks

Classical setting: Black-box model

- Adversary learns Input/Output E.g. plain-text/cipher-text (M, C)
- Real Adversary is more powerful
 - Side-Channel Attack
 - E.g. Power consumption
 - Fault Attacks
 - E.g. Electromagnetic Pulses

Security Model

Combined Fault and Leakage Resilience: Composability, Constructions and Compiler

Security Model

Computational model

Security Model

Computational model

Arithmetic circuit

Computational model

Arithmetic circuit

Adversarial model

Computational model

Arithmetic circuit

Adversarial model

Leakage model d arbitrary wires can be probed

- Computational model
 - Arithmetic circuit
- Adversarial model
- Leakage model d arbitrary wires can be probed
- Fault model
 - e arbitrary wires can be faulted

- Computational model
 - Arithmetic circuit
- Adversarial model
- Leakage model d arbitrary wires can be probed
- Fault model e arbitrary wires can be faulted
- Combined model

Duplicated Encoding

Duplicated Encoding

d + 1 out of d + 1 secret sharing (Masking) d probes do not reveal the secret

Duplicated Encoding

- d + 1 out of d + 1 secret sharing (Masking) d probes do not reveal the secret
- Copy everything e + 1 times (Duplication) e faults can be detected

Duplicated Encoding

- d + 1 out of d + 1 secret sharing (Masking) d probes do not reveal the secret
- Copy everything e + 1 times (Duplication) e faults can be detected

 $\Rightarrow O(d \cdot e)$ shares

Duplicated Encoding

- d + 1 out of d + 1 secret sharing (Masking) d probes do not reveal the secret
- Copy everything e + 1 times (Duplication) e faults can be detected

Shamir Secret Sharing

```
\Rightarrow O(d \cdot e) shares
```

Duplicated Encoding

- d + 1 out of d + 1 secret sharing (Masking) d probes do not reveal the secret
- Copy everything e + 1 times (Duplication) e faults can be detected

Shamir Secret Sharing

 \blacktriangleright d + 1 out of d + e + 1 secret sharing

```
\Rightarrow O(d \cdot e) shares
```

Duplicated Encoding

- d + 1 out of d + 1 secret sharing (Masking) d probes do not reveal the secret
- Copy everything e + 1 times (Duplication) e faults can be detected

Shamir Secret Sharing

d + 1 out of d + e + 1 secret sharing d probes do not reveal the secret

```
\Rightarrow O(d \cdot e) shares
```

Duplicated Encoding

- d + 1 out of d + 1 secret sharing (Masking) d probes do not reveal the secret
- Copy everything e + 1 times (Duplication) e faults can be detected

Shamir Secret Sharing

 d + 1 out of d + e + 1 secret sharing d probes do not reveal the secret e faults can be detected

```
\Rightarrow O(d \cdot e) shares
```

Duplicated Encoding

- d + 1 out of d + 1 secret sharing (Masking) d probes do not reveal the secret
- Copy everything e + 1 times (Duplication) e faults can be detected

Shamir Secret Sharing

 d + 1 out of d + e + 1 secret sharing d probes do not reveal the secret e faults can be detected

```
\left. \right\} \Rightarrow O(d \cdot e) \text{ shares}\left. \right\} \Rightarrow O(d + e) \text{ shares}
```

Duplicated Encoding

- d + 1 out of d + 1 secret sharing (Masking) d probes do not reveal the secret
- Copy everything e + 1 times (Duplication) e faults can be detected

Shamir Secret Sharing

 d + 1 out of d + e + 1 secret sharing d probes do not reveal the secret e faults can be detected $\left. \right\} \Rightarrow O(d \cdot e) \text{ shares}$ $\left. \right\} \Rightarrow O(d + e) \text{ shares}$

 $O(d + e) \le O(d \cdot e) \Rightarrow$ This work uses Shamir Secret Sharing

Encode the inputs *a* and *b*

а₀ а1

Compiler

Encode the inputs a and b
 Only compute on encodings a₀ - a₁ - a₁ -

- Encode the inputs *a* and *b*
- Only compute on encodings
- Randomize the circuit

Compiler

Encode the inputs a and b
Only compute on encodings
Randomize the circuit

Compiler secure against d probes and e faults

Compiler secure against d probes and e faults

[SFRES18]

[DN19]

Compiler secure against d probes and e faults

 $[SFRES18] \qquad [DN19]$ n = 2d + e + 1 shares

Compiler secure against d probes and e faults

 $[SFRES18] \qquad [DN19]$ n = 2d + e + 1 shares

Compiler secure against d probes and e faults

[SFRES18] [DN19] $\blacktriangleright n = 2d + e + 1$ shares n = d + e + 1 shares

Compiler secure against d probes and e faults

[SFRES18][DN19]n = 2d + e + 1 sharesn = d + e + 1 shares

 $\triangleright > O(n^3)$ Complexity

Compiler secure against d probes and e faults

[SFRES18] $\blacktriangleright n = 2d + e + 1$ shares Improve number of shares

•
$$O(n^2)$$
 Complexity

Improve complexity

Compiler secure against d probes and e faults This Work [SFRES18] [DN19] \blacktriangleright n = 2d + e + 1 shares \blacktriangleright n = d + e + 1 shares \blacktriangleright n = d + e + 1 shares Improve number of shares \triangleright $O(n^2)$ Complexity $\blacktriangleright O(n^2)$ Complexity $\triangleright > O(n^3)$ Complexity Improve complexity

Combined Fault and Leakage Resilience: Composability, Constructions and Compiler

New Gadgets: Mult., Add. & Ref.

v Gadgets: Add. & Ref.

New Gadgets: Mult., Add. & Ref.					
Leakage Resilience:	Fault Resilience:				
d probes in the circuit $d/2$ probes in each gadget	e faults in the circuit				

Leakage- Simulator Mult.,	v Gadg Add.	ets: & Ref.
Leakage Resilience: <i>d</i> probes in the circuit <i>d</i> /2 probes in each gadget		Fault Resilience: <i>e</i> faults in the circuit

• Take *n* different α_i with $\alpha_i \neq 0$

• Take *n* different α_i with $\alpha_i \neq 0$

 $\frac{\operatorname{Enc}(s)}{r_1 \dots r_d \leftarrow \$ \mathbb{F}}$ for $j = 0, \dots, n-1$: $s_j \leftarrow \sum_{i=1}^d r_i \alpha_j^i + s$ return $[\![s]\!]_d^n := (s_0, \dots, s_{n-1})$

▶ Take *n* different α_i with $\alpha_i \neq 0$ ▶ $[[s]]_d^n = (s_i)_{i \in [n]} \leftarrow \text{Enc}(s)$ $\frac{\operatorname{Enc}(s)}{r_1 \dots r_d \leftarrow \$ \mathbb{F}}$ for $j = 0, \dots, n-1$: $s_j \leftarrow \sum_{i=1}^d r_i \alpha_j^i + s$ return $[\![s]\!]_d^n := (s_0, \dots, s_{n-1})$

► Take *n* different
$$\alpha_i$$
 with $\alpha_i \neq 0$
► $[s]_d^n = (s_i)_{i \in [n]} \leftarrow \text{Enc}(s)$
 $s_i = f(\alpha_i)$ with $f(x) = \sum_{i=1}^d r_i x^i + s$

 $\frac{\operatorname{Enc}(s)}{r_1 \dots r_d \leftarrow \$ \mathbb{F}}$ for $j = 0, \dots, n-1$: $s_j \leftarrow \sum_{i=1}^d r_i \alpha_j^i + s$ return $[\![s]\!]_d^n := (s_0, \dots, s_{n-1})$

► Take *n* different
$$\alpha_i$$
 with $\alpha_i \neq 0$
► $\llbracket s \rrbracket_d^n = (s_i)_{i \in [n]} \leftarrow \operatorname{Enc}(s)$
 $s_i = f(\alpha_i)$ with $f(x) = \sum_{i=1}^d r_i x^i + s$
► $s = f(0) \leftarrow \operatorname{Dec}(\llbracket s \rrbracket_d^n)$

$$\frac{\operatorname{Enc}(s)}{r_1 \dots r_d \leftarrow \$ \mathbb{F}}$$

for $j = 0, \dots, n-1$:
 $s_j \leftarrow \sum_{i=1}^d r_i \alpha_j^i + s$
return $[\![s]\!]_d^n := (s_0, \dots, s_{n-1})$

► Take *n* different
$$\alpha_i$$
 with $\alpha_i \neq 0$
► $\llbracket s \rrbracket_d^n = (s_i)_{i \in [n]} \leftarrow \operatorname{Enc}(s)$
 $s_i = f(\alpha_i)$ with $f(x) = \sum_{i=1}^d r_i x^i + s$
► $s = f(0) \leftarrow \operatorname{Dec}(\llbracket s \rrbracket_d^n)$

$$\frac{\operatorname{Enc}(s)}{r_1 \dots r_d \leftarrow \$ \mathbb{F}}$$

for $j = 0, \dots, n-1$:
 $s_j \leftarrow \sum_{i=1}^d r_i \alpha_j^i + s$
return $[\![s]\!]_d^n := (s_0, \dots, s_{n-1})$

Leakage Resilience: Any set of *d* shares s_i is uniformly, independently distributed.

Take *n* different
$$\alpha_i$$
 with $\alpha_i \neq 0$
[[s]]ⁿ_d = $(s_i)_{i \in [n]} \leftarrow \text{Enc}(s)$
 $s_i = f(\alpha_i)$ with $f(x) = \sum_{i=1}^d r_i x^i + s$
s = $f(0) \leftarrow \text{Dec}([[s]]^n_d)$

$$\frac{\operatorname{Enc}(s)}{r_1 \dots r_d \leftarrow \$ \mathbb{F}}$$

for $j = 0, \dots, n-1$:
 $s_j \leftarrow \sum_{i=1}^d r_i \alpha_j^i + s$
return $[\![s]\!]_d^n := (s_0, \dots, s_{n-1})$

- Leakage Resilience: Any set of d shares s_i is uniformly, independently distributed.
- ► Fault Resilience: If only e shares of d + e + 1 shares are faulted the polynomial has a degree > d!

Addition of $\llbracket a \rrbracket_d^n$ and $\llbracket b \rrbracket_d^n$

Addition of $\llbracket a \rrbracket_d^n$ and $\llbracket b \rrbracket_d^n$

• Compute $c_i \leftarrow a_i + b_i$

Addition of $\llbracket a \rrbracket_d^n$ and $\llbracket b \rrbracket_d^n$ \blacktriangleright Compute $c_i \leftarrow a_i + b_i$ $\begin{cases} \left(\sum_{i=1}^{d} r_{i} x^{i} + a\right) + \left(\sum_{i=1}^{d} r_{i} x^{i} + b\right) \\ = \sum_{i=1}^{d} (r_{i} + r'_{i}) x^{i} + (a + b) \end{cases}$

Addition of $\llbracket a \rrbracket_d^n$ and $\llbracket b \rrbracket_d^n$

- **Compute** $c_i \leftarrow a_i + b_i$
- $\blacktriangleright \text{ Result } \llbracket c \rrbracket_d^n = \llbracket a + b \rrbracket_d^n$

 $\begin{cases} \left\{ \begin{array}{c} \left(\sum_{i=1}^{d} r_{i} x^{i} + a\right) + \left(\sum_{i=1}^{d} r_{i} x^{i} + b\right) \\ = \sum_{i=1}^{d} (r_{i} + r_{i}^{i}) x^{i} + (a + b) \end{array} \right. \end{cases}$

Addition of $\llbracket a \rrbracket_d^n$ and $\llbracket b \rrbracket_d^n$

- $\blacktriangleright \text{ Compute } c_i \leftarrow a_i + b_i$
- $\blacktriangleright \text{ Result } \llbracket c \rrbracket_d^n = \llbracket a + b \rrbracket_d^n$

 $\begin{cases} \left\{ \begin{array}{l} \left(\sum_{i=1}^{d} r_{i} x^{i} + a\right) + \left(\sum_{i=1}^{d} r_{i} x^{i} + b\right) \\ = \sum_{i=1}^{d} (r_{i} + r'_{i}) x^{i} + (a + b) \end{array} \right. \end{cases}$

Refresh of $\llbracket a \rrbracket_d^n$

Addition of $\llbracket a \rrbracket_d^n$ and $\llbracket b \rrbracket_d^n$

- $\blacktriangleright \text{ Compute } c_i \leftarrow a_i + b_i$
- $\blacktriangleright \text{ Result } \llbracket c \rrbracket_d^n = \llbracket a + b \rrbracket_d^n$

 $\begin{cases} \left(\sum_{i=1}^{d} r_{i} x^{i} + a\right) + \left(\sum_{i=1}^{d} r_{i} x^{i} + b\right) \\ = \sum_{i=1}^{d} (r_{i} + r'_{i}) x^{i} + (a + b) \end{cases}$

Refresh of $\llbracket a \rrbracket_d^n$

• Generate $\llbracket b \rrbracket_d^n \leftarrow \operatorname{Enc}(0)$

Addition of $\llbracket a \rrbracket_d^n$ and $\llbracket b \rrbracket_d^n$

- $\blacktriangleright \text{ Compute } c_i \leftarrow a_i + b_i$
- $\blacktriangleright \text{ Result } \llbracket c \rrbracket_d^n = \llbracket a + b \rrbracket_d^n$

Refresh of $[a]_d^n$

- ► Generate $\llbracket b \rrbracket_d^n \leftarrow \text{Enc}(0)$
- Compute $\llbracket c \rrbracket_d^n = \llbracket a + b \rrbracket_d^n$

$$\begin{cases} \left(\sum_{i=1}^{d} r_{i} x^{i} + a\right) + \left(\sum_{i=1}^{d} r_{i} x^{i} + b\right) \\ = \sum_{i=1}^{d} (r_{i} + r_{i}') x^{i} + (a + b) \end{cases}$$

Addition of $\llbracket a \rrbracket_d^n$ and $\llbracket b \rrbracket_d^n$

- Compute $c_i \leftarrow a_i + b_i$
- $\blacktriangleright \text{ Result } \llbracket c \rrbracket_d^n = \llbracket a + b \rrbracket_d^n$

Refresh of $\llbracket a \rrbracket_d^n$

- ► Generate $\llbracket b \rrbracket_d^n \leftarrow \text{Enc}(0)$
- Compute $\llbracket c \rrbracket_d^n = \llbracket a + b \rrbracket_d^n$

$$\begin{cases} \left(\sum_{i=1}^{d} r_{i} x^{i} + a\right) + \left(\sum_{i=1}^{d} r_{i} x^{i} + b\right) \\ = \sum_{i=1}^{d} (r_{i} + r_{i}^{i}) x^{i} + (a + b) \end{cases}$$

Probing Attack: Our Paper Fix: *d* Refreshes in a row

Fixed SotA Compiler with n = 2d + e + 1

Fixed SotA Compiler with n = 2d + e + 1

Multiplication of $\llbracket a \rrbracket_d^n$ and $\llbracket b \rrbracket_d^n$
Multiplication of $\llbracket a \rrbracket_d^n$ and $\llbracket b \rrbracket_d^n$

► Compute $c_i \leftarrow a_i \cdot b_i$

- ► Compute $c_i \leftarrow a_i \cdot b_i$
- Result $[\![c]\!]_{2d}^n = [\![a \cdot b]\!]_{2d}^n$

- ► Compute $c_i \leftarrow a_i \cdot b_i$
- Result $[\![c]\!]_{2d}^n = [\![a \cdot b]\!]_{2d}^n$

$$\begin{cases} (\sum_{i=1}^{d} r_i x^i + a) \cdot (\sum_{i=1}^{d} r_i x^i + b) \\ = \sum_{i=1}^{2d} (r_i'') x^i + (a \cdot b) \end{cases}$$

- ► Compute $c_i \leftarrow a_i \cdot b_i$
- $\blacktriangleright \text{ Result } \llbracket c \rrbracket_{2d}^n = \llbracket a \cdot b \rrbracket_{2d}^n$
- ▶ Reduce $\llbracket c \rrbracket_{2d}^n$ down to $\llbracket c \rrbracket_d^n$

$$\begin{cases} (\sum_{i=1}^{d} r_i x^i + a) \cdot (\sum_{i=1}^{d} r_i x^i + b) \\ = \sum_{i=1}^{2d} (r''_i) x^i + (a \cdot b) \end{cases}$$

- $\blacktriangleright \text{ Compute } c_i \leftarrow a_i \cdot b_i$
- $\blacktriangleright \text{ Result } \llbracket c \rrbracket_{2d}^n = \llbracket a \cdot b \rrbracket_{2d}^n$
- ▶ Reduce $\llbracket c \rrbracket_{2d}^n$ down to $\llbracket c \rrbracket_d^n$
- Problem: Requires n = 2d + e + 1

$$\begin{cases} \sum_{i=1}^{d} r_{i}x^{i} + a \cdot \sum_{i=1}^{d} r_{i}x^{i} + b \\ = \sum_{i=1}^{2d} (r_{i}'')x^{i} + (a \cdot b) \end{cases}$$

Compiler with n = d + e + 1

Compiler with n = d + e + 1

- $\blacktriangleright \text{ Compute } \llbracket c \rrbracket_{2d}^n = \llbracket a \cdot b \rrbracket_{2d}^n$
- ▶ Reduce $\llbracket c \rrbracket_{2d}^n$ down to $\llbracket c \rrbracket_d^n$

Compiler with n = d + e + 1

- $\blacktriangleright \text{ Compute } \llbracket c \rrbracket_{2d}^n = \llbracket a \cdot b \rrbracket_{2d}^n$
- ▶ Reduce $\llbracket c \rrbracket_{2d}^n$ down to $\llbracket c \rrbracket_d^n$

Reverse the steps

- ► Reduce $\llbracket a \rrbracket_d^n$, $\llbracket b \rrbracket_d^n$ down to $\llbracket a \rrbracket_{d/2}^n$, $\llbracket b \rrbracket_{d/2}^n$
- Compute $\llbracket c \rrbracket_d^n = \llbracket a \cdot b \rrbracket_d^n$

Compiler with n = d + e + 1

- Compute $\llbracket c \rrbracket_{2d}^n = \llbracket a \cdot b \rrbracket_{2d}^n$
- ▶ Reduce $\llbracket c \rrbracket_{2d}^n$ down to $\llbracket c \rrbracket_d^n$

Reverse the steps

- ► Reduce $\llbracket a \rrbracket_d^n$, $\llbracket b \rrbracket_d^n$ down to $\llbracket a \rrbracket_{d/2}^n$, $\llbracket b \rrbracket_{d/2}^n$
- Compute $\llbracket c \rrbracket_d^n = \llbracket a \cdot b \rrbracket_d^n$
- ▶ Problem *d* probes in $\llbracket a \rrbracket_{d/2}^n$ reveal *a*

Compiler with n = d + e + 1

- Compute $\llbracket c \rrbracket_{2d}^n = \llbracket a \cdot b \rrbracket_{2d}^n$
- ▶ Reduce $\llbracket c \rrbracket_{2d}^n$ down to $\llbracket c \rrbracket_d^n$

Reverse the steps

- ► Reduce $\llbracket a \rrbracket_d^n$, $\llbracket b \rrbracket_d^n$ down to $\llbracket a \rrbracket_{d/2}^n$, $\llbracket b \rrbracket_{d/2}^n$
- Compute $\llbracket c \rrbracket_d^n = \llbracket a \cdot b \rrbracket_d^n$
- Problem d probes in $\llbracket a \rrbracket_{d/2}^n$ reveal a

Solution: SplitRed splits $\llbracket a \rrbracket_d^n$ into $\llbracket a' \rrbracket_d^n$ and $\llbracket a'' \rrbracket_d^n$ with $\llbracket a' \rrbracket_d^n + \llbracket a'' \rrbracket_d^n = \llbracket a \rrbracket_{d/2}^n$

Combined Fault and Leakage Resilience: Composability, Constructions and Compiler

Combined Fault and Leakage Resilience: Composability, Constructions and Compiler

Security: Combined Resilience

Security: Combined Resilience

(a) *e*-Fault Robustness

- (a) *e*-Fault Robustness
- (b) *d*-Probing Security (or d/2 probes in each gadget)

- (a) *e*-Fault Robustness
- (b) *d*-Probing Security (or d/2 probes in each gadget)
- (c) Fault Invariance

- (a) *e*-Fault Robustness
- (b) *d*-Probing Security (or d/2 probes in each gadget)
- (c) Fault Invariance
 - Each intermediate value can be written as a function $f(x_0, x_1, ...)$ with input values $(x_0, x_1, ...)$

- (a) *e*-Fault Robustness
- (b) *d*-Probing Security (or d/2 probes in each gadget)
- (c) Fault Invariance
 - Each intermediate value can be written as a function $f(x_0, x_1, ...)$ with input values $(x_0, x_1, ...)$
 - Let f^{I} be the corresponding value in the faulted gadget

- (a) *e*-Fault Robustness
- (b) *d*-Probing Security (or d/2 probes in each gadget)
- (c) Fault Invariance
 - Each intermediate value can be written as a function $f(x_0, x_1, ...)$ with input values $(x_0, x_1, ...)$
 - Let f^{I} be the corresponding value in the faulted gadget
 - There are functions χ, χ_0, χ_1 s.t. $f' = \chi(f(\chi_0(x_0), \chi_1(x_1), \dots))$

- (a) *e*-Fault Robustness
- (b) *d*-Probing Security (or d/2 probes in each gadget)
- (c) Fault Invariance
 - Each intermediate value can be written as a function $f(x_0, x_1, ...)$ with input values $(x_0, x_1, ...)$
 - Let f' be the corresponding value in the faulted gadget
 - There are functions χ, χ_0, χ_1 s.t. $f' = \chi(f(\chi_0(x_0), \chi_1(x_1), \dots))$

(a)+(b)+(c)= Combined Resilience

Combined Fault and Leakage Resilience: Composability, Constructions and Compiler

Combined Fault and Leakage Resilience: Composability, Constructions and Compiler

Combined Fault and Leakage Resilience: Composability, Constructions and Compiler