Cryptanalysis of Symmetric Primitives over Rings and a Key Recovery Attack on Rubato

Lorenzo Grassi, Martha Norberg Hovd, Irati Manterola Ayala, Morten Øygarden, Håvard Raddum, and Qingju Wang

> Family of ciphers proposed by Ha et al. at Eurocrypt 2022¹

¹J. Ha, S. Kim, B. Lee, J. Lee, and M. Son. Rubato: Noisy Ciphers for Approximate Homomorphic Encryption. In *Advances in Cryptology - EUROCRYPT 2022*, volume 13275 of *LNCS*, pages 581–610. Springer, 2022.

- > Family of ciphers proposed by Ha et al. at Eurocrypt 2022¹
- > Usecase: transciphering framework for approximate FHE

¹J. Ha, S. Kim, B. Lee, J. Lee, and M. Son. Rubato: Noisy Ciphers for Approximate Homomorphic Encryption. In *Advances in Cryptology - EUROCRYPT 2022*, volume 13275 of *LNCS*, pages 581–610. Springer, 2022.

- \succ Family of ciphers proposed by Ha et al. at Eurocrypt 2022¹
- > Usecase: transciphering framework for approximate FHE
- > Idea: introduce noise to a symmetric cipher of a low algebraic degree

¹J. Ha, S. Kim, B. Lee, J. Lee, and M. Son. Rubato: Noisy Ciphers for Approximate Homomorphic Encryption. In *Advances in Cryptology - EUROCRYPT 2022*, volume 13275 of *LNCS*, pages 581–610. Springer, 2022.

- > Family of ciphers proposed by Ha et al. at Eurocrypt 2022¹
- > Usecase: transciphering framework for approximate FHE
- > Idea: introduce noise to a symmetric cipher of a low algebraic degree
- > Similar to HERA² **BUT** defined over a ring \mathbb{Z}_q

¹J. Ha, S. Kim, B. Lee, J. Lee, and M. Son. Rubato: Noisy Ciphers for Approximate Homomorphic Encryption. In *Advances in Cryptology - EUROCRYPT 2022*, volume 13275 of *LNCS*, pages 581–610. Springer, 2022.

² J. Cho, J. Ha, S. Kim, B. Lee, J. Lee, J. Lee, D. Moon, and H. Yoon. Transciphering framework for approximate homomorphic encryption. In M. Tibouchi and H. Wang, editors, *Advances in Cryptology - ASIACRYPT 2021*, volume 13092 of LNCS, pages 640–669. Springer, 2021.

Notation:

- $q\geq 2$ integer
- $\bullet \quad \mathbb{Z}_q:=\mathbb{Z}\cap (-q/2,q/2]$
- State of Rubato = $X \in \mathbb{Z}_q^{v imes v}$ Block size $n = v^2$

Notation:

- $q\geq 2$ integer
- $\bullet \quad \mathbb{Z}_q:=\mathbb{Z}\cap (-q/2,q/2]$
- State of Rubato $= X \in \mathbb{Z}_q^{v imes v}$ Block size $n = v^2$

 $\mathbf{k} \in \mathbb{Z}_q^n$ symmetric key $\mathbf{nc} \in \{0,1\}^{\lambda}$ nonce $i\in\mathbb{Z}_{\geq0}$ counter

$$\mathsf{Rubato}[\mathbf{k},\mathbf{nc},i]: \mathbf{is} \longmapsto \mathbf{z} \in \mathbb{Z}_q^\ell \qquad \ell < n$$

Notation:

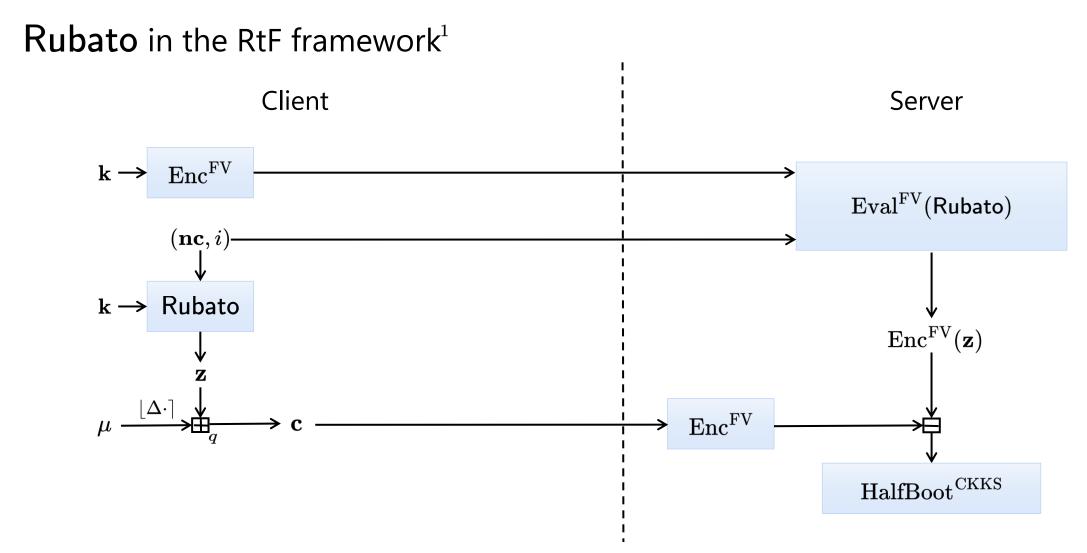
- $q\geq 2$ integer
- $\bullet \quad \mathbb{Z}_q:=\mathbb{Z}\cap (-q/2,q/2]$
- State of Rubato $= X \in \mathbb{Z}_q^{v imes v}$ Block size $n = v^2$

 $\mathbf{k} \in \mathbb{Z}_q^n$ symmetric key $\mathbf{nc} \in \{0,1\}^\lambda$ nonce $i\in\mathbb{Z}_{\geq0}$ counter

$$\mathsf{Rubato}[\mathbf{k},\mathbf{nc},i]: \mathbf{is} \longmapsto \mathbf{z} \in \mathbb{Z}_q^\ell \qquad \ell < n$$

Encryption of $\mu \in \mathbb{R}^{\ell}$

$$\mathbf{c} = \lfloor \Delta \cdot \mu
ceil + \mathbf{z} \mod q$$



¹ J. Cho, J. Ha, S. Kim, B. Lee, J. Lee, J. Lee, D. Moon, and H. Yoon. Transciphering framework for approximate homomorphic encryption. In M. Tibouchi and H. Wang, editors, *Advances in Cryptology - ASIACRYPT 2021*, volume 13092 of LNCS, pages 640–669. Springer, 2021.

Components of **Rubato**

Components of Rubato

• Add-Round Key (ARK)

 $\operatorname{ARK}[\mathbf{k},i]:\mathbf{x}\mapsto\mathbf{x}+\mathbf{k}ullet\mathbf{rc_i}^{ imes}$ $XOF: (\mathbf{nc}, i)$

Components of Rubato

• Add-Round Key (ARK)

$$\begin{array}{ccc} \mathbb{Z}_q^n & (\mathbb{Z}_q^{\times})^n \\ & & & \\ & & & \\ \mathbf{ARK}[\mathbf{k},i]: \mathbf{x} \mapsto \mathbf{x} + \mathbf{k} \bullet \mathbf{rc_i} \\ & & & \\ & & & \uparrow \\ & & & \\ & & & \\ & & & \text{XOF}: (\mathbf{nc},i) \end{array}$$

• MixColumns (MC) and MixRows (MR) $X \stackrel{ ext{MC}}{ o} M_v imes X \stackrel{ ext{MR}}{ o} (M_v imes X) imes M_v^T$

$$M_v = egin{bmatrix} \mathbf{y_v} & \mathbf{y_v} \ \mathbf{y_v} \ll 1 \ dots & \mathbf{y_4} = [2,3,1,1]; \ \mathbf{y_6} = [4,2,4,3,1,1]; \ dots \mathbf{y_8} = [5,3,4,3,6,2,1,1]; \ \mathbf{y_8} = [5,3,4,3,6,2,1,1]; \end{cases}$$

Components of Rubato

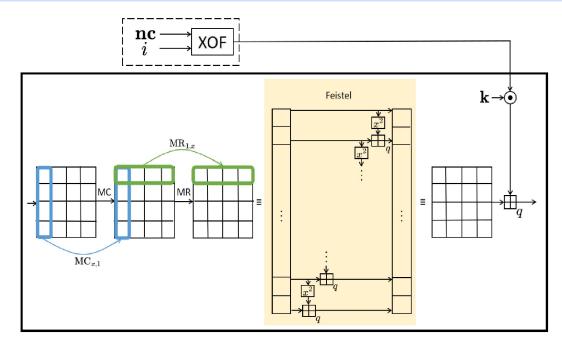
• Add-Round Key (ARK)

• MixColumns (MC) and MixRows (MR) $X \stackrel{ ext{MC}}{ o} M_v imes X \stackrel{ ext{MR}}{ o} (M_v imes X) imes M_v^T$

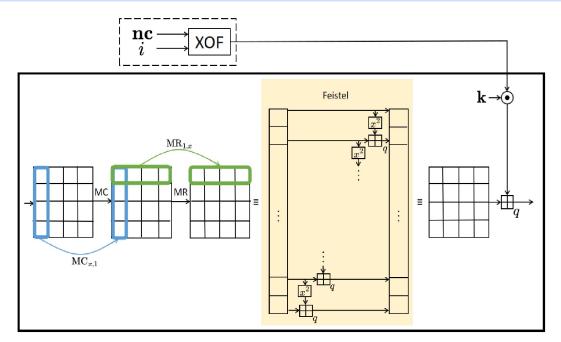
• Feistel Feistel:
$$\mathbf{x} = (x_1, \dots, x_n) \longmapsto (x_1, x_2 + x_1^2, x_3 + x_2^2, \dots, x_n + x_{n-1}^2)$$

 $\begin{bmatrix} \mathbf{y}_{\mathbf{v}} \\ \mathbf{y}_{\mathbf{v}} \ll 1 \\ \mathbf{y}_{\mathbf{v}} \ll 1 \end{bmatrix} \in \mathbb{Z}_q^{v \times v}$
 $\mathbf{y}_{\mathbf{u}} = [2, 3, 1, 1];$
 $\mathbf{y}_{\mathbf{u}} = [4, 2, 4, 3, 1, 1];$
 $\mathbf{y}_{\mathbf{u}} = [5, 3, 4, 3, 6, 2, 1, 1];$

Round function: $RF[\mathbf{k}, i] = ARK[\mathbf{k}, i] \circ Feistel \circ MixRows \circ MixColumns$

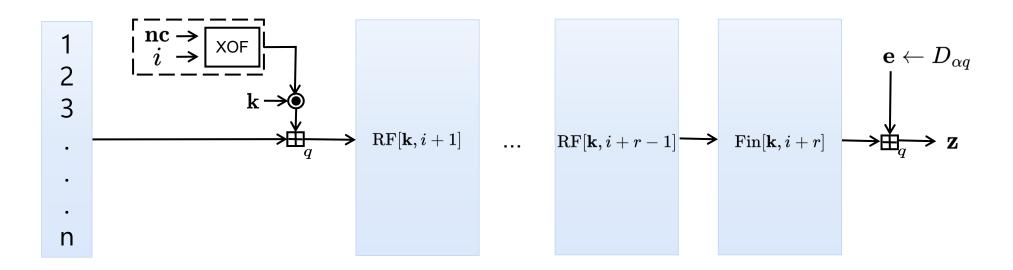


Round function: $RF[\mathbf{k}, i] = ARK[\mathbf{k}, i] \circ Feistel \circ MixRows \circ MixColumns$

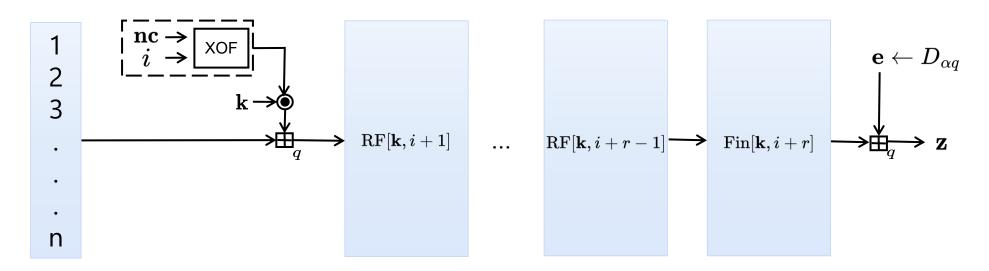


Final round: $\operatorname{Fin}[\mathbf{k}, i+r] = \operatorname{Tr}_{n,\ell} \circ \operatorname{ARK}[\mathbf{k}, i+r] \circ \operatorname{MR} \circ \operatorname{MC} \circ \operatorname{Feistel} \circ \operatorname{MR} \circ \operatorname{MC}$ $\operatorname{Tr}_{n,\ell}(x_1, \ldots, x_n) = (x_1, \ldots, x_\ell)$

r-round Rubato



r-round Rubato



Parameter	λ	n	ℓ	$\lceil \log_2 q \rceil$	lpha q	r
Par-80S	80	16	12	26	11.1	$\overline{2}$
Par-80M	80	36	32	25	2.7	2
Par-80L	80	64	60	25	1.6	2
$\overline{\text{Par-128S}}$	$\overline{128}$	$\overline{16}$	$\overline{12}$	-26	10.5	$\overline{5}$
Par-128M	128	36	32	25	4.1	3
Par-128L	128	64	60	25	4.1	2

Proposed parameters of **Rubato**

- 1. Recover key and noise $\mod m, m|q|$
- 2. Recover positions in key stream with 0 noise
- 3. Set up system of polynomial equations and solve by linearization

- 1. Recover key and noise $\mod m, m|q|$
- 2. Recover positions in key stream with 0 noise
- 3. Set up system of polynomial equations and solve by linearization

Notation:

- Ru = Rubato without noise
- $w = \mathsf{Ru}[\mathbf{k}, \mathbf{nc}, i]$
- Rubato_m, Ru_m execute steps in \mathbb{Z}_m

1. Recover key and noise $\mod m|q|$

Let
$$(k_1, \dots, k_n) \in \mathbb{Z}_q^n$$
 and $z_i = \mathsf{Rubato}[\mathbf{k}, \mathbf{nc}, i], \ 1 \leq i \leq s$

$$\Rightarrow z_i = w_i + e_i \mod q \,, \, e_i \leftarrow D_{lpha q}$$

1. Recover key and noise $\mod m|q|$

Let
$$(k_1, \ldots, k_n) \in \mathbb{Z}_q^n$$
 and $z_i = \mathsf{Rubato}[\mathbf{k}, \mathbf{nc}, i], 1 \le i \le s$
 $\Rightarrow z_i = w_i + e_i \mod q, e_i \leftarrow D_{lpha q}$
Guess $\mathbf{\tilde{k}} = (\tilde{k}_1, \ldots, \tilde{k}_n) \in \mathbb{Z}_m^n \rightarrow \tilde{w}_i = \mathsf{Ru}_m[\mathbf{\tilde{k}}, \mathbf{nc}, i]$
 $\tilde{e_i} = (z_i \mod m) - \tilde{w_i}$
 $\tilde{e_i} = e_i \mod m$?

1. Recover key and noise mod m|q|

$$\begin{array}{ll} \mathsf{Let} \ (k_1,\ldots,k_n)\in\mathbb{Z}_q^n \ \mathsf{and} \ z_i=\mathsf{Rubato}[\mathbf{k},\mathbf{nc},i]\,,\, 1\leq i\leq s\\ \Rightarrow z_i=w_i+e_i \quad \mathrm{mod} \ q\,,\, e_i\leftarrow D_{\alpha q}\\ \mathsf{Guess} \ \mathbf{\tilde{k}}=(\tilde{k}_1,\ldots,\tilde{k}_n)\in\mathbb{Z}_m^n\to\tilde{w}_i=\mathsf{Ru}_m[\mathbf{\tilde{k}},\mathbf{nc},i]\\ \tilde{e_i}=(z_i \quad \mathrm{mod} \ m)-\tilde{w_i}\\ \tilde{e_i}=e_i \quad \mathrm{mod} \ m? \end{array}$$

 $\begin{cases} \tilde{e_i} \text{ unif. random} \Rightarrow \text{ WRONG GUESS} \\ \tilde{e_i} \leftarrow D_{\alpha q} \mod m \Rightarrow \text{RIGHT GUESS} \end{cases}$

1. Recover key and noise mod m|q|

$$\begin{array}{l} \mathsf{Let} \ (k_1,\ldots,k_n)\in\mathbb{Z}_q^n \ \mathsf{and} \ z_i=\mathsf{Rubato}[\mathbf{k},\mathbf{nc},i]\,,\, 1\leq i\leq s\\ \Rightarrow z_i=w_i+e_i \quad \mathrm{mod} \ q\,,\, e_i\leftarrow D_{\alpha q}\\ \mathsf{Guess} \ \mathbf{\tilde{k}}=(\tilde{k}_1,\ldots,\tilde{k}_n)\in\mathbb{Z}_m^n\to\tilde{w_i}=\mathsf{Ru}_m[\mathbf{\tilde{k}},\mathbf{nc},i]\\ \tilde{e_i}=(z_i \quad \mathrm{mod} \ m)-\tilde{w_i}\\ \tilde{e_i}=e_i \quad \mathrm{mod} \ m? \end{array}$$

 $ilde{e_i}$ unif. random \Rightarrow WRONG GUESS $ilde{e_i} \leftarrow D_{\alpha q} \mod m \Rightarrow$ RIGHT GUESS

 $egin{array}{ccc} e_i \mod m \ k_i \mod m \end{array}$

2. Recover positions with 0 noise

Let f|(q/m) such that $f = f_1 \cdots f_b$, $f_j \leq m$:

2. Recover positions with 0 noise

Let f|(q/m) such that $f = f_1 \cdots f_b$, $f_j \leq m$:

• Repeat step 1 mod $f_jm \, \Rightarrow \, k_i, e_i \mod f_jm \, \Rightarrow \, k_i, e_i \mod fm$

Let f|(q/m) such that $f=f_1\cdots f_b\,,\,f_j\leq m:$

- Repeat step 1 mod $f_jm \, \Rightarrow \, k_i, e_i \mod f_jm \, \Rightarrow \, k_i, e_i \mod fm$
- f such that $|e_i| < fm$ with high probability so that

$$e_i \mod fm = 0 \Rightarrow e_i \mod q = 0$$

Note: $0 \leftarrow D_{lpha q}$ at rate 1/lpha q

Let f|(q/m) such that $f=f_1\cdots f_b\,,\,f_j\leq m:$

- Repeat step 1 mod $f_jm \, \Rightarrow \, k_i, e_i \mod f_jm \, \Rightarrow \, k_i, e_i \mod fm$
- f such that $|e_i| < fm$ with high probability so that

$$e_i \mod fm = 0 \Rightarrow e_i \mod q = 0$$

Note: $0 \leftarrow D_{lpha q}$ at rate 1/lpha q

 $\mathcal{I} = \{i \mid e_i \equiv 0 \mod q\}$.

3. Key recovery for full Rubato key

For $i \in \mathcal{I}: w_i = z_i$ Set up system

$$egin{array}{rll} F_{i_1}(k_1,\ldots,k_n)&=&z_{i_1}\ F_{i_2}(k_1,\ldots,k_n)&=&z_{i_2}\ dots&&dots\ F_{i_b}(k_1,\ldots,k_n)&=&z_{i_b} \end{array}$$

For $i \in \mathcal{I}: w_i = z_i$ Set up system $F_{i_1}(F_{i_2})$

$$egin{array}{rll} F_{i_1}(k_1,\ldots,k_n)&=&z_{i_1}\ F_{i_2}(k_1,\ldots,k_n)&=&z_{i_2}\ dots&&dots&dots\ F_{i_b}(k_1,\ldots,k_n)&=&z_{i_b} \end{array}$$

Solve by Gaussian elimination for every prime factor of q and combine using CRT

For $i \in \mathcal{I}: w_i = z_i$ Set up system

$$egin{array}{rcl} F_{i_1}(k_1,\ldots,k_n)&=&z_{i_1}\ F_{i_2}(k_1,\ldots,k_n)&=&z_{i_2}\ dots&&dots\ F_{i_b}(k_1,\ldots,k_n)&=&z_{i_b} \end{array}$$

Solve by Gaussian elimination for every prime factor of q and combine using CRT

Rubato variant	Degree	# of monomials	Solving complexity
Rubato-80S	4	4845	$2^{34.28}$
$Rubato{-80}\mathrm{M}$	4	91390	$2^{46.14}$
$Rubato{-}80\mathrm{L}$	4	814385	$2^{54.98}$
Rubato-128S	32	$2^{41.04}$	$2^{114.90}$
$Rubato-128\mathrm{M}$	8	$2^{27.40}$	$2^{76.72}$
$Rubato{-}128\mathrm{L}$	4	814385	$2^{54.98}$

Solving complexities for solving a linearized system of equations $\mod p|q$

Determining m_{\max}

• In order to have a valid attack, we need $m^n < 2^{\lambda}$ for step 1

$$\Rightarrow m_{ ext{max}} = \lfloor 2^{\lambda/n}
floor$$

Determining m_{\min}

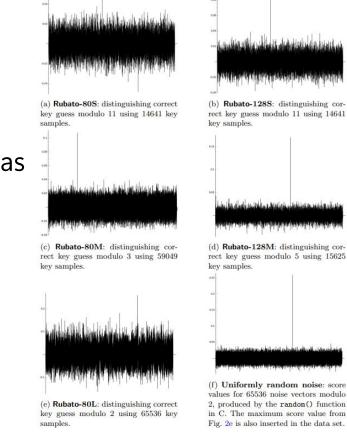
• Smallest $m_{\min} \in \mathbb{Z}$ where it is possible to distinguish the correct key guess $\tilde{k} \mod m_{\min}$ from all the wrong ones

Determining m_{\min}

- Smallest $m_{\min} \in \mathbb{Z}$ where it is possible to distinguish the correct key guess $ilde{k} \mod m_{\min}$ from all the wrong ones
- The score function measures how much the candidate noise value produced by \tilde{k} deviates from the uniform distribution (in the same way as values drawn from $D_{\alpha q} \mod m$ do)

Determining m_{\min}

- Smallest $m_{\min} \in \mathbb{Z}$ where it is possible to distinguish the correct key guess $ilde{k} \mod m_{\min}$ from all the wrong ones
- The score function measures how much the candidate noise value produced by \tilde{k} deviates from the uniform distribution (in the same way as values drawn from $D_{\alpha q} \mod m$ do)
 - \rightarrow High score \Rightarrow RIGHT GUESS
 - \rightarrow Score $\approx 0 \Rightarrow$ WRONG GUESS



 \Rightarrow Find m_{\min} heuristically

Determining m_{\min}

- Smallest $m_{\min} \in \mathbb{Z}$ where it is possible to distinguish the correct key guess $ilde{k} \mod m_{\min}$ from all the wrong ones
- The score function measures how much the candidate noise value produced by \tilde{k} deviates from the uniform distribution (in the same way as values drawn from $D_{\alpha q} \mod m$ do)
 - → High score \Rightarrow RIGHT GUESS → Score $\approx 0 \Rightarrow$ WRONG GUESS
- Caveat: wrong key guesses do NOT produce noise values that are distributed uniformly at random

(a) Rubato-80S: distinguishing correct (b) Rubato-128S: distinguishing corkey guess modulo 11 using 14641 key rect key guess modulo 11 using 14641 key samples. (d) Rubato-128M: distinguishing cor-(c) Rubato-80M: distinguishing correct key guess modulo 3 using 59049 rect key guess modulo 5 using 15625 key samples. key samples. (f) Uniformly random noise: score values for 65536 noise vectors modulo 2, produced by the random() function (e) Rubato-80L: distinguishing correct key guess modulo 2 using 65536 key in C. The maximum score value from samples. Fig. 2e is also inserted in the data set.

Assumption 2: $\exists f \in \mathbb{Z}:$ prime factors of $f \leq m\,,\,fm|q\,,\,fm>t$

Assumption 2: $\exists f \in \mathbb{Z}:$ prime factors of $f \leq m\,,\,fm|q\,,\,fm>t$

Determining t

• Find smallest $t\in\mathbb{Z}$ such that for fm>t,fm|q whp

$$e \mod (fm) = 0 \Rightarrow e \mod q = 0$$

Assumption 2: $\exists f \in \mathbb{Z}:$ prime factors of $f \leq m, \, fm | q, \, fm > t$

Determining t

 \downarrow

• Find smallest $t\in\mathbb{Z}$ such that for fm>t,fm|q whp

$$e \mod (fm) = 0 \Rightarrow e \mod q = 0$$

• Find smallest $t \in \mathbb{Z}$ such that $|e_i| < t$ whp $\forall 1 \leq i \leq s$

Assumption 2: $\exists f \in \mathbb{Z}:$ prime factors of $f \leq m, \, fm | q, \, fm > t$

Determining t

 \downarrow

• Find smallest $t\in\mathbb{Z}$ such that for fm>t,fm|q whp

$$e \mod (fm) = 0 \Rightarrow e \mod q = 0$$

- Find smallest $t \in \mathbb{Z}$ such that $|e_i| < t$ whp $\forall 1 \leq i \leq s$
- Find smallest $t \in \mathbb{Z}$ such that $0.99 \leq \Pr(|e_i| < t)^s = \left(\sum_{x=-t}^t \frac{1}{\alpha q} e^{-x^2/2\sigma^2}\right)^s$

Rubato variant	\mathbf{m}_{\min}	\mathbf{m}_{\max}	t	Fraction of vulnerable q 's
Rubato-80S	11	31	24	42.05%
Rubato-80M	3	4	7	25%
Rubato-80L	2	2	4	25%
Rubato-128S	11	255	35	58.47%
Rubato-128M	5	11	12	37.25%
Rubato-128L	-	-	-	0%

¹Experimental verification at https://github.com/Simula-UiB/RubatoAttack

• Select a 25 or 26-bit q with some small factors \rightarrow Produce 10000 elements k at random of **Rubato** key stream

- Select a 25 or 26-bit q with some small factors \rightarrow Produce 10000 elements k at random of Rubato key stream
- Fix value of $m \rightarrow \text{make } 11^4 2^{16} \text{ guesses on the key mod } m$ (including $k \mod m$) and store score values in a file

- Select a 25 or 26-bit q with some small factors \rightarrow Produce 10000 elements k at random of Rubato key stream
- Fix value of $m \rightarrow \text{make } 11^4 2^{16} \text{ guesses on the key mod } m$ (including $k \mod m$) and store score values in a file
- Make plots of the score values as a bar chart

¹Experimental verification at https://github.com/Simula-UiB/RubatoAttack

- Select a 25 or 26-bit q with some small factors \rightarrow Produce 10000 elements k at random of Rubato key stream
- Fix value of $m \rightarrow \text{make } 11^4 2^{16} \text{ guesses on the key mod } m$ (including $k \mod m$) and store score values in a file
- Make plots of the score values as a bar chart
- Verify that the maximum score value seen corresponds to $k \mod m$

¹Experimental verification at https://github.com/Simula-UiB/RubatoAttack

Attack complexities

Lowest attack complexity when $\,m=m_{
m min}\,,\,f=2^g=2^{\lceil\log(t/m)
ceil}$

Key recovery attack complexity:

$$C_{kr} = m^n + g \cdot 2^n + C_{lin} \ \uparrow \qquad \uparrow \qquad \uparrow \qquad \uparrow \qquad \uparrow \qquad f$$
Step 1 Step 2 Step 3

Lowest attack complexity when $\,m=m_{
m min}\,,\,f=2^g=2^{\lceil\log(t/m)
cei}$

Key recovery attack complexity:

$$C_{kr} = m^n + g \cdot 2^n + C_{lin}$$
 $\uparrow \qquad \uparrow$
Step 1 Step 2 Step 3

Rubato variant	Assumption on q	Time	Data	Memory
Rubato-80S	44 q	$2^{55.35}$	$2^{15.71}$	$2^{24.48}$
Rubato- $80M$	12 q	$2^{57.06}$	$2^{17.91}$	$2^{32.96}$
Rubato-80L	4 q	2^{65}	$2^{20.31}$	$2^{39.27}$
Rubato-128S	$q = 11 \cdot 2^{22}$	$2^{55.35}$	$2^{44.43}$	$2^{44.43}$
Rubato- $128M$	20 q	$2^{83.59}$	$2^{29.44}$	$2^{39.27}$

Lowest time complexities of key recovery attack

+ Immune to small-factor attack

+ Immune to small-factor attack

• Bigger αq

+ Cannot distinguish $k \mod m$ for $m < 2^{\lambda/n}$ - More noise \Rightarrow loss of precision and accuracy

• Bigger αq

• More rounds

+ Immune to small-factor attack

- + Cannot distinguish $k \mod m$ for $m < 2^{\lambda/n}$
- More noise \Rightarrow loss of precision and accuracy
- + Linearization step high solving complexity
- Higher multiplicative depth \Rightarrow loss of efficiency

• Bigger αq

• More rounds

+ Immune to small-factor attack

- + Cannot distinguish $k \mod m$ for $m < 2^{\lambda/n}$
- More noise \Rightarrow loss of precision and accuracy

- + Linearization step high solving complexity
- Higher multiplicative depth \Rightarrow loss of efficiency
- Non-polynomial S-boxes
- + No polynomial representation of S-box
- Loss of efficiency

- Key recovery attack of 5/6 instances of **Rubato** for at least 25% of the choices of q
- Experimental verification of the attack
- Security of symmetric primitives over rings \mathbb{Z}_q

Thank you for your attention

More details in https://eprint.iacr.org/2023/822