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Quantum Cryptanalysis

A Short History of BQP Factoring Algorithms

Year Event

1994 Shor’s Algorithm Published

2002 15 = 5× 3 Factored!
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2019 35 = ??? Failed
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1 Large Public Funding of Quantum Computing:

Europe: $7 billion
US: $2 billion
China: $15 billion

2 Store and Decrypt attack

NSA’s Utah Data Center: 1+ Exabyte (= 1M terabytes).
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Lattices are Big

Parameter Sizes for Practical Crypto (Bytes)

Cipher pk Ctx
Kyber512 800 768

ECDH 32 32
RSA-2048 256 256

Is this fundamental?

This Work: Mostly*
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LWE

LWE Distribution

Let σ > 0, q, n ∈ N. For
s⃗, e⃗ ← N (0, σ2In),

A← Zn×n
q

[A,As⃗ + e⃗] ∈ Zn×n
q × Zn

q

LWE Problem: Distinguish distribution Uniform samples

Parameter Regimes:
Theoretical: q = poly(n), σ = Ω(

√
n)

Really Theoretical: q = nω(1)

Practical: log2 q ≈ 12, σ = 8
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Encryption from LWE

1 Private-key: Use Uniform sample as One-Time Pad

m⃗ 7→ [A, u⃗ + m⃗]

2 Decrypt [A,As⃗ + e⃗ + m⃗]?

Recover m⃗ + e⃗ ̸= m⃗

3 Idea: Encode m⃗ with error-correction
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Lattice Code

A lattice code is the pair of a lattice L ⊆ Rn, along with a rounding
algorithm Rn → L such that

⌊0⌉ = 0, and

∀x ∈ L, ∀y ∈ Rn : ⌊x + y⌉ = x + ⌊y⌉.

Fundamental Region: V⌊·⌉ = {x ∈ Rn | ⌊x⌉ = 0}
Conditions imply L+ V⌊·⌉ = Rn

Useful for error correction and quantization
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Error Correction and Quantization with Zn

Error Correction: (q/2)x⃗ + e⃗ 7→ x⃗

∥e∥∞ < q/4
L = (q/2)Zn, V = [−q/4, q/4]n

Quantization: x ∈ Zn
q 7→ (q/2)Zn

q

Modulus Switching
additive error in V
Compresses n log2

q
n
√

vol(V)
< n log2 q

r · B2 ⊆ V ⊆ R · B2
“Spikiness measure”: R/r
For Zn:

√
n

For ϵZ⊕ ϵ−1Z: Θ(ϵ2)
∃L with R/r < 3.
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Crypto from Lattice Codes

LWE[E ,Q]

For m⃗ ∈ E :

Encs⃗(m⃗) := [A, ⌊As⃗ + e⃗ + m⃗⌉Q ]
Decs⃗(A, b⃗) := ⌊b⃗ − As⃗⌉E

Secure

Correct: e⃗ + e⃗Q ∈ VE
e⃗Q ← VQ is quantization error

Public-Key Case:
Correct: e⃗′ ∈ VE for more complicated e′

⟨e⃗, e⃗′⟩, e⃗, e⃗′ ∼ N (0, σ2In)
⟨e⃗, e⃗Q⟩
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Packing Arguments

e⃗ ← σ
√
n · B2 typical length of a Gaussian

Correct if σ
√
nB2 + VQ ⊆ VE

. . . take volumes

Bounded Noise Impossibility

For any lattice codes E ,Q, q = poly(n), σ = Θ(
√
n)

1 LWE[E ,Zn] is not rate 1− o(1),

2 n
√
vol(VQ) < σ(1−ϵ) =⇒ LWE[E ,Q] is not rate 1− o(1)

3 n
√
vol(VQ) = O(σ) =⇒ LWE[E ,Q] is not rate 1− o(1/(log q)).
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Concentrated Noise Bounds

Now want e⃗ + e⃗Q ⊆ VE whp

(Reverse) Chernoff Bounds:

exp(−ϵ2/(2nσ2)) ≥ Pr[∥x⃗∥2 > ϵ] ≥ 1− O
(

ϵ√
nσ2

)

Log-Concave Impossibility for Q = Zn

For any E , q = poly(n), if for some ϵ > 0

RE ≤ O(n1−ϵ), or

RE/rE ≤ O(n1/2−ϵ)

Then LWE[E ,Zn] encryption is not rate 1− o(1).
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Concentrated Noise Bounds: Pt 2

Log-Concave Impossibility

For any E , for any Q with RQ ≤ O(
√
n), if n

√
vol(VQ) ≤ O(σ),

LWE[E ,Q] cannot have rate

1− o

(
1

n log(q/σ)

)
.

1− O(1/n) achievable
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Concentrated Noise Bounds: Pt 3

Dimension Reduction for Concentrated Noise

If E ,Q are k-dimensional, and E ′ = E⊕(n/k),Q ′ = Q⊕(n/k), then
under same conditions as before LWE[E ,Q] cannot have rate

1− o

(
1

k log(q/σ)

)
.

Typically k = O(log n), exponentially stronger
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