Error Correction and Ciphertext Quantization in Lattice-based Cryptography

Daniele Micciancio and Mark Schultz

University of California San Diego

23 August 2023

1 Motivation

2 Reducing Lattice Crypto to Info Theory

3 Bounds

4 Conclusion

Quantum Cryptanalysis

A Short History of BQP Factoring Algorithms				
	Year	Event		
-	1994	Shor's Algorithm Published		

Quantum Cryptanalysis

A Short History of BQP Factoring Algorithms						
	Year	Event				
	1994	Shor's Algorithm Published				
	2002	15 =				

Quantum Cryptanalysis

A Short History of BQP Factoring Algorithms					
	Year	Event			
	1994	Shor's Algorithm Published			
	2002	$15 = 5 \times 3$ Factored!			
	2012	21 =			

Quantum Cryptanalysis

A Short History of BQP Factoring Algorithms

Year	Event			
1994	Shor's Algorithm Published			
2002	15 = 5 imes 3 Factored!			
2012	$21 = 7 \times 3$ Factored!			

Quantum Cryptanalysis

A Short History of BQP Factoring Algorithms					
Ň	Year	Event			
1	1994	Shor's Algorithm Published			
2	2002	$15 = 5 \times 3$ Factored!			
2	2012	$21 = 7 \times 3$ Factored!			
2	2019	35 =			

Quantum Cryptanalysis

A	Short	History	of BQP	Factoring Algorithms	

Year	Event			
1994	Shor's Algorithm Published			
2002	$15 = 5 \times 3$ Factored!			
2012	$21 = 7 \times 3$ Factored!			
2019	35 = ??? Failed			

Quantum Cryptanalysis

A Short History of BQP Factoring Algorithms

Year	Event			
1994	Shor's Algorithm Published			
2002	$15 = 5 \times 3$ Factored!			
2012	$21 = 7 \times 3$ Factored!			
2019	35 = ??? Failed			

2022: 48-bit numbers Factored

Quantum Cryptanalysis

A Short History of BQP Factoring Algorithms					
Year Event					
	1994	Shor's Algorithm Published			
	2002	$15 = 5 \times 3$ Factored!			
	2012	$21 = 7 \times 3$ Factored!			
	2019	35 = ??? Failed			

2022: 48-bit numbers Factored using non-Shor algorithms

Serious Motivation

1 Large Public Funding of Quantum Computing:

- Europe: \$7 billion
- US: \$2 billion
- China: \$15 billion

Serious Motivation

1 Large Public Funding of Quantum Computing:

- Europe: \$7 billion
- US: \$2 billion
- China: \$15 billion
- 2 Store and Decrypt attack

Serious Motivation

1 Large Public Funding of Quantum Computing:

- Europe: \$7 billion
- US: \$2 billion
- China: \$15 billion
- 2 Store and Decrypt attack

NSA's Utah Data Center: 1+ Exabyte (= 1M terabytes).

Lattices are Big

Parameter Sizes for Practical Cr			
Cipher Kyber512	pk 800	Ctx 768	

Lattices are Big

Parameter Sizes for Practical Crypto (Bytes)								
Cipher	pk	Ctx						
Kyber512	800	768						
ECDH								

Lattices are Big

Parameter Sizes for Practical Cry			
Cipher			
Kyber512	800	768	
ECDH			
RSA-2048	256	256	

Lattices are Big

Parameter Sizes for Practical Cry			
Cipher	pk	Ctx	
Kyber512	800	768	
ECDH	32	32	
RSA-2048	256	256	

Is this fundamental?

Lattices are Big

Parameter Sizes for Practical Cry			
Cipher	pk	Ctx	
Kyber512	800	768	
ECDH	32	32	
RSA-2048	256	256	

Is this fundamental?

This Work: Mostly*

2 Reducing Lattice Crypto to Info Theory

3 Bounds

4 Conclusion

LWE

LWE Distribution

Let $\sigma > 0$, $q, n \in \mathbb{N}$. For **a** $\vec{s}, \vec{e} \leftarrow \mathcal{N}(0, \sigma^2 I_n)$, **b** $A \leftarrow \mathbb{Z}_q^{n \times n}$ $[A, A\vec{s} + \vec{e}] \in \mathbb{Z}_q^{n \times n} \times \mathbb{Z}_q^n$

LWE Problem: Distinguish distribution Uniform samples

LWE

LWE Distribution

Let $\sigma > 0$, $q, n \in \mathbb{N}$. For **a** $\vec{s}, \vec{e} \leftarrow \mathcal{N}(0, \sigma^2 I_n)$, **b** $A \leftarrow \mathbb{Z}_q^{n \times n}$ $[A, A\vec{s} + \vec{e}] \in \mathbb{Z}_q^{n \times n} \times \mathbb{Z}_q^n$

LWE Problem: Distinguish distribution Uniform samples
 Parameter Regimes:

LWE

LWE Distribution

Let $\sigma > 0$, $q, n \in \mathbb{N}$. For **a** $\vec{s}, \vec{e} \leftarrow \mathcal{N}(0, \sigma^2 I_n)$, **b** $A \leftarrow \mathbb{Z}_q^{n \times n}$ $[A, A\vec{s} + \vec{e}] \in \mathbb{Z}_q^{n \times n} \times \mathbb{Z}_q^n$

- LWE Problem: Distinguish distribution Uniform samples
- Parameter Regimes:
 - Theoretical: q = poly(n), $\sigma = \Omega(\sqrt{n})$

LWE

LWE Distribution

Let $\sigma > 0$, $q, n \in \mathbb{N}$. For **a** $\vec{s}, \vec{e} \leftarrow \mathcal{N}(0, \sigma^2 I_n)$, **b** $A \leftarrow \mathbb{Z}_q^{n \times n}$ $[A, A\vec{s} + \vec{e}] \in \mathbb{Z}_q^{n \times n} \times \mathbb{Z}_q^n$

- LWE Problem: Distinguish distribution Uniform samples
- Parameter Regimes:
 - Theoretical: q = poly(n), $\sigma = \Omega(\sqrt{n})$
 - **Really** Theoretical: $q = n^{\omega(1)}$

LWE

LWE Distribution

Let $\sigma > 0$, $q, n \in \mathbb{N}$. For **a** $\vec{s}, \vec{e} \leftarrow \mathcal{N}(0, \sigma^2 I_n)$, **b** $A \leftarrow \mathbb{Z}_q^{n \times n}$ $[A, A\vec{s} + \vec{e}] \in \mathbb{Z}_q^{n \times n} \times \mathbb{Z}_q^n$

- LWE Problem: Distinguish distribution Uniform samples
- Parameter Regimes:
 - Theoretical: q = poly(n), $\sigma = \Omega(\sqrt{n})$
 - **Really** Theoretical: $q = n^{\omega(1)}$
 - Practical: $\log_2 q \approx 12$, $\sigma = 8$

Encryption from LWE

1 Private-key: Use Uniform sample as One-Time Pad

Encryption from LWE

Private-key: Use Uniform sample as One-Time Pad *m*→ [A, *u* + *m*]

Encryption from LWE

Private-key: Use Uniform sample as One-Time Pad

 m → [A, u + m]

 Decrypt [A, As + e + m]?

 Recover m + e ≠ m

Encryption from LWE

Private-key: Use Uniform sample as One-Time Pad

 m→ [A, u + m]

 Decrypt [A, As + e + m]?

 Recover m + e ≠ m

 Idea: Encode m with error-correction

Lattice Code

A lattice code is the pair of a lattice $L \subseteq \mathbb{R}^n$, along with a rounding algorithm $\mathbb{R}^n \to L$ such that

•
$$\forall x \in L, \forall y \in \mathbb{R}^n : \lfloor x + y \rfloor = x + \lfloor y \rfloor.$$

Lattice Code

A lattice code is the pair of a lattice $L \subseteq \mathbb{R}^n$, along with a rounding algorithm $\mathbb{R}^n \to L$ such that

•
$$\forall x \in L, \forall y \in \mathbb{R}^n : \lfloor x + y \rceil = x + \lfloor y \rceil.$$

Fundamental Region: $\mathcal{V}_{\lfloor \cdot \rceil} = \{x \in \mathbb{R}^n \mid \lfloor x \rceil = 0\}$

Lattice Code

A lattice code is the pair of a lattice $L \subseteq \mathbb{R}^n$, along with a rounding algorithm $\mathbb{R}^n \to L$ such that

$$\forall x \in L, \forall y \in \mathbb{R}^n : \lfloor x + y \rceil = x + \lfloor y \rceil.$$

Fundamental Region: $\mathcal{V}_{\lfloor \cdot \rceil} = \{x \in \mathbb{R}^n \mid \lfloor x \rceil = 0\}$

• Conditions imply $L + \mathcal{V}_{\lfloor \cdot \rceil} = \mathbb{R}^n$

Lattice Code

A lattice code is the pair of a lattice $L \subseteq \mathbb{R}^n$, along with a rounding algorithm $\mathbb{R}^n \to L$ such that

$$\forall x \in L, \forall y \in \mathbb{R}^n : \lfloor x + y \rceil = x + \lfloor y \rceil.$$

Fundamental Region: $\mathcal{V}_{|\cdot|} = \{x \in \mathbb{R}^n \mid \lfloor x \rceil = 0\}$

- Conditions imply $L + \mathcal{V}_{\lfloor \cdot \rceil} = \mathbb{R}^n$
- Useful for error correction and quantization

\mathbb{Z}^n as a Lattice Code

\mathbb{Z}^n as a Lattice Code

\mathbb{Z}^n as a Lattice Code

Error Correction and Quantization with \mathbb{Z}^n

• Error Correction: $(q/2)\vec{x} + \vec{e} \mapsto \vec{x}$
Error Correction and Quantization with \mathbb{Z}^n

Error Correction: $(q/2)\vec{x} + \vec{e} \mapsto \vec{x}$ $\|e\|_{\infty} < q/4$

Error Correction and Quantization with \mathbb{Z}^n

■ Error Correction: $(q/2)\vec{x} + \vec{e} \mapsto \vec{x}$ ■ $||e||_{\infty} < q/4$ ■ $L = (q/2)\mathbb{Z}^n$, $\mathcal{V} = [-q/4, q/4]^n$

Error Correction and Quantization with \mathbb{Z}^n

Error Correction: $(q/2)\vec{x} + \vec{e} \mapsto \vec{x}$ $\|e\|_{\infty} < q/4$ $L = (q/2)\mathbb{Z}^n, \ \mathcal{V} = [-q/4, q/4]^n$ Quantization: $x \in \mathbb{Z}_q^n \mapsto (q/2)\mathbb{Z}_q^n$

Error Correction and Quantization with \mathbb{Z}^n

Error Correction: $(q/2)\vec{x} + \vec{e} \mapsto \vec{x}$ $\|e\|_{\infty} < q/4$ $L = (q/2)\mathbb{Z}^n, \ \mathcal{V} = [-q/4, q/4]^n$ Quantization: $x \in \mathbb{Z}_q^n \mapsto (q/2)\mathbb{Z}_q^n$ Modulus Switching

Error Correction and Quantization with \mathbb{Z}^n

Error Correction: $(q/2)\vec{x} + \vec{e} \mapsto \vec{x}$ Image: $\|e\|_{\infty} < q/4$ L = $(q/2)\mathbb{Z}^n$, $\mathcal{V} = [-q/4, q/4]^n$ Quantization: $x \in \mathbb{Z}_q^n \mapsto (q/2)\mathbb{Z}_q^n$ Modulus Switching
additive error in \mathcal{V} Compresses $n \log_2 \frac{q}{\sqrt[q]{vol}(\mathcal{V})} < n \log_2 q$

Error Correction and Quantization with \mathbb{Z}^n

• Error Correction: $(q/2)\vec{x} + \vec{e} \mapsto \vec{x}$ • $||e||_{\infty} < q/4$ • $L = (q/2)\mathbb{Z}^n, \ \mathcal{V} = [-q/4, q/4]^n$ • Quantization: $x \in \mathbb{Z}_q^n \mapsto (q/2)\mathbb{Z}_q^n$ • Modulus Switching • additive error in \mathcal{V} • Compresses $n \log_2 \frac{q}{\sqrt[n]{\operatorname{vol}(\mathcal{V})}} < n \log_2 q$ • $r \cdot \mathcal{B}_2 \subseteq \mathcal{V} \subseteq R \cdot \mathcal{B}_2$

Error Correction and Quantization with \mathbb{Z}^n

• Error Correction: $(q/2)\vec{x} + \vec{e} \mapsto \vec{x}$ • $||e||_{\infty} < q/4$ • $L = (q/2)\mathbb{Z}^n, \ \mathcal{V} = [-q/4, q/4]^n$ • Quantization: $x \in \mathbb{Z}_q^n \mapsto (q/2)\mathbb{Z}_q^n$ • Modulus Switching • additive error in \mathcal{V} • Compresses $n \log_2 \frac{q}{\sqrt[n]{vol(\mathcal{V})}} < n \log_2 q$ • $r \cdot \mathcal{B}_2 \subseteq \mathcal{V} \subseteq R \cdot \mathcal{B}_2$ • "Spikiness measure": R/r

Error Correction and Quantization with \mathbb{Z}^n

• Error Correction: $(q/2)\vec{x} + \vec{e} \mapsto \vec{x}$ $\|e\|_{\infty} < q/4$ • $L = (q/2)\mathbb{Z}^n, \ \mathcal{V} = [-q/4, q/4]^n$ Quantization: $x \in \mathbb{Z}_q^n \mapsto (q/2)\mathbb{Z}_q^n$ Modulus Switching • additive error in \mathcal{V} • Compresses $n \log_2 \frac{q}{\sqrt[n]{\operatorname{vol}(\mathcal{V})}} < n \log_2 q$ • $r \cdot \mathcal{B}_2 \subset \mathcal{V} \subseteq R \cdot \mathcal{B}_2$ ■ "Spikiness measure": *R*/*r* For \mathbb{Z}^n : \sqrt{n}

Error Correction and Quantization with \mathbb{Z}^n

• Error Correction: $(q/2)\vec{x} + \vec{e} \mapsto \vec{x}$ $\|e\|_{\infty} < q/4$ • $L = (q/2)\mathbb{Z}^n, \ \mathcal{V} = [-q/4, q/4]^n$ Quantization: $x \in \mathbb{Z}_q^n \mapsto (q/2)\mathbb{Z}_q^n$ Modulus Switching • additive error in \mathcal{V} • Compresses $n \log_2 \frac{q}{\sqrt[n]{\operatorname{vol}(\mathcal{V})}} < n \log_2 q$ • $r \cdot \mathcal{B}_2 \subset \mathcal{V} \subseteq R \cdot \mathcal{B}_2$ ■ "Spikiness measure": *R*/*r* For \mathbb{Z}^n : \sqrt{n} For $\epsilon \mathbb{Z} \oplus \epsilon^{-1} \mathbb{Z}$: $\Theta(\epsilon^2)$

Error Correction and Quantization with \mathbb{Z}^n

• Error Correction: $(q/2)\vec{x} + \vec{e} \mapsto \vec{x}$ $\|e\|_{\infty} < q/4$ • $L = (q/2)\mathbb{Z}^n, \ \mathcal{V} = [-q/4, q/4]^n$ Quantization: $x \in \mathbb{Z}_q^n \mapsto (q/2)\mathbb{Z}_q^n$ Modulus Switching • additive error in \mathcal{V} • Compresses $n \log_2 \frac{q}{\sqrt[n]{\operatorname{vol}(\mathcal{V})}} < n \log_2 q$ • $r \cdot \mathcal{B}_2 \subset \mathcal{V} \subseteq R \cdot \mathcal{B}_2$ ■ "Spikiness measure": *R*/*r* For \mathbb{Z}^n : \sqrt{n} For $\epsilon \mathbb{Z} \oplus \epsilon^{-1} \mathbb{Z}$: $\Theta(\epsilon^2)$ ■ $\exists L$ with R/r < 3.

Crypto from Lattice Codes

LWE[E, Q]

For $\vec{m} \in E$:

• $\operatorname{Enc}_{\vec{s}}(\vec{m}) := [A, \lfloor A\vec{s} + \vec{e} + \vec{m} \rceil_Q]$

•
$$\operatorname{Dec}_{\vec{s}}(A, \vec{b}) := \lfloor \vec{b} - A\vec{s} \rfloor_{E}$$

Secure

Crypto from Lattice Codes

LWE[E, Q]

For $\vec{m} \in E$:

• $\operatorname{Enc}_{\vec{s}}(\vec{m}) := [A, \lfloor A\vec{s} + \vec{e} + \vec{m} \rceil_Q]$

•
$$\operatorname{Dec}_{\vec{s}}(A, \vec{b}) := \lfloor \vec{b} - A\vec{s} \rfloor_{E}$$

Secure

- Correct: $\vec{e} + \vec{e}_Q \in \mathcal{V}_E$
 - $\vec{e}_Q \leftarrow \mathcal{V}_Q$ is quantization error

Crypto from Lattice Codes

LWE[E, Q]

For $\vec{m} \in E$:

• $\operatorname{Enc}_{\vec{s}}(\vec{m}) := [A, \lfloor A\vec{s} + \vec{e} + \vec{m} \rceil_Q]$

•
$$\operatorname{Dec}_{\vec{s}}(A, \vec{b}) := \lfloor \vec{b} - A\vec{s} \rfloor_{E}$$

Secure

• Correct: $\vec{e} + \vec{e}_Q \in \mathcal{V}_E$

• $\vec{e}_Q \leftarrow \mathcal{V}_Q$ is quantization error

- Public-Key Case:
 - Correct: $\vec{e}' \in \mathcal{V}_E$ for more complicated e'

Crypto from Lattice Codes

LWE[E, Q]

For $\vec{m} \in E$:

• $\operatorname{Enc}_{\vec{s}}(\vec{m}) := [A, \lfloor A\vec{s} + \vec{e} + \vec{m} \rceil_Q]$

•
$$\operatorname{Dec}_{\vec{s}}(A, \vec{b}) := \lfloor \vec{b} - A\vec{s} \rfloor_{E}$$

Secure

• Correct: $\vec{e} + \vec{e}_Q \in \mathcal{V}_E$

• $\vec{e}_Q \leftarrow \mathcal{V}_Q$ is quantization error

- Public-Key Case:
 - Correct: $\vec{e}' \in \mathcal{V}_E$ for more complicated e'

Crypto from Lattice Codes

LWE[E, Q]

For $\vec{m} \in E$:

• $\operatorname{Enc}_{\vec{s}}(\vec{m}) := [A, \lfloor A\vec{s} + \vec{e} + \vec{m} \rceil_Q]$

•
$$\operatorname{Dec}_{\vec{s}}(A, \vec{b}) := \lfloor \vec{b} - A\vec{s} \rfloor_{E}$$

Secure

• Correct: $\vec{e} + \vec{e}_Q \in \mathcal{V}_E$

• $\vec{e}_Q \leftarrow \mathcal{V}_Q$ is quantization error

- Public-Key Case:
 - Correct: $\vec{e}' \in \mathcal{V}_E$ for more complicated e'

$$(\vec{e}, \vec{e}'), \vec{e}, \vec{e}' \sim \mathcal{N}(0, \sigma^2 I_n)$$

$$\langle \vec{e}, \vec{e}_Q \rangle$$

1 Motivation

2 Reducing Lattice Crypto to Info Theory

4 Conclusion

Main Content of Paper

■ Bound rate of LWE[
$$E, Q$$
]
■ $0 \le \frac{\log_2 |\# ptxts|}{\log_2 |\# ctxts|} \le 1$

Main Content of Paper

Bound rate of LWE[E, Q]

$$0 \leq \frac{||\mathbf{g}_2| \| ||\mathbf{f}||}{||\mathbf{g}_2| \| \| ||\mathbf{f}||} \leq 1$$

Cost transmitting A as free

Main Content of Paper

Main Content of Paper

■ Bound rate of LWE[*E*, *Q*]

- $\bullet \ 0 \leq \frac{\log_2 |\# pt xts|}{\log_2 |\# ct xts|} \leq 1$
- Cost transmitting A as free
- Two noise models
 - Perfect correctness (*e* bounded)
 - Packing arguments

Main Content of Paper

- Bound rate of LWE[*E*, *Q*]
 - $0 \leq \frac{\log_2 |\# ptxts|}{\log_2 |\# ctxts|} \leq 1$
 - Cost transmitting A as free
- Two noise models
 - Perfect correctness (*e* bounded)
 - Packing arguments
 - Correctness whp (*e* concentrated)
 - "Reverse" Chernoff Bounds

Packing Arguments

• $\vec{e} \leftarrow \sigma \sqrt{n} \cdot B_2$ typical length of a Gaussian

Packing Arguments

• $\vec{e} \leftarrow \sigma \sqrt{n} \cdot \mathcal{B}_2$ typical length of a Gaussian • Correct if $\sigma \sqrt{n}\mathcal{B}_2 + \mathcal{V}_Q \subseteq \mathcal{V}_F$

Packing Arguments

• $\vec{e} \leftarrow \sigma \sqrt{n} \cdot \mathcal{B}_2$ typical length of a Gaussian • Correct if $\sigma \sqrt{n}\mathcal{B}_2 + \mathcal{V}_Q \subseteq \mathcal{V}_E$

... take volumes

Packing Arguments

• $\vec{e} \leftarrow \sigma \sqrt{n} \cdot \mathcal{B}_2$ typical length of a Gaussian • Correct if $\sigma \sqrt{n}\mathcal{B}_2 + \mathcal{V}_Q \subseteq \mathcal{V}_E$

Bounded Noise Impossibility

For any lattice codes $E, Q, q = poly(n), \sigma = \Theta(\sqrt{n})$

1 LWE
$$[E, \mathbb{Z}^n]$$
 is not rate $1 - o(1)$

2
$$\sqrt[n]{\operatorname{vol}(\mathcal{V}_Q)} < \sigma^{(1-\epsilon)} \implies \operatorname{LWE}[E, Q]$$
 is not rate $1 - o(1)$

$$\sqrt[3]{\sqrt[n]{\operatorname{vol}}(\mathcal{V}_Q)} = O(\sigma) \implies \operatorname{LWE}[E, Q] \text{ is not rate } 1 - o(1/(\log q)).$$

Concentrated Noise Bounds

Now want $\vec{e} + \vec{e}_Q \subseteq \mathcal{V}_E$ whp (Reverse) Chernoff Bounds: $\exp(-\epsilon^2/(2n\sigma^2)) \ge \Pr[\|\vec{x}\|_2 > \epsilon] \ge 1 - O\left(\frac{\epsilon}{\sqrt{n\sigma^2}}\right)$

Concentrated Noise Bounds

Now want $\vec{e} + \vec{e}_Q \subseteq \mathcal{V}_E$ whp (Reverse) Chernoff Bounds: $\exp(-\epsilon^2/(2n\sigma^2)) \ge \Pr[\|\vec{x}\|_2 > \epsilon] \ge 1 - O\left(\frac{\epsilon}{\sqrt{n\sigma^2}}\right)$ Log-Concave Impossibility for $Q = \mathbb{Z}^n$ For any E, $q = \operatorname{poly}(n)$, if for some $\epsilon > 0$ $R_E \le O(n^{1-\epsilon})$, or $R_E/r_E \le O(n^{1/2-\epsilon})$ Then LWE $[E, \mathbb{Z}^n]$ encryption is not rate 1 - o(1).

Concentrated Noise Bounds: Pt 2

Log-Concave Impossibility

For any *E*, for any *Q* with $R_Q \leq O(\sqrt{n})$, if $\sqrt[n]{\operatorname{vol}(\mathcal{V}_Q)} \leq O(\sigma)$, LWE[*E*, *Q*] cannot have rate

$$1 - o\left(\frac{1}{n\log(q/\sigma)}\right).$$

• 1 - O(1/n) achievable

Concentrated Noise Bounds: Pt 3

Dimension Reduction for Concentrated Noise

If E, Q are *k*-dimensional, and $E' = E^{\oplus(n/k)}, Q' = Q^{\oplus(n/k)}$, then under same conditions as before LWE[E, Q] cannot have rate

$$1 - o\left(\frac{1}{k \log(q/\sigma)}\right).$$

• Typically $k = O(\log n)$, exponentially stronger

Some Concrete Rates

Daniele Micciancio and Mark Schultz Error Correction and Ctxt Quantization in Lattice Crypto

1 Motivation

2 Reducing Lattice Crypto to Info Theory

3 Bounds

4 Conclusion

Info-theoretic bounds on sizes of lattice crypto ciphertexts

- Info-theoretic bounds on sizes of lattice crypto ciphertexts
- Quantization is vital to achieve rate 1 o(1)

- Info-theoretic bounds on sizes of lattice crypto ciphertexts
- Quantization is vital to achieve rate 1 o(1)
- Open Questions:
 - Optimizing transmission of 128 bits?

- Info-theoretic bounds on sizes of lattice crypto ciphertexts
- Quantization is vital to achieve rate 1 o(1)
- Open Questions:
 - Optimizing transmission of 128 bits?
 - FHE operations on compressed ciphertexts?

- Info-theoretic bounds on sizes of lattice crypto ciphertexts
- Quantization is vital to achieve rate 1 o(1)
- Open Questions:
 - Optimizing transmission of 128 bits?
 - FHE operations on compressed ciphertexts?
 - Other high-dimensional lattice codes in lattice-based cryptography?
- Info-theoretic bounds on sizes of lattice crypto ciphertexts
- Quantization is vital to achieve rate 1 o(1)
- Open Questions:
 - Optimizing transmission of 128 bits?
 - FHE operations on compressed ciphertexts?
 - Other high-dimensional lattice codes in lattice-based cryptography?
 - Algebraic Structure?