Quantum Linear Key-recovery Attacks Using the QFT

André Schrottenloher

Univ Rennes, Inria, CNRS, IRISA

Linear Cryptanalysis	Correlation State	Applications 00000	Conclusion O
Motivation			

A block cipher E_{K} : $\mathbb{F}_2^{\mathsf{n}} \to \mathbb{F}_2^{\mathsf{n}}$

key-recovery attack on $E_{\rm K}$: given access to the black-box $E_{\rm K}$, find K in

- $< 2^{|\mathsf{K}|}$ evaluations of E_{K} (classical) (faster than brute force)
- $< 2^{|\mathbf{K}|/2}$ evaluations of $E_{\mathbf{K}}$ (quantum) (faster than Grover search)

Linear Cryptanalysis	Correlation State	Applications	Conclusion
00000	00000	00000	0
Motivation (ctd			

- Linear cryptanalysis is a powerful cryptanalysis technique
- Advanced linear (key-recovery) attacks use the FFT

Previous work on quantum linear attacks:

- [KLLN16]: using Grover's algorithm
- [H22]: using the QFT to speedup some distinguishers

This work: using the QFT in linear key-recovery attacks.

[☐] Kaplan, Leurent, Leverrier, Naya-Plasencia, "Quantum differential and linear cryptanalysis", ToSC 2016

Hosoyamada, "Quantum speed-up for multidimensional (zero correlation) linear and integral distinguishers", ePrint 2022

Linear C	ryptanalysis	C	Correlation State	Applications	Conclusion
00000		(00000	00000	0
~					

Quantum toolbox

• The state of a quantum system is a superposition

- The amplitudes α_x are **not** immediately exploitable
- Computing a Walsh-Hadamard transform on the amplitudes is easy: if $f : \{0,1\}^n \to \{-1,1\}$ is a function:

$$\frac{1}{2^{n/2}}\sum_{x}f(x)|x\rangle \stackrel{H}{\mapsto} \frac{1}{2^{n}}\sum_{y}\underbrace{\left(\sum_{x}(-1)^{x\cdot y}f(x)\right)}_{:=\widehat{f}(y)}|y\rangle$$

Quantum search

Given a **setup** algorithm that produces: $\sum_{x} \alpha_x |x\rangle |\text{flag}(x)\rangle$, we find x_g such that $\text{flag}(x_g) = 1$ in $\mathcal{O}\left(\frac{1}{|\alpha_{x_g}|}\right)$ calls.

Linear Cryptanalysis	Correlation State	Applications	Conclusion O
Outline			

1 Linear Cryptanalysis

2 Correlation State

Linear Cryptanalysis	Correlation State	Applications	Conclusion
0000	00000	00000	0

Linear Cryptanalysis

Linear Cryptanalysis	Correlation State	Applications	Conclusion O
Linear cryptana	lysis		

- Exploits a linear approximation of E: choice of (α, β) ∈ 𝔽ⁿ₂ such that α ⋅ x + β ⋅ E(x) is biased
- The quality of an approximation (α, β) is related to its **ELP**
- If ELP is large enough, we have a **linear distinguisher** which can be used in a **last-rounds** key-recovery attack

$$\underbrace{E_M}_{\text{Approximation } \alpha, \beta} \xrightarrow{F_k}_{\text{Last rounds}} \rightarrow E_K(x) = F_k \circ E_M(x)$$

Using the whole codebook, time about $\mathcal{O}(2^n \times 2^{|\mathbf{k}|})$:

• For each guess z of the subkey k, compute the experimental correlation:

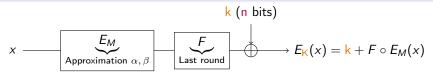
$$\widehat{\operatorname{cor}}(z) := \frac{1}{2^{\mathsf{n}}} \sum_{x} (-1)^{\alpha \cdot x + \beta \cdot F_z^{-1}(\mathsf{E}_{\mathsf{K}}(x))}$$

2 The good subkey k has (one of) the highest $|\widehat{cor}(z)|$

Statistics

- Right subkey: $|\widehat{cor}(\mathbf{k})|$ is around \sqrt{ELP}
- Wrong subkey: $|\widehat{cor}(z)|$ is around $2^{-n/2}$

Linear Cryptanalysis ○○○●○	Correlation State	Applications	Conclusion O
Improvement wi	th the FFT		



$$\widehat{\operatorname{cor}}(z) = \frac{1}{2^{\mathsf{n}}} \sum_{x} (-1)^{\alpha \cdot x + \beta \cdot F^{-1}(z + E_{\mathsf{K}}(x))} = \frac{1}{2^{\mathsf{n}}} \sum_{x} (-1)^{\alpha \cdot E_{\mathsf{K}}^{-1}(x) + \beta \cdot F^{-1}(z + x)}$$

Introduce two functions f, g:

$$\begin{cases} f,g : \mathbb{F}_2^{\mathsf{n}} \to \{-1,1\} \\ f(x) := (-1)^{\alpha \cdot \boldsymbol{\mathsf{E}_{\mathsf{K}}}^{-1}(x)} \\ g(x) := (-1)^{\beta \cdot \boldsymbol{\mathsf{F}}^{-1}(x)} \end{cases}$$

$$\widehat{\operatorname{cor}}(z) = \frac{1}{2^{n}} \sum_{x} f(x)g(z+x) := \frac{1}{2^{n}} \left(f \star g\right)(z)$$

Linear Cryptanalysis	Correlation State	Applications	Conclusion O
I in a subserve and the second	water the FFT (- t	

Linear cryptanalysis: the FFT (ctd.)

The experimental correlations = **discrete convolution** of f and g.

In our case:
$$(f \star g) = \frac{1}{2^n} \widehat{\widehat{f} \cdot \widehat{g}}$$
.

- Compute \hat{f} using a FWHT $\rightarrow \mathcal{O}(n2^n)$
- 2 Compute \hat{g} using a FWHT $\rightarrow \mathcal{O}(n2^n)$
- **③** Do a pointwise product $\rightarrow \mathcal{O}(2^{n})$
- Compute the FWHT again $\rightarrow \mathcal{O}(n2^n)$
- Solution Find the candidate key(s) of highest correlation

Improved time: $\mathcal{O}(n2^n)$ instead of $\mathcal{O}(2^n \times 2^{|k|}) = \mathcal{O}(2^n \times 2^n)$.

Linear Cryptanalysis	Correlation State	Applications	Conclusion
00000	00000	00000	0

Correlation State

Linear Cryptanalysis	Correlation State ○●○○○	Applications	Conclusion O
Definition			

$$|\mathsf{Cor}\rangle := \sum_{z} \widehat{\mathrm{cor}}(z) |z\rangle$$

Linear Cryptanalysis	Correlation State	Applications	Conclusion
Computing Cor	\rangle		

Recall the two functions f, g:

$$\begin{cases} f(x) := (-1)^{\alpha \cdot E_{\mathsf{K}}^{-1}(x)} \\ g(x) := (-1)^{\beta \cdot F^{-1}(x)} \end{cases}$$

and

$$\widehat{\operatorname{cor}}(z) = \frac{1}{2^{\mathsf{n}}} (f \star g)(z) = \frac{1}{2^{2\mathsf{n}}} \widehat{f \cdot g}$$

We need:

$$\frac{1}{2^{2n}} \sum_{z} \widehat{\widehat{f} \cdot \widehat{g}}(z) |z\rangle = H \left(\frac{1}{2^{3n/2}} \underbrace{\sum_{y} \widehat{f}(y) \widehat{g}(y) |y\rangle}_{\text{So let's compute this}} \right)$$

Linear Cryptanalysis	Correlation State 000●0	Applications	Conclusion O
Computing $ Cor\rangle$	(ctd.)		

Compute f in the amplitude (a phase flip)

$$\sum_{x} f(x) \ket{x}$$
 $\sum_{y} \widehat{f}(y) \ket{y}$

3 Compute \hat{g} digitally

2 Apply H

$$\sum_{y}\widehat{f}(y)\ket{y}\ket{\widehat{g}(y)}$$

• Transfer $\hat{g}(y)$ into the amplitude

 \implies involves quantum state preparation / rejection sampling, & a small amplification layer

$$\sum_{y} \widehat{f}(y) \widehat{g}(y) \ket{y}$$

Linear Cryptanalysis	Correlation State ○○○○●	Applications	Conclusion O
Computing Cor>	(ctd.)		

There is a quantum algorithm that (on empty input $|0\rangle$) returns $|Cor\rangle$.

The time complexity is dominated by:

- (a few) queries to E_{K} (to compute f)
- (a few) computations of \widehat{g}

Linear Cryptanalysis	Correlation State	Applications	Conclusion
00000	00000	●0000	0

Applications

Linear	Cryptanalysis
0000	0

Correlation State

Applications

Using the correlation state

Classical case

- We compute all $\widehat{\operatorname{cor}}(z)$
- We find the biggest one(s)

Quantum case

- We can compute $|Cor\rangle = \sum_{z} \widehat{cor}(z) |z\rangle$
- We **do not** have access to the values

$|{\rm Cor}\rangle$ is a superposition of subkey guesses where the good guess has a higher amplitude

Idea: use $|Cor\rangle$ as a **shortcut** in an exhaustive key search.

Linear Cryptanalysis	Correlation State	Applications 00●00	Conclusion O
Using the cor	relation state	(ctd)	
Let $K = (k,k')$ b	e the full cipher key.		
Grover search:			

- Create superposition over *z*, *z*':
- Flag k, k':
- Initial amplitude $\frac{1}{2^{(|\mathbf{k}|+|\mathbf{k}'|)/2}} \implies$ amplify with $\simeq 2^{(|\mathbf{k}|+|\mathbf{k}'|)/2}$ iterates

"Shortcut":

- Compute $|Cor\rangle$:
- **Complete** with *z*':
- Flag k, k':
- Amplify this:

$$\simeq \frac{1}{\widehat{\mathrm{cor}}(\mathsf{k})} \times 2^{|\mathsf{k}'|/2} \simeq \frac{1}{\sqrt{\mathrm{ELP}}} \times 2^{|\mathsf{k}'|/2} < 2^{(|\mathsf{k}|+|\mathsf{k}'|)/2}$$

 $\sum_{z} \widehat{\mathrm{cor}}(z) |z\rangle$

 $\frac{1}{2(|\mathbf{k}|+|\mathbf{k}'|)/2} \sum_{z,z'} |z,z'\rangle$

 $\frac{1}{2(|\mathbf{k}|+|\mathbf{k}'|)/2} \sum_{z,z'} |z,z',\mathrm{flag}\rangle$

 $\frac{1}{2^{|\mathbf{k}'|/2}}\sum_{z,z'}\widehat{\mathrm{cor}}(z)|z,z'\rangle$

 $\frac{1}{2|\mathbf{k}'|/2} \sum_{z,z'} \widehat{\operatorname{cor}}(z) |z, z', \operatorname{flag}\rangle$

00000	00000	00000	0
\sim .	1 1 1	•	

Quantum - classical comparison

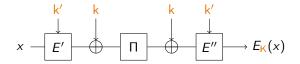
Classical cryptanalysis only needs to distinguish.

- \implies extremely small ELP values are used
 - \bullet The speedup here depends directly on $\sqrt{\mathrm{ELP}}$, so it's small
 - $\bullet\,$ Furthermore, building $|\text{Cor}\rangle$ requires either qRAM or superposition queries

What is the large			
Linear Cryptanalysis	Correlation State	Applications	Conclusion

What is the largest speedup?

Consider $|\mathbf{k}| = \mathbf{n}, |\mathbf{k}'| = 2\mathbf{n}, \Pi$ an unkeyed permutation.



There is a key-recovery attack on $E_{\mathbf{K}}$ using:

- 2ⁿ classical queries (full codebook)
- $\mathcal{O}(n2^n)$ bits of qRAM
- $\mathcal{O}\left(\sqrt{n}(n + qRAM query)2^n\right)$ quantum operations
- \implies super-Grover speedup w.r.t. the best classical attack $2^{2.5n}$
- ⇒ **remains** (contrary to Simon-based attack) if we only have half the codebook

	Correlation State	Applications	Conclusion
Conclusion		00000	

- Using the QFT to accelerate a **statistical** attack
- Still few (working) applications so far

Open question:

- $\bullet\,$ Most issues would be solved if we had an efficient algorithm to find the largest correlation in $|{\rm Cor}\rangle$
- $\bullet\,$ However, if $|\text{Cor}\rangle$ is produced as a black-box, this seems very difficult

Report: ePrint 2023/184

Thank you!