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Motivation

A block cipher EK : Fn
2 → Fn

2

x EK EK(x)

key-recovery attack on EK: given access to the black-box EK, find K in
< 2|K| evaluations of EK (classical) (faster than brute force)
< 2|K|/2 evaluations of EK (quantum) (faster than Grover search)
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Motivation (ctd.)

Linear cryptanalysis is a powerful cryptanalysis technique
Advanced linear (key-recovery) attacks use the FFT

Previous work on quantum linear attacks:
[KLLN16]: using Grover’s algorithm
[H22]: using the QFT to speedup some distinguishers

This work: using the QFT in linear key-recovery attacks.

Kaplan, Leurent, Leverrier, Naya-Plasencia, “Quantum differential and linear
cryptanalysis”, ToSC 2016

Hosoyamada, “Quantum speed-up for multidimensional (zero correlation) linear
and integral distinguishers”, ePrint 2022
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Quantum toolbox

The state of a quantum system is a superposition∑
x∈Fn

2

αx |x〉 with
∑
x

|αx |2 = 1

The amplitudes αx are not immediately exploitable
Computing a Walsh-Hadamard transform on the amplitudes is easy:
if f : {0, 1}n → {−1, 1} is a function:

1
2n/2

∑
x

f (x) |x〉 H7−→ 1
2n

∑
y

(∑
x

(−1)x·y f (x)

)
︸ ︷︷ ︸

:=f̂ (y)

|y〉

Quantum search
Given a setup algorithm that produces:

∑
x αx |x〉 |flag(x)〉, we find xg

such that flag(xg ) = 1 in O
(

1
|αxg |

)
calls.
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Outline

1 Linear Cryptanalysis

2 Correlation State

3 Applications
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Linear Cryptanalysis
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Linear cryptanalysis

Exploits a linear approximation of E : choice of (α, β) ∈ Fn
2 such

that α · x + β · E (x) is biased
The quality of an approximation (α, β) is related to its ELP
If ELP is large enough, we have a linear distinguisher which can be
used in a last-rounds key-recovery attack

7/21



Linear Cryptanalysis Correlation State Applications Conclusion

(Matsui’s) last-rounds attack

x
EM︸︷︷︸

Approximation α, β

Fk︸︷︷︸
Last rounds

EK(x) = Fk ◦ EM(x)

Using the whole codebook, time about O
(
2n × 2|k|

)
:

1 For each guess z of the subkey k, compute the experimental
correlation:

ĉor(z) :=
1
2n

∑
x

(−1)α·x+β·F
−1
z (EK(x)) .

2 The good subkey k has (one of) the highest |ĉor(z)|

Statistics

Right subkey: |ĉor(k)| is around
√
ELP

Wrong subkey: |ĉor(z)| is around 2−n/2
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Improvement with the FFT

x
EM︸︷︷︸

Approximation α, β

F︸︷︷︸
Last round

k (n bits)

EK(x) = k + F ◦ EM(x)

ĉor(z) =
1
2n

∑
x

(−1)α·x+β·F
−1(z+EK(x)) =

1
2n

∑
x

(−1)α·E
−1
K (x)+β·F−1(z+x)

Introduce two functions f , g :
f , g : Fn

2 → {−1, 1}
f (x) := (−1)α·E

−1
K (x)

g(x) := (−1)β·F
−1(x)

ĉor(z) =
1
2n

∑
x

f (x)g(z + x) :=
1
2n (f ? g) (z)
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Linear cryptanalysis: the FFT (ctd.)

The experimental correlations = discrete convolution of f and g .

In our case: (f ? g) = 1
2n
̂̂
f · ĝ .

1 Compute f̂ using a FWHT → O (n2n)

2 Compute ĝ using a FWHT → O (n2n)

3 Do a pointwise product → O (2n)

4 Compute the FWHT again → O (n2n)

5 Find the candidate key(s) of highest correlation

Improved time: O (n2n) instead of O
(
2n × 2|k|

)
= O (2n × 2n).
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Correlation State
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Definition

|Cor〉 :=
∑
z

ĉor(z) |z〉

1 Now: how do we compute this?
2 Next: how do we use it?
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Computing |Cor〉

Recall the two functions f , g :{
f (x) := (−1)α·E

−1
K (x)

g(x) := (−1)β·F
−1(x)

and
ĉor(z) =

1
2n (f ? g) (z) =

1
22n

̂̂
f · ĝ

We need:

1
22n

∑
z

̂̂
f · ĝ(z) |z〉 = H

 1
23n/2

∑
y

f̂ (y)ĝ(y) |y〉︸ ︷︷ ︸
So let’s compute this


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Computing |Cor〉 (ctd.)

1 Compute f in the amplitude (a phase flip)∑
x

f (x) |x〉

2 Apply H ∑
y

f̂ (y) |y〉

3 Compute ĝ digitally ∑
y

f̂ (y) |y〉 |ĝ(y)〉

4 Transfer ĝ(y) into the amplitude
=⇒ involves quantum state preparation / rejection sampling, & a small

amplification layer ∑
y

f̂ (y)ĝ(y) |y〉
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Computing |Cor〉 (ctd.)

There is a quantum algorithm that (on empty input |0〉) returns |Cor〉.

The time complexity is dominated by:
(a few) queries to EK (to compute f )
(a few) computations of ĝ

15/21



Linear Cryptanalysis Correlation State Applications Conclusion

Applications
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Using the correlation state

Classical case
We compute all ĉor(z)

We find the biggest one(s)

Quantum case
We can compute
|Cor〉 =

∑
z ĉor(z) |z〉

We do not have access to the
values

|Cor〉 is a superposition of subkey guesses where the good guess has a
higher amplitude

Idea: use |Cor〉 as a shortcut in an exhaustive key search.
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Using the correlation state (ctd)
Let K = (k, k′) be the full cipher key.

Grover search:
Create superposition over z , z ′: 1

2(|k|+|k′|)/2

∑
z,z′ |z , z ′〉

Flag k, k′: 1
2(|k|+|k′|)/2

∑
z,z′ |z , z ′, flag〉

Initial amplitude 1
2(|k|+|k′|)/2 =⇒ amplify with ' 2(|k|+|k

′|)/2 iterates

“Shortcut” :
Compute |Cor〉:

∑
z ĉor(z) |z〉

Complete with z ′: 1
2|k′|/2

∑
z,z′ ĉor(z) |z , z ′〉

Flag k, k′: 1
2|k′|/2

∑
z,z′ ĉor(z) |z , z ′, flag〉

Amplify this:

' 1
ĉor(k)

× 2|k
′|/2 ' 1√

ELP
× 2|k

′|/2 < 2(|k|+|k
′|)/2
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Quantum - classical comparison

Classical cryptanalysis only needs to distinguish.
=⇒ extremely small ELP values are used

The speedup here depends directly on
√
ELP, so it’s small

Furthermore, building |Cor〉 requires either qRAM or superposition
queries
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What is the largest speedup?

Consider |k| = n, |k′| = 2n, Π an unkeyed permutation.

x E ′ Π E ′′

kk′ k′k

EK(x)

There is a key-recovery attack on EK using:
2n classical queries (full codebook)
O (n2n) bits of qRAM
O
(√

n(n + qRAM query)2n
)
quantum operations

=⇒ super-Grover speedup w.r.t. the best classical attack 22.5n

=⇒ remains (contrary to Simon-based attack) if we only have half the
codebook
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Conclusion

Using the QFT to accelerate a statistical attack
Still few (working) applications so far

Open question:
Most issues would be solved if we had an efficient algorithm to find
the largest correlation in |Cor〉
However, if |Cor〉 is produced as a black-box, this seems very difficult

Report: ePrint 2023/184

Thank you!
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