OF LARGE-SCALE ADVERSARIES

On Perfect Linear Approximations and Differentials over Two-Round SPNs CRYPTO 2023, August 23, 2023

Christof Beierle, Patrick Felke, Gregor Leander, Patrick Neumann, Lukas Stennes

Arguments for Security

- Security of symmetric primitives based on resilience to existing attacks

Arguments for Security

- Security of symmetric primitives based on resilience to existing attacks
- Example: Block cipher E_{k}

Arguments for Security

- Security of symmetric primitives based on resilience to existing attacks
- Example: Block cipher E_{k}
- Desirable: resilience for (almost) all keys

Arguments for Security

- Security of symmetric primitives based on resilience to existing attacks
- Example: Block cipher E_{k}
- Desirable: resilience for (almost) all keys

Attack	Bound for (almost) all k
Linear	$\mathrm{C}\left[\gamma \xrightarrow{E_{k}} \zeta\right]:=2 \cdot\left(\mathrm{P}_{\times}\left[\langle\gamma, x\rangle=\left\langle\zeta, E_{k}(x)\right\rangle\right]-\frac{1}{2}\right)$

- Security of symmetric primitives based on resilience to existing attacks
- Example: Block cipher E_{k}
- Desirable: resilience for (almost) all keys

Attack	Bound for (almost) all k
Linear	$\mathrm{C}\left[\gamma \xrightarrow{E_{k}} \zeta\right]:=2 \cdot\left(\mathrm{P}_{\times}\left[\langle\gamma, x\rangle=\left\langle\zeta, E_{k}(x)\right\rangle\right]-\frac{1}{2}\right)$
Differential	$\mathrm{P}\left[\alpha \xrightarrow{E_{k}} \beta\right]:=\mathrm{P}_{\times}\left[E_{k}(x) \oplus E_{k}(x \oplus \alpha)=\beta\right]$

- Security of symmetric primitives based on resilience to existing attacks
- Example: Block cipher E_{k}
- Desirable: resilience for (almost) all keys

Attack	Bound for (almost) all k
Linear	$\mathrm{C}\left[\gamma \xrightarrow{E_{k}} \zeta\right]:=2 \cdot\left(\mathrm{P}_{\times}\left[\langle\gamma, x\rangle=\left\langle\zeta, E_{k}(x)\right\rangle\right]-\frac{1}{2}\right)$
Differential	$\mathrm{P}\left[\alpha \xrightarrow{E_{k}} \beta\right]:=\mathrm{P}_{\times}\left[E_{k}(x) \oplus E_{k}(x \oplus \alpha)=\beta\right]$

- Only possible if E_{k} has structure

For Round-Based Primitives

- Start with $\mathrm{C}\left[\gamma \xrightarrow{R_{i}} \zeta\right]$ and $\mathrm{P}\left[\alpha \xrightarrow{R_{i}} \beta\right]$

- Start with $\mathrm{C}\left[\gamma \xrightarrow{R_{i}} \zeta\right]$ and $\mathrm{P}\left[\alpha \xrightarrow{R_{i}} \beta\right]$
- Often only possible if R_{i} themselves have structure

- Start with $\mathrm{C}\left[\gamma \xrightarrow{R_{i}} \zeta\right]$ and $\mathrm{P}\left[\alpha \xrightarrow{R_{i}} \beta\right]$
- Often only possible if R_{i} themselves have structure
- Here: focus on SPNs

For Two Rounds

For Two Rounds

$$
\begin{aligned}
& \mathrm{P}\left[\alpha \underset{k_{0}}{ } \begin{array}{lll}
E_{k} \\
k_{1} & k_{2}
\end{array}\right]
\end{aligned}
$$

$$
\begin{aligned}
& \mathrm{P}[\alpha \longrightarrow \beta \longrightarrow \beta] \\
& =\quad \mathrm{P}\left[\alpha \xrightarrow{R_{1}} \delta\right] \cdot \mathrm{P}\left[\delta \xrightarrow{R_{2}} \beta\right]
\end{aligned}
$$

For Two Rounds

- Gives only average $\mathrm{P}\left[\alpha \xrightarrow{E_{k}} \beta\right]$ (over the key)

- Gives only average $\mathrm{P}\left[\alpha \xrightarrow{E_{k}} \beta\right]$ (over the key)
- Similarly: get only average $\mathrm{C}\left[\gamma \xrightarrow{E_{k}} \zeta\right]^{2}$ (over the key)

- Gives only average $\mathrm{P}\left[\alpha \xrightarrow{E_{k}} \beta\right]$ (over the key)
- Similarly: get only average $\mathrm{C}\left[\gamma \xrightarrow{E_{k}} \zeta\right]^{2}$ (over the key)
- Can we do better?

For Two Rounds and all keys

- $\left|\mathrm{C}\left[\gamma \xrightarrow{E_{k}} \gamma\right]\right|=1$ and $\mathrm{P}\left[\alpha \xrightarrow{E_{k}} \alpha\right]=1$, even if R_{1} is resilient

For Two Rounds and all keys

- $\left|\mathrm{C}\left[\gamma \xrightarrow{E_{k}} \gamma\right]\right|=1$ and $\mathrm{P}\left[\alpha \xrightarrow{E_{k}} \alpha\right]=1$, even if R_{1} is resilient
- Seeing rounds as independent cannot work!

For Two Rounds and all keys

- $\left|\mathrm{C}\left[\gamma \xrightarrow{E_{k}} \gamma\right]\right|=1$ and $\mathrm{P}\left[\alpha \xrightarrow{E_{k}} \alpha\right]=1$, even if R_{1} is resilient
- Seeing rounds as independent cannot work!

As a First Step

Answer existence of k such that

- $\left|\mathrm{C}\left[\gamma \xrightarrow{E_{k}} \zeta\right]\right|=1$ (perfect linear approximation), or
- $\mathbf{P}\left[\alpha \xrightarrow{E_{k}} \beta\right]=1$ (perfect differential)
for two-round SPNs

Existence of Perfect Linear Approximations

- Perfect linear approximation: there exist $\gamma, \zeta \neq 0$ s.t.

$$
\left|\operatorname{cor}\left(\gamma \xrightarrow{E_{k}} \zeta\right)\right|=1 \quad \Longleftrightarrow \quad \exists c: \quad\langle\gamma, x\rangle=\left\langle\zeta, E_{k}(x)\right\rangle \oplus c \quad \forall x
$$

Existence of Perfect Linear Approximations

- Perfect linear approximation: there exist $\gamma, \zeta \neq 0$ s.t.

$$
\left|\operatorname{cor}\left(\gamma \xrightarrow{E_{k}} \zeta\right)\right|=1 \quad \Longleftrightarrow \quad \exists c: \quad\langle\gamma, x\rangle=\left\langle\zeta, E_{k}(x)\right\rangle \oplus c \quad \forall x
$$

- For fixed k : easy to find all perfect linear approximations

Existence of Perfect Linear Approximations

- Perfect linear approximation: there exist $\gamma, \zeta \neq 0$ s.t.

$$
\left|\operatorname{cor}\left(\gamma \xrightarrow{E_{k}} \zeta\right)\right|=1 \quad \Longleftrightarrow \quad \exists c: \quad\langle\gamma, x\rangle=\left\langle\zeta, E_{k}(x)\right\rangle \oplus c \quad \forall x
$$

- For fixed k : easy to find all perfect linear approximations
- For each x we get a linear equation in γ, ζ and c

Existence of Perfect Linear Approximations

- Perfect linear approximation: there exist $\gamma, \zeta \neq 0$ s.t.

$$
\left|\operatorname{cor}\left(\gamma \xrightarrow{E_{k}} \zeta\right)\right|=1 \quad \Longleftrightarrow \quad \exists c: \quad\langle\gamma, x\rangle=\left\langle\zeta, E_{k}(x)\right\rangle \oplus c \quad \forall x
$$

- For fixed k : easy to find all perfect linear approximations
- For each x we get a linear equation in γ, ζ and c
- Solving the system leads to all perfect linear approximations

Existence of Perfect Linear Approximations

- Perfect linear approximation: there exist $\gamma, \zeta \neq 0$ s.t.

$$
\left|\operatorname{cor}\left(\gamma \xrightarrow{E_{k}} \zeta\right)\right|=1 \quad \Longleftrightarrow \quad \exists c: \quad\langle\gamma, x\rangle=\left\langle\zeta, E_{k}(x)\right\rangle \oplus c \quad \forall x
$$

- For fixed k : easy to find all perfect linear approximations
- For each x we get a linear equation in γ, ζ and c
- Solving the system leads to all perfect linear approximations
- Question: Do some k lead to perfect linear approximations?

Existence of Perfect Linear Approximations

- Perfect linear approximation: there exist $\gamma, \zeta \neq 0$ s.t.

$$
\left|\operatorname{cor}\left(\gamma \xrightarrow{E_{k}} \zeta\right)\right|=1 \quad \Longleftrightarrow \quad \exists c: \quad\langle\gamma, x\rangle=\left\langle\zeta, E_{k}(x)\right\rangle \oplus c \quad \forall x
$$

- For fixed k : easy to find all perfect linear approximations
- For each x we get a linear equation in γ, ζ and c
- Solving the system leads to all perfect linear approximations
- Question: Do some k lead to perfect linear approximations?
- Problem: often infeasible to try all k

Existence of Perfect Linear Approximations

- Perfect linear approximation: there exist $\gamma, \zeta \neq 0$ s.t.

$$
\left|\operatorname{cor}\left(\gamma \xrightarrow{E_{k}} \zeta\right)\right|=1 \quad \Longleftrightarrow \quad \exists c: \quad\langle\gamma, x\rangle=\left\langle\zeta, E_{k}(x)\right\rangle \oplus c \quad \forall x
$$

- For fixed k : easy to find all perfect linear approximations
- For each x we get a linear equation in γ, ζ and c
- Solving the system leads to all perfect linear approximations
- Question: Do some k lead to perfect linear approximations?
- Problem: often infeasible to try all k
- For two-round SPNs: can be (efficiently) answered

Existence of Perfect Linear Approximations over Two-Round SPNs

$$
\left\langle\gamma,\binom{x_{1}}{x_{2}}\right\rangle=\left\langle\zeta,\binom{y_{1}}{y_{2}}\right\rangle \oplus c
$$

Existence of Perfect Linear Approximations over Two-Round SPNs

$$
\left\langle\gamma,\binom{x_{1}}{x_{2}}\right\rangle=\left\langle\zeta,\binom{y_{1}}{y_{2}}\right\rangle \oplus c
$$

Existence of Perfect Linear Approximations over Two-Round SPNs

$$
\left\langle\gamma,\binom{S_{k_{1}}^{-1}\left(z_{1}\right)}{S_{k_{2}}^{-1}\left(z_{2}\right)}\right\rangle=\left\langle\gamma,\binom{x_{1}}{x_{2}}\right\rangle=\left\langle\zeta,\binom{y_{1}}{y_{2}}\right\rangle \oplus c
$$

Existence of Perfect Linear Approximations over Two-Round SPNs

$$
\left\langle\gamma,\binom{S_{k_{1}}^{-1}\left(z_{1}\right)}{S_{k_{2}}^{-1}\left(z_{2}\right)}\right\rangle=\left\langle\gamma,\binom{x_{1}}{x_{2}}\right\rangle=\left\langle\zeta,\binom{y_{1}}{y_{2}}\right\rangle \oplus c=\left\langle\zeta, G\binom{z_{1}}{z_{2}}\right\rangle \oplus c
$$

Existence of Perfect Linear Approximations over Two-Round SPNs

Existence of Perfect Linear Approximations over Two-Round SPNs

Existence of Perfect Linear Approximations over Two-Round SPNs

Existence of Perfect Linear Approximations over Two-Round SPNs

$$
\begin{aligned}
& \text { of Large-Scale Adversaries } \\
& \begin{array}{c}
\gamma \begin{array}{c}
x_{1} \\
S_{k_{1}}
\end{array} \stackrel{x_{2}}{\downarrow} \quad\left\langle\gamma,\binom{S_{k_{1}}^{-1}\left(z_{1}\right)}{S_{k_{2}}^{-1}\left(z_{2}\right)}\right\rangle=\left\langle\gamma,\binom{x_{1}}{x_{2}}\right\rangle=\left\langle\zeta,\binom{y_{1}}{y_{2}}\right\rangle \oplus c=\left\langle\zeta, G\binom{z_{1}}{z_{2}}\right\rangle \oplus c
\end{array} \\
& \Longrightarrow \quad\left\langle\zeta, G\binom{z_{1}^{\prime}}{z_{2}^{\prime}} \oplus G\binom{z_{1}^{\prime}}{0} \oplus G\binom{0}{z_{2}^{\prime}} \oplus G\binom{0}{0}\right\rangle=0
\end{aligned}
$$

Existence of Perfect Linear Approximations over Two-Round SPNs

[^0]On Perfect Linear Approximations and Differentials over Two-Round SPNs|CRYPTO 2023|August 23, 2023

Existence of Perfect Linear Approximations over Two-Round SPNs

For every z^{\prime} : linear equation in ζ independent of key!

Existence of Perfect Linear Approximations over Two-Round SPNs

Cipher	Linear	
Boomslang		
CRAFT		
MANTIS		
Midori64		
SKINNY-64		
SKINNY-128		
AES	\checkmark	
GIFT-64/128	\checkmark	
LED	\checkmark	
PRESENT	\checkmark	
PRINCE	\checkmark	
Streebog	\checkmark	
Ascon	\checkmark	
iSCREAM	\checkmark	
Keccak-100	\checkmark	
Kuznechik	\checkmark	
PRIDE	\checkmark	
RECTANGLE	\checkmark	

$\checkmark \quad$ Non-existence
x Existence
\perp Abort
- Not tested

Existence of Perfect Linear Approximations over Two-Round SPNs

Cipher	Linear	
	$r=2$	
Boomslang	x	
CRAFT		
MANTIS		
Midori64		
SKINNY-64		
SKINNY-128		
AES	\checkmark	
GIFT-64/128	\checkmark	
LED	\checkmark	
PRESENT	\checkmark	
PRINCE	\checkmark	
Streebog	\checkmark	
Ascon	\checkmark	
iSCREAM	\checkmark	
Keccak-100	\checkmark	
Kuznechik	\checkmark	
PRIDE	\checkmark	
RECTANGLE	\checkmark	

$\checkmark \quad$ Non-existence
x Existence
\perp Abort
- Not tested

Existence of Perfect Linear Approximations over Two-Round SPNs

Cipher	Linear	
	$r=2$	
Boomslang	x	
CRAFT	x	
MANTIS		
Midori64		
SKINNY-64		
SKINNY-128		
AES	\checkmark	
GIFT-64/128	\checkmark	
LED	\checkmark	
PRESENT	\checkmark	
PRINCE	\checkmark	
Streebog	\checkmark	
Ascon	\checkmark	
iSCREAM	\checkmark	
Keccak-100	\checkmark	
Kuznechik	\checkmark	
PRIDE	\checkmark	
RECTANGLE	\checkmark	

$\checkmark \quad$ Non-existence
x Existence
\perp Abort
- Not tested

Existence of Perfect Linear Approximations over Two-Round SPNs

Cipher	Linear	
	$r=2$	
Boomslang	x	
CRAFT	x	
MANTIS	x	
Midori64	x	
SKINNY-64		
SKINNY-128		
AES	\checkmark	
GIFT-64/128	\checkmark	
LED	\checkmark	
PRESENT	\checkmark	
PRINCE	\checkmark	
Streebog	\checkmark	
Ascon	\checkmark	
iSCREAM	\checkmark	
Keccak-100	\checkmark	
Kuznechik	\checkmark	
PRIDE	\checkmark	
RECTANGLE	\checkmark	

\checkmark	Non-existence
\boldsymbol{X}	Existence
\perp	Abort
-	Not tested

Existence of Perfect Linear Approximations over Two-Round SPNs

Cipher	Linear	
	$r=2$	
Boomslang	x	
CRAFT	x	
MANTIS	x	
Midori64	x	
SKINNY-64	x	
SKINNY-128	x	
AES	\checkmark	
GIFT-64/128	\checkmark	
LED	\checkmark	
PRESENT	\checkmark	
PRINCE	\checkmark	
Streebog	\checkmark	
Ascon	\checkmark	
iSCREAM	\checkmark	
Keccak-100	\checkmark	
Kuznechik	\checkmark	
PRIDE	\checkmark	
RECTANGLE	\checkmark	

$\checkmark \quad$ Non-existence
x Existence
\perp Abort
- Not tested

Existence of Perfect Linear Approximations over Two-Round SPNs

Cipher		Linear					
$r=3$				$]$			
:---	:---:	:---:					
Boomslang	X	\checkmark					
CRAFT	x	\checkmark					
MANTIS	x	\checkmark					
Midori64	x	\checkmark					
SKINNY-64	x	\checkmark					
SKINNY-128	x	\perp					
AES	\checkmark	\checkmark					
GIFT-64/128	\checkmark	\checkmark					
LED	\checkmark	\checkmark					
PRESENT	\checkmark	\checkmark					
PRINCE	\checkmark	\checkmark					
Streebog	\checkmark	\checkmark					
Ascon	\checkmark	\checkmark					
iSCREAM	\checkmark	\perp					
Keccak-100	\checkmark	\checkmark					
Kuznechik	\checkmark	\perp					
PRIDE	\checkmark	\checkmark					
RECTANGLE	\checkmark	\checkmark					

\checkmark	Non-existence
\boldsymbol{X}	Existence
\perp	Abort
-	Not tested

Existence of Perfect Linear Approximations over Two-Round SPNs

Cipher	Linear		
	$r=2$	$r=3$	$r=4$
Boomslang	X	\checkmark	X
CRAFT	x	\checkmark	\checkmark
MANTIS	x	\checkmark	X
Midori64	x	\checkmark	x
SKINNY-64	X	\checkmark	\checkmark
SKINNY-128	x	\perp	\perp
AES	\checkmark	\checkmark	\perp
GIFT-64/128	\checkmark	\checkmark	\checkmark
LED	\checkmark	\checkmark	\checkmark
PRESENT	\checkmark	\checkmark	\checkmark
PRINCE	\checkmark	\checkmark	\checkmark
Streebog	\checkmark	\checkmark	\perp
Ascon	\checkmark	\checkmark	-
iSCREAM	\checkmark	\perp	-
Keccak-100	\checkmark	\checkmark	-
Kuznechik	\checkmark	\perp	-
PRIDE	\checkmark	\checkmark	-
RECTANGLE	\checkmark	\checkmark	-

\checkmark	Non-existence
x	Existence
\perp	Abort
-	Not tested

Existence of Perfect Differentials over Two-Round SPNs

On Perfect Linear Approximations and Differentials over Two-Round SPNs | CRYPTO 2023|August 23, 2023

Existence of Perfect Differentials over Two-Round SPNs

On Perfect Linear Approximations and Differentials over Two-Round SPNs | CRYPTO 2023|August 23, 2023

Existence of Perfect Differentials over Two-Round SPNs

On Perfect Linear Approximations and Differentials over Two-Round SPNs | CRYPTO 2023|August 23, 2023

Existence of Perfect Differentials over Two-Round SPNs

On Perfect Linear Approximations and Differentials over Two-Round SPNs|CRYPTO 2023|August 23, 2023

Existence of Perfect Differentials over Two-Round SPNs

On Perfect Linear Approximations and Differentials over Two-Round SPNs|CRYPTO 2023|August 23, 2023

Existence of Perfect Differentials over Two-Round SPNs

Theorem 1 ([Lambin, Leander and N., EC'23], informal)
If an SPN-round-function has two essentially different decompositions then there exist a perfect linear approximation and a perfect differential over (at least) one of its s-boxes.

Existence of Perfect Differentials over Two-Round SPNs

Theorem 1 ([Lambin, Leander and N., EC'23], informal)
If an SPN-round-function has two essentially different decompositions then there exist a perfect linear approximation and a perfect differential over (at least) one of its s-boxes.

- Here: $\hat{S}: x \mapsto S^{-1}\left(S(x) \oplus \beta_{i}\right)$ are the s-boxes

Existence of Perfect Differentials over Two-Round SPNs

Theorem 1 ([Lambin, Leander and N., EC'23], informal)
If an SPN-round-function has two essentially different decompositions then there exist a perfect linear approximation and a perfect differential over (at least) one of its s-boxes.

- Here: $\hat{S}: x \mapsto S^{-1}\left(S(x) \oplus \beta_{i}\right)$ are the s-boxes
- Perfect differential over \hat{S} would imply

$$
\exists \delta \neq 0, \delta^{\prime}: \quad S^{-1}\left(S(x) \oplus \beta_{i}\right) \oplus S^{-1}\left(S(x \oplus \delta) \oplus \beta_{i}\right) \quad=\delta^{\prime} \quad \forall x
$$

Existence of Perfect Differentials over Two-Round SPNs

Theorem 1 ([Lambin, Leander and N., EC'23], informal)
If an SPN-round-function has two essentially different decompositions then there exist a perfect linear approximation and a perfect differential over (at least) one of its s-boxes.

- Here: $\hat{S}: x \mapsto S^{-1}\left(S(x) \oplus \beta_{i}\right)$ are the s-boxes
- Perfect differential over \hat{S} would imply

$$
\begin{array}{rlll}
\exists \delta \neq 0, \delta^{\prime}: & S^{-1}\left(S(x) \oplus \beta_{i}\right) \oplus S^{-1}\left(S(x \oplus \delta) \oplus \beta_{i}\right) & =\delta^{\prime} & \forall x \\
\Longrightarrow & S^{-1}\left(S(x) \oplus \beta_{i}\right) \oplus S^{-1}\left(S\left(x \oplus \delta^{\prime}\right) \oplus \beta_{i}\right) & =\delta & \forall x
\end{array}
$$

Existence of Perfect Differentials over Two-Round SPNs

Theorem 1 ([Lambin, Leander and N., EC'23], informal)

If an SPN-round-function has two essentially different decompositions then there exist a perfect linear approximation and a perfect differential over (at least) one of its s-boxes.

- Here: $\hat{S}: x \mapsto S^{-1}\left(S(x) \oplus \beta_{i}\right)$ are the s-boxes
- Perfect differential over \hat{S} would imply

$$
\left.\begin{array}{rlll}
\exists \delta \neq 0, \delta^{\prime}: & S^{-1}\left(S(x) \oplus \beta_{i}\right) \oplus S^{-1}\left(S(x \oplus \delta) \oplus \beta_{i}\right) & =\delta^{\prime} & \forall x \\
\Longrightarrow & S^{-1}\left(S(x) \oplus \beta_{i}\right) \oplus S^{-1}\left(S\left(x \oplus \delta^{\prime}\right) \oplus \beta_{i}\right) & =\delta & \forall x \\
\Longrightarrow & S^{-1}\left(S(x) \oplus \beta_{i}\right) \oplus S^{-1}\left(S\left(x \oplus \delta \oplus \delta^{\prime}\right) \oplus \beta_{i}\right) & =\delta \oplus \delta^{\prime} &
\end{array}\right\rangle x
$$

Theorem 1 ([Lambin, Leander and N., EC'23], informal)

If an SPN-round-function has two essentially different decompositions then there exist a perfect linear approximation and a perfect differential over (at least) one of its s-boxes.

- Here: $\hat{S}: x \mapsto S^{-1}\left(S(x) \oplus \beta_{i}\right)$ are the s-boxes
- Perfect differential over \hat{S} would imply

$$
\begin{aligned}
\exists \delta \neq 0, \delta^{\prime}: & S^{-1}\left(S(x) \oplus \beta_{i}\right) \oplus S^{-1}\left(S(x \oplus \delta) \oplus \beta_{i}\right) & =\delta^{\prime} & \forall x \\
\Longrightarrow & S^{-1}\left(S(x) \oplus \beta_{i}\right) \oplus S^{-1}\left(S\left(x \oplus \delta^{\prime}\right) \oplus \beta_{i}\right) & =\delta & \forall x \\
\Longrightarrow & & S^{-1}\left(S(x) \oplus \beta_{i}\right) \oplus S^{-1}\left(S\left(x \oplus \delta \oplus \delta^{\prime}\right) \oplus \beta_{i}\right) & =\delta \oplus \delta^{\prime}
\end{aligned}
$$

- I.e. S would have maximal boomerang uniformity [Boura and Canteaut, ToSC'18]

Theorem 1 ([Lambin, Leander and N., EC'23], informal)

If an SPN-round-function has two essentially different decompositions then there exist a perfect linear approximation and a perfect differential over (at least) one of its s-boxes.

- Here: $\hat{S}: x \mapsto S^{-1}\left(S(x) \oplus \beta_{i}\right)$ are the s-boxes
- Perfect differential over \hat{S} would imply

$$
\begin{array}{rlll}
\exists \delta \neq 0, \delta^{\prime}: & S^{-1}\left(S(x) \oplus \beta_{i}\right) \oplus S^{-1}\left(S(x \oplus \delta) \oplus \beta_{i}\right) & =\delta^{\prime} & \forall x \\
\Longrightarrow & S^{-1}\left(S(x) \oplus \beta_{i}\right) \oplus S^{-1}\left(S\left(x \oplus \delta^{\prime}\right) \oplus \beta_{i}\right) & =\delta & \forall x \\
\Longrightarrow & & S^{-1}\left(S(x) \oplus \beta_{i}\right) \oplus S^{-1}\left(S\left(x \oplus \delta \oplus \delta^{\prime}\right) \oplus \beta_{i}\right) & =\delta \oplus \delta^{\prime}
\end{array}
$$

- I.e. S would have maximal boomerang uniformity [Boura and Canteaut, ToSC'18]

Existence of Perfect Differentials over Two-Round SPNs

- Use theory from [Lambin, Leander and N., EC'23]

Existence of Perfect Differentials over Two-Round SPNs

- Use theory from [Lambin, Leander and N., EC'23]
- Exemplary implication

Corollary 2

If L has differential branch number of at least 3 and if S does not have

1. maximal boomerang uniformity, or
2. linear structures
then there cannot exist any perfect differential over two rounds.

Existence of Perfect Linear Approximations and Differentials over Two-Round SPNs

Cipher	Linear			Differentia$r=2$
	$r=2$	$r=3$	$r=4$	
Boomslang	x	\checkmark	x	\checkmark
CRAFT	x	\checkmark	\checkmark	\checkmark
MANTIS	x	\checkmark	x	\checkmark
Midori64	x	\checkmark	x	\checkmark
SKINNY-64	x	\checkmark	\checkmark	\checkmark
SKINNY-128	x	\perp	\perp	\checkmark
AES	\checkmark	\checkmark	\perp	\checkmark
GIFT-64/128	\checkmark	\checkmark	\checkmark	\checkmark
LED	\checkmark	\checkmark	\checkmark	\checkmark
PRESENT	\checkmark	\checkmark	\checkmark	\checkmark
PRINCE	\checkmark	\checkmark	\checkmark	\checkmark
Streebog	\checkmark	\checkmark	\perp	\checkmark
Ascon	\checkmark	\checkmark	-	\checkmark
iSCREAM	\checkmark	\perp	-	\checkmark
Keccak-100	\checkmark	\checkmark	-	\checkmark
Kuznechik	\checkmark	\perp	-	\checkmark
PRIDE	\checkmark	\checkmark	-	\checkmark
RECTANGLE	\checkmark	\checkmark	-	\checkmark

Existence of Perfect Linear Approximations and Differentials over Two-Round SPNs

| Cipher | Linear
 $r=3$ | | | $r=4$ |
| :--- | :---: | :---: | :---: | :---: | | Differential |
| :---: |
| $r=2$ |

Thank you for your attention!

[^0]: $\zeta \quad y_{1} \quad y_{2} \quad$ For every z^{\prime} : linear equation in ζ

