

On Perfect Linear Approximations and Differentials over Two-Round SPNs CRYPTO 2023, August 23, 2023

Christof Beierle, Patrick Felke, Gregor Leander, Patrick Neumann, Lukas Stennes

RUHR UNIVERSITÄT BOCHUM RUR

Security of symmetric primitives based on resilience to existing attacks

- Security of symmetric primitives based on resilience to existing attacks
- Example: Block cipher E_k

- Security of symmetric primitives based on resilience to existing attacks
- Example: Block cipher E_k
- ▶ Desirable: resilience for (almost) all keys

- Security of symmetric primitives based on resilience to existing attacks
- Example: Block cipher E_k
- ▶ Desirable: resilience for (almost) all keys

AttackBound for (almost) all kLinear
$$C[\gamma \xrightarrow{E_k} \zeta] := 2 \cdot \left(\mathsf{P}_{\mathsf{x}}[\langle \gamma, x \rangle = \langle \zeta, E_k(x) \rangle] - \frac{1}{2} \right)$$

- Security of symmetric primitives based on resilience to existing attacks
- Example: Block cipher E_k
- ▶ Desirable: resilience for (almost) all keys

AttackBound for (almost) all kLinear
$$C[\gamma \xrightarrow{E_k} \zeta] := 2 \cdot \left(P_x[\langle \gamma, x \rangle = \langle \zeta, E_k(x) \rangle] - \frac{1}{2} \right)$$
Differential $P[\alpha \xrightarrow{E_k} \beta] := P_x[E_k(x) \oplus E_k(x \oplus \alpha) = \beta]$

- Security of symmetric primitives based on resilience to existing attacks
- Example: Block cipher E_k
- ▶ Desirable: resilience for (almost) all keys

AttackBound for (almost) all kLinear
$$C[\gamma \xrightarrow{E_k} \zeta] := 2 \cdot \left(\mathsf{P}_x[\langle \gamma, x \rangle = \langle \zeta, E_k(x) \rangle] - \frac{1}{2} \right)$$
Differential $\mathsf{P}[\alpha \xrightarrow{E_k} \beta] := \mathsf{P}_x[E_k(x) \oplus E_k(x \oplus \alpha) = \beta]$

• Only possible if E_k has structure

• Start with $C[\gamma \xrightarrow{R_i} \zeta]$ and $P[\alpha \xrightarrow{R_i} \beta]$

- Start with $C[\gamma \xrightarrow{R_i} \zeta]$ and $P[\alpha \xrightarrow{R_i} \beta]$
- Often only possible if R_i themselves have structure

• Start with
$$C[\gamma \xrightarrow{R_i} \zeta]$$
 and $P[\alpha \xrightarrow{R_i} \beta]$

• Often only possible if R_i themselves have structure

► Here: focus on SPNs

• Gives only average $P[\alpha \xrightarrow{E_k} \beta]$ (over the key)

• Gives only average $P[\alpha \xrightarrow{E_k} \beta]$ (over the key)

• Similarly: get only average $C[\gamma \xrightarrow{E_k} \zeta]^2$ (over the key)

- Gives only average $\mathsf{P}[\alpha \xrightarrow{E_k} \beta]$ (over the key)
- Similarly: get only average $C[\gamma \xrightarrow{E_k} \zeta]^2$ (over the key)
- ► Can we do better?

- $\blacktriangleright \left| \mathsf{C}[\gamma \xrightarrow{E_k} \gamma] \right| = 1 \text{ and } \mathsf{P}[\alpha \xrightarrow{E_k} \alpha] = 1, \text{ even if } R_1 \text{ is resilient}$
- Seeing rounds as independent cannot work!

$$\blacktriangleright \ \left| \mathsf{C}[\gamma \xrightarrow{E_k} \gamma] \right| = 1 \text{ and } \mathsf{P}[\alpha \xrightarrow{E_k} \alpha] = 1, \text{ even if } R_1 \text{ is resilient}$$

Seeing rounds as independent cannot work!

As a First Step

Answer existence of k such that

•
$$\left|\mathsf{C}[\gamma \xrightarrow{E_k} \zeta]\right| = 1$$
 (perfect linear approximation), or

$$\blacktriangleright \mathsf{P}[\alpha \xrightarrow{E_k} \beta] = 1 \text{ (perfect differential)}$$

for two-round SPNs

▶ Perfect linear approximation: there exist $\gamma, \zeta \neq 0$ s.t.

$$\left|\operatorname{cor}(\gamma \xrightarrow{E_k} \zeta)\right| = 1 \quad \Longleftrightarrow \quad \exists c: \quad \langle \gamma, x \rangle = \langle \zeta, E_k(x) \rangle \oplus c \quad \forall x$$

▶ Perfect linear approximation: there exist $\gamma, \zeta \neq 0$ s.t.

$$\left|\operatorname{cor}(\gamma \xrightarrow{E_k} \zeta)\right| = 1 \quad \Longleftrightarrow \quad \exists c : \quad \langle \gamma, x \rangle = \langle \zeta, E_k(x) \rangle \oplus c \quad \forall x$$

► For fixed k: easy to find all perfect linear approximations

▶ Perfect linear approximation: there exist $\gamma, \zeta \neq 0$ s.t.

$$\left|\operatorname{cor}(\gamma \xrightarrow{E_k} \zeta)\right| = 1 \quad \Longleftrightarrow \quad \exists c: \quad \langle \gamma, x \rangle = \langle \zeta, E_k(x) \rangle \oplus c \quad \forall x$$

- ► For fixed k: easy to find all perfect linear approximations
 - For each x we get a linear equation in γ , ζ and c

▶ Perfect linear approximation: there exist $\gamma, \zeta \neq 0$ s.t.

$$\left|\operatorname{cor}(\gamma \xrightarrow{E_k} \zeta) \right| = 1 \quad \Longleftrightarrow \quad \exists c: \quad \langle \gamma, x \rangle = \langle \zeta, E_k(x) \rangle \oplus c \quad \forall x$$

- For each x we get a linear equation in γ , ζ and c
- Solving the system leads to all perfect linear approximations

• Perfect linear approximation: there exist $\gamma, \zeta \neq 0$ s.t.

$$\left|\operatorname{cor}(\gamma \xrightarrow{E_k} \zeta)\right| = 1 \quad \Longleftrightarrow \quad \exists c: \quad \langle \gamma, x \rangle = \langle \zeta, E_k(x) \rangle \oplus c \quad \forall x$$

- For each x we get a linear equation in γ , ζ and c
- Solving the system leads to all perfect linear approximations
- Question: Do some k lead to perfect linear approximations?

• Perfect linear approximation: there exist $\gamma, \zeta \neq 0$ s.t.

$$\left|\operatorname{cor}(\gamma \xrightarrow{E_k} \zeta)\right| = 1 \quad \Longleftrightarrow \quad \exists c: \quad \langle \gamma, x \rangle = \langle \zeta, E_k(x) \rangle \oplus c \quad \forall x$$

- For each x we get a linear equation in γ , ζ and c
- Solving the system leads to all perfect linear approximations
- Question: Do some k lead to perfect linear approximations?
 - Problem: often infeasible to try all k

• Perfect linear approximation: there exist $\gamma, \zeta \neq 0$ s.t.

$$\left|\operatorname{cor}(\gamma \xrightarrow{E_k} \zeta)\right| = 1 \quad \Longleftrightarrow \quad \exists c: \quad \langle \gamma, x \rangle = \langle \zeta, E_k(x) \rangle \oplus c \quad \forall x$$

- For each x we get a linear equation in γ , ζ and c
- Solving the system leads to all perfect linear approximations
- Question: Do some k lead to perfect linear approximations?
 - Problem: often infeasible to try all k
 - ► For two-round SPNs: can be (efficiently) answered

Existence of Perfect Linear Approximations over Two-Round SPNs

Existence of Perfect Linear Approximations over Two-Round SPNs

Existence of Perfect Linear Approximations over Two-Round SPNs

 $\langle \gamma, \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} \rangle = \langle \zeta, \begin{pmatrix} y_1 \\ y_2 \end{pmatrix} \rangle \oplus c$

 $\langle \gamma, \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} \rangle = \langle \zeta, \begin{pmatrix} y_1 \\ y_2 \end{pmatrix} \rangle \oplus c$

 $\langle \gamma, \begin{pmatrix} S_{k_1}^{-1}(z_1) \\ S_{k_2}^{-1}(z_2) \end{pmatrix} \rangle = \langle \gamma, \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} \rangle = \langle \zeta, \begin{pmatrix} y_1 \\ y_2 \end{pmatrix} \rangle \oplus c$

$$\langle \gamma, \begin{pmatrix} S_{k_1}^{-1}(z_1) \\ S_{k_2}^{-1}(z_2) \end{pmatrix} \rangle = \langle \gamma, \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} \rangle = \langle \zeta, \begin{pmatrix} y_1 \\ y_2 \end{pmatrix} \rangle \oplus c = \langle \zeta, G \begin{pmatrix} z_1 \\ z_2 \end{pmatrix} \rangle \oplus c$$

On Perfect Linear Approximations and Differentials over Two-Round SPNs | CRYPTO 2023 | August 23, 2023

OF LARGE-SCALE ADVERSARIES

On Perfect Linear Approximations and Differentials over Two-Round SPNs | CRYPTO 2023 | August 23, 2023

OF LARGE-SCALE ADVERSARIES

Cipher		Linear
	<i>r</i> = 2	
Boomslang		
CRAFT		
MANTIS		
Midori64		
SKINNY-64		
SKINNY-128		
AES	\checkmark	
GIFT-64/128	\checkmark	
LED	\checkmark	
PRESENT	\checkmark	
PRINCE	\checkmark	
Streebog	\checkmark	
Ascon	\checkmark	
iSCREAM	\checkmark	
Keccak-100	\checkmark	
Kuznechik	\checkmark	
PRIDE	\checkmark	
RECTANGLE	\checkmark	

- X Existence
- ⊥ Abort
- Not tested

Cipher	Linear
	r = 2
Boomslang	×
CRAFT	
MANTIS	
Midori64	
SKINNY-64	
SKINNY-128	
AES	\checkmark
GIFT-64/128	\checkmark
LED	\checkmark
PRESENT	\checkmark
PRINCE	\checkmark
Streebog	\checkmark
Ascon	\checkmark
iSCREAM	\checkmark
Keccak-100	\checkmark
Kuznechik	\checkmark
PRIDE	\checkmark
RECTANGLE	\checkmark

- ✓ Non-existence
- X Existence
- ⊥ Abort
- Not tested

Cipher	Linear
	<i>r</i> = 2
Boomslang	×
CRAFT	×
MANTIS	
Midori64	
SKINNY-64	
SKINNY-128	
AES	\checkmark
GIFT-64/128	\checkmark
LED	\checkmark
PRESENT	\checkmark
PRINCE	\checkmark
Streebog	\checkmark
Ascon	\checkmark
iSCREAM	\checkmark
Keccak-100	\checkmark
Kuznechik	\checkmark
PRIDE	\checkmark
RECTANGLE	\checkmark

- ✓ Non-existence
- X Existence
- ⊥ Abort
- Not tested

Cipher		Linear
	<i>r</i> = 2	
Boomslang	X	
CRAFT	X	
MANTIS	X	
Midori64	X	
SKINNY-64		
SKINNY-128		
AES	\checkmark	
GIFT-64/128	\checkmark	
LED	\checkmark	
PRESENT	\checkmark	
PRINCE	\checkmark	
Streebog	\checkmark	
Ascon	\checkmark	
iSCREAM	\checkmark	
Keccak-100	\checkmark	
Kuznechik	\checkmark	
PRIDE	\checkmark	
RECTANGLE	\checkmark	

- ✓ Non-existence
- X Existence
- ⊥ Abort
- Not tested

Cipher		Linear
	<i>r</i> = 2	
Boomslang	X	
CRAFT	X	
MANTIS	X	
Midori64	X	
SKINNY-64	X	
SKINNY-128	X	
AES	\checkmark	
GIFT-64/128	\checkmark	
LED	\checkmark	
PRESENT	\checkmark	
PRINCE	\checkmark	
Streebog	\checkmark	
Ascon	\checkmark	
iSCREAM	\checkmark	
Keccak-100	\checkmark	
Kuznechik	\checkmark	
PRIDE	\checkmark	
RECTANGLE	\checkmark	

- ✓ Non-existence
- X Existence
- ⊥ Abort
- Not tested

Cipher		Linear	
	<i>r</i> = 2	<i>r</i> = 3	
Boomslang	X	\checkmark	
CRAFT	X	\checkmark	
MANTIS	X	\checkmark	
Midori64	X	\checkmark	
SKINNY-64	X	\checkmark	
SKINNY-128	X	\perp	
AES	\checkmark	\checkmark	
GIFT-64/128	\checkmark	\checkmark	
LED	\checkmark	\checkmark	
PRESENT	\checkmark	\checkmark	
PRINCE	\checkmark	\checkmark	
Streebog	\checkmark	\checkmark	
Ascon	\checkmark	\checkmark	
iSCREAM	\checkmark	\perp	
Keccak-100	\checkmark	\checkmark	
Kuznechik	\checkmark	\perp	
PRIDE	\checkmark	\checkmark	
RECTANGLE	\checkmark	\checkmark	

- ✓ Non-existence
- X Existence
- ⊥ Abort
- Not tested

Cipher	Linear			
	<i>r</i> = 2	<i>r</i> = 3	<i>r</i> = 4	
Boomslang	X	\checkmark	X	
CRAFT	X	\checkmark	\checkmark	
MANTIS	X	\checkmark	X	
Midori64	X	\checkmark	X	
SKINNY-64	X	\checkmark	\checkmark	
SKINNY-128	X	\perp	\perp	
AES	\checkmark	\checkmark	\perp	
GIFT-64/128	\checkmark	\checkmark	\checkmark	
LED	\checkmark	\checkmark	\checkmark	
PRESENT	\checkmark	\checkmark	\checkmark	
PRINCE	\checkmark	\checkmark	\checkmark	
Streebog	\checkmark	\checkmark	\perp	
Ascon	\checkmark	\checkmark	-	
iSCREAM	\checkmark	\perp	-	
Keccak-100	\checkmark	\checkmark	_	
Kuznechik	\checkmark	\perp	-	
PRIDE	\checkmark	\checkmark	_	
RECTANGLE	\checkmark	\checkmark	-	

- ✓ Non-existence
- X Existence
- ⊥ Abort
- Not tested

*z*₂

S

On Perfect Linear Approximations and Differentials over Two-Round SPNs | CRYPTO 2023 | August 23, 2023

ΓΛςΛ

On Perfect Linear Approximations and Differentials over Two-Round SPNs | CRYPTO 2023 | August 23, 2023

ΓΛςΑ

On Perfect Linear Approximations and Differentials over Two-Round SPNs | CRYPTO 2023 | August 23, 2023

ΓΛςΑ

On Perfect Linear Approximations and Differentials over Two-Round SPNs | CRYPTO 2023 | August 23, 2023

ΓΛςΑ

If an SPN-round-function has two essentially different decompositions then there exist a perfect linear approximation and a perfect differential over (at least) one of its s-boxes.

If an SPN-round-function has two essentially different decompositions then there exist a perfect linear approximation and a perfect differential over (at least) one of its s-boxes.

• Here: $\hat{S}: x \mapsto S^{-1}(S(x) \oplus \beta_i)$ are the s-boxes

If an SPN-round-function has two essentially different decompositions then there exist a perfect linear approximation and a perfect differential over (at least) one of its s-boxes.

• Here: $\hat{S}: x \mapsto S^{-1}(S(x) \oplus \beta_i)$ are the s-boxes

• Perfect differential over \hat{S} would imply

 $\exists \delta \neq 0, \delta' \colon \qquad S^{-1}(S(x) \oplus \beta_i) \oplus S^{-1}(S(x \oplus \delta) \oplus \beta_i) \qquad = \delta' \qquad \forall x$

If an SPN-round-function has two essentially different decompositions then there exist a perfect linear approximation and a perfect differential over (at least) one of its s-boxes.

• Here: $\hat{S}: x \mapsto S^{-1}(S(x) \oplus \beta_i)$ are the s-boxes

• Perfect differential over \hat{S} would imply

$$\exists \delta \neq 0, \delta': \qquad S^{-1}(S(x) \oplus \beta_i) \oplus S^{-1}(S(x \oplus \delta) \oplus \beta_i) = \delta' \qquad \forall x \\ \Longrightarrow \qquad S^{-1}(S(x) \oplus \beta_i) \oplus S^{-1}(S(x \oplus \delta') \oplus \beta_i) = \delta \qquad \forall x$$

If an SPN-round-function has two essentially different decompositions then there exist a perfect linear approximation and a perfect differential over (at least) one of its s-boxes.

• Here: $\hat{S}: x \mapsto S^{-1}(S(x) \oplus \beta_i)$ are the s-boxes

• Perfect differential over \hat{S} would imply

$$\exists \delta \neq 0, \delta' \colon \qquad S^{-1}(S(x) \oplus \beta_i) \oplus S^{-1}(S(x \oplus \delta) \oplus \beta_i) \qquad = \delta' \qquad \forall x$$

$$\implies \qquad S^{-1}(S(x)\oplus\beta_i)\oplus S^{-1}(S(x\oplus\delta')\oplus\beta_i) \qquad =\delta \qquad \qquad \forall x$$

$$\implies \qquad S^{-1}(S(x)\oplus\beta_i)\oplus S^{-1}(S(x\oplus\delta\oplus\delta')\oplus\beta_i) = \delta\oplus\delta' \qquad \forall x$$

If an SPN-round-function has two essentially different decompositions then there exist a perfect linear approximation and a perfect differential over (at least) one of its s-boxes.

• Here: $\hat{S}: x \mapsto S^{-1}(S(x) \oplus \beta_i)$ are the s-boxes

• Perfect differential over \hat{S} would imply

$$\exists \delta \neq 0, \delta' \colon \qquad S^{-1}(S(x) \oplus \beta_i) \oplus S^{-1}(S(x \oplus \delta) \oplus \beta_i) \qquad = \delta' \qquad \forall x$$

$$\implies \qquad S^{-1}(S(x)\oplus\beta_i)\oplus S^{-1}(S(x\oplus\delta')\oplus\beta_i) \qquad =\delta \qquad \qquad \forall x$$

$$\implies \qquad S^{-1}(S(x)\oplus\beta_i)\oplus S^{-1}(S(x\oplus\delta\oplus\delta')\oplus\beta_i) = \delta\oplus\delta' \qquad \forall x$$

► I.e. *S* would have maximal boomerang uniformity [Boura and Canteaut, ToSC'18] On Perfect Linear Approximations and Differentials over Two-Round SPNs | CRYPTO 2023 | August 23, 2023

If an SPN-round-function has two essentially different decompositions then there exist a perfect linear approximation and a perfect differential over (at least) one of its s-boxes.

• Here: $\hat{S}: x \mapsto S^{-1}(S(x) \oplus \beta_i)$ are the s-boxes

• Perfect differential over \hat{S} would imply

$$\exists \delta \neq 0, \delta' \colon \qquad S^{-1}(S(x) \oplus \beta_i) \oplus S^{-1}(S(x \oplus \delta) \oplus \beta_i) \qquad = \delta' \qquad \forall x$$

$$\implies \qquad S^{-1}(S(x)\oplus\beta_i)\oplus S^{-1}(S(x\oplus\delta')\oplus\beta_i) \qquad =\delta \qquad \qquad \forall x$$

$$\implies \qquad S^{-1}(S(x)\oplus\beta_i)\oplus S^{-1}(S(x\oplus\delta\oplus\delta')\oplus\beta_i) = \delta\oplus\delta' \qquad \forall x$$

► I.e. *S* would have maximal boomerang uniformity [Boura and Canteaut, ToSC'18] On Perfect Linear Approximations and Differentials over Two-Round SPNs|CRYPTO 2023|August 23, 2023

▶ Use theory from [Lambin, Leander and N., EC'23]

- ▶ Use theory from [Lambin, Leander and N., EC'23]
- ► Exemplary implication

Corollary 2

If L has differential branch number of at least 3 and if S does not have

- 1. maximal boomerang uniformity, or
- 2. *linear structures*

then there cannot exist any perfect differential over two rounds.

Existence of Perfect Linear Approximations and Differentials over Two-Round $\ensuremath{\mathsf{SPNs}}$

Cipher		Linear		Differential
	<i>r</i> = 2	<i>r</i> = 3	<i>r</i> = 4	r = 2
Boomslang	X	\checkmark	X	\checkmark
CRAFT	X	\checkmark	\checkmark	\checkmark
MANTIS	X	\checkmark	X	\checkmark
Midori64	X	\checkmark	X	\checkmark
SKINNY-64	X	\checkmark	\checkmark	\checkmark
SKINNY-128	X	\perp	\perp	\checkmark
AES	\checkmark	\checkmark	\perp	\checkmark
GIFT-64/128	\checkmark	\checkmark	\checkmark	\checkmark
LED	\checkmark	\checkmark	\checkmark	\checkmark
PRESENT	\checkmark	\checkmark	\checkmark	\checkmark
PRINCE	\checkmark	\checkmark	\checkmark	\checkmark
Streebog	\checkmark	\checkmark	\perp	\checkmark
Ascon	\checkmark	\checkmark	-	\checkmark
iSCREAM	\checkmark	\perp	-	\checkmark
Keccak-100	\checkmark	\checkmark	_	\checkmark
Kuznechik	\checkmark	\perp	-	\checkmark
PRIDE	\checkmark	\checkmark	-	\checkmark
RECTANGLE	\checkmark	\checkmark	-	\checkmark

- ✓ Non-existence
- X Existence
- ⊥ Abort
- Not tested

Existence of Perfect Linear Approximations and Differentials over Two-Round $\ensuremath{\mathsf{SPNs}}$

Cipher		Linear		Differential
	<i>r</i> = 2	<i>r</i> = 3	<i>r</i> = 4	r = 2
Boomslang	X	\checkmark	X	\checkmark
CRAFT	X	\checkmark	\checkmark	\checkmark
MANTIS	×	\checkmark	X	\checkmark
Midori64	X	\checkmark	X	\checkmark
SKINNY-64	×	\checkmark	\checkmark	\checkmark
SKINNY-128	X	\perp	\perp	\checkmark
AES	\checkmark	\checkmark	\perp	\checkmark
GIFT-64/128	\checkmark	\checkmark	\checkmark	\checkmark
LED	\checkmark	\checkmark	\checkmark	\checkmark
PRESENT	\checkmark	\checkmark	\checkmark	\checkmark
PRINCE	\checkmark	\checkmark	\checkmark	\checkmark
Streebog	\checkmark	\checkmark	\perp	\checkmark
Ascon	\checkmark	\checkmark	-	\checkmark
iSCREAM	\checkmark	\perp	-	\checkmark
Keccak-100	\checkmark	\checkmark	-	\checkmark
Kuznechik	\checkmark	\perp	-	\checkmark
PRIDE	\checkmark	\checkmark	-	\checkmark
RECTANGLE	\checkmark	\checkmark	-	\checkmark

- ✓ Non-existence
- X Existence
- ⊥ Abort
- Not tested

Thank you for your attention!