Multi-party Homomorphic Secret Sharing
& Sub-linear MPC from Sparse LPN

Quang Dao Aayush Jain Yuval Ishai Huijia Lin
Carnegie ~ W
TECHNION
Mell()n . Israel Institute UNIVERSITY of
UIllVGI'Slty of Technology WASHINGTON

Crypto 2023

Homomorphic Secret Sharing (HSS)

Homomorphic Secret Sharing (HSS)

(distributed / secret-shared version of homomorphic encryption)

Homomorphic Secret Sharing (HSS)

(distributed / secret-shared version of homomorphic encryption)

2

Homomorphic Secret Sharing (HSS)

(distributed / secret-shared version of homomorphic encryption)

Homomorphic Secret Sharing (HSS)

(distributed / secret-shared version of homomorphic encryption)

Homomorphic Secret Sharing (HSS)

(distributed / secret-shared version of homomorphic encryption)

Homomorphic Secret Sharing (HSS)

(distributed / secret-shared version of homomorphic encryption)

Homomorphic Secret Sharing (HSS)

(distributed / secret-shared version of homomorphic encryption)

Homomorphic Secret Sharing (HSS)

(distributed / secret-shared version of homomorphic encryption)

Homomorphic Secret Sharing (HSS)

(distributed / secret-shared version of homomorphic encryption)

e o0-Correctness: Pr [y = f(x)] >1-—0.

e f-Privacy: any <t shares hide x.

Homomorphic Secret Sharing (HSS)

(distributed / secret-shared version of homomorphic encryption)

e o0-Correctness: Pr [y = f(x)] >1—0. * Compactness: [shy;| < [f]

e t-Privacy: any < 7 shares hide x. * Linear reconstruction: (Default)

Rec is a linear function

HSS Application: Sublmear MPC

re multi-party computation)

HSS Application: Sublinear MPC

Motivation: “circuit size barrier” in MPC

HSS Application: Sublinear MPC

(secure multi-party computation)

Motivation: “circuit size barrier” in MPC

Setting: semi-honest,

(n — 1) corruptions

HSS Application: Sublinear MPC

(secure multi-party computation)

Motivation: “circuit size barrier” in MPC

Setting: semi-honest,
(n — 1) corruptions

For “classical” protocols [GMW87, BGW88, BMR?0]
and their extensions

HSS Application: Sublinear MPC

(secure multi-party computation)

Motivation: “circuit size barrier” in MPC

Setting: semi-honest,
(n — 1) corruptions

Comm (per-party):
QC)

For “classical” protocols [GMW87, BGW88, BMR?0]
and their extensions

HSS Application: Sublinear MPC

(secure multi-party computation)

Motivation: “circuit size barrier” in MPC Solution: HSS-based MPC

Setting: semi-honest,

(n — 1) corruptions

Comm (per-party):
QC)

For “classical” protocols [GMW87, BGW88, BMR?0]
and their extensions

HSS Application: Sublinear MPC

(secure multi-party computation)

Motivation: “circuit size barrier” in MPC Solution: HSS-based MPC

Setting: semi-honest,
(n — 1) corruptions

Comm (per-party):
QC)

For “classical” protocols [GMW87, BGW88, BMR?0]
and their extensions

HSS Application: Sublinear MPC

(secure multi-party computation)

Motivation: “circuit size barrier” in MPC Solution: HSS-based MPC

Setting: semi-honest,

(n — 1) corruptions

Comm (per-party):
QC)

For “classical” protocols [GMW87, BGW88, BMR?0] Comm (per-party):
and their extensions Q (x| + |CG)|)

Prior Works: The “2-party” Barrier

Prior Works: The “2-party” Barrier

HSS landscape:

Prior Works: The “2-party” Barrier

HSS landscape:

e First 2-party HSS for log-depth circuits from DDH [BGI16].

Prior Works: The “2-party” Barrier

HSS landscape:

e First 2-party HSS for log-depth circuits from DDH [BGI16].

* Later 2-party schemes from LWE [BKS19], DCR [FGJS17, OSY21, RS21], LPN [CM21], and
class groups [ADOS22].

Prior Works: The “2-party” Barrier

HSS landscape:

e First 2-party HSS for log-depth circuits from DDH [BGI16].

* Later 2-party schemes from LWE [BKS19], DCR [FGJS17, OSY21, RS21], LPN [CM21], and
class groups [ADOS22].

* None supporting >2 parties except those using indistinguishability obfuscation (iO)
[BGI15], or (specific) fully homomorphic encryption (FHE) schemes [DHRW16, BGI+18].

Prior Works: The “2-party” Barrier

HSS landscape:

e First 2-party HSS for log-depth circuits from DDH [BGI16].

* Later 2-party schemes from LWE [BKS19], DCR [FGJS17, OSY21, RS21], LPN [CM21], and
class groups [ADOS22].

* None supporting >2 parties except those using indistinguishability obfuscation (iO)
[BGI15], or (specific) fully homomorphic encryption (FHE) schemes [DHRW16, BGI+18].

Sublinear MPC landscape:

Prior Works: The “2-party” Barrier

HSS landscape:

e First 2-party HSS for log-depth circuits from DDH [BGI16].

* Later 2-party schemes from LWE [BKS19], DCR [FGJS17, OSY21, RS21], LPN [CM21], and
class groups [ADOS22].

* None supporting >2 parties except those using indistinguishability obfuscation (iO)
[BGI15], or (specific) fully homomorphic encryption (FHE) schemes [DHRW16, BGI+18].

Sublinear MPC landscape:

e 2-party HSS = 2-party sublinear MPC for layered Boolean circuits [BGI16]

Prior Works: The “2-party” Barrier

HSS landscape:

e First 2-party HSS for log-depth circuits from DDH [BGI16].

* Later 2-party schemes from LWE [BKS19], DCR [FGJS17, OSY21, RS21], LPN [CM21], and
class groups [ADOS22].

* None supporting >2 parties except those using indistinguishability obfuscation (iO)
[BGI15], or (specific) fully homomorphic encryption (FHE) schemes [DHRW16, BGI+18].

Sublinear MPC landscape:

e 2-party HSS = 2-party sublinear MPC for layered Boolean circuits [BGI16]

e 3-party and 5-party sublinear MPC based on an array of assumptions [BCM23]

Prior Works: The “2-party” Barrier

HSS landscape:

e First 2-party HSS for log-depth circuits from DDH [BGI16].

* Later 2-party schemes from LWE [BKS19], DCR [FGJS17, OSY21, RS21], LPN [CM21], and
class groups [ADOS22].

* None supporting >2 parties except those using indistinguishability obfuscation (iO)
[BGI15], or (specific) fully homomorphic encryption (FHE) schemes [DHRW16, BGI+18].

Sublinear MPC landscape:

e 2-party HSS = 2-party sublinear MPC for layered Boolean circuits [BGI16]

e 3-party and 5-party sublinear MPC based on an array of assumptions [BCM23]

Can we achieve HSS and sublinear MPC for arbitrary number of parties,

without using iO or FHE?

Our Results: Multi-Party HSS & More

Our Results: Multi-Party HSS & More

Theorem 1: Assuming Sparse LPN (over F), there exists HSS for arbitrary number of parties, |

with 1/poly(4) error and linear reconstruction*, for the following function classes:

t * or negl(1) error but non-linear reconstruction

Our Results: Multi-Party HSS & More

Theorem 1: Assuming Sparse LPN (over B, there exists HSS for arbitrary number of parties,

with 1/poly(4) error and linear reconstruction*, for the following function classes:

t * or negl(1) error but non-linear reconstruction

1. O(log A/ loglog A)—degree multivariate polynomials over [, consisting of polynomial

number of monomials, e.qg.

Our Results: Multi-Party HSS & More

Theorem 1: Assuming Sparse LPN (over B, there exists HSS for arbitrary number of parties,

with 1/poly(4) error and linear reconstruction*, for the following function classes:

t * or negl(1) error but non-linear reconstruction

1. O(log A/ loglog A)—degree multivariate polynomials over [, consisting of polynomial

number of monomials, e.qg.

fonx)= Y x..x, s=0(ogl/ loglogA).

poly(1) terms

Our Results: Multi-Party HSS & More

Theorem 1: Assuming Sparse LPN (over B, there exists HSS for arbitrary number of parties,

with 1/poly(4) error and linear reconstruction*, for the following function classes:

t * or negl(1) error but non-linear reconstruction

1. O(log A/ loglog A)—degree multivariate polynomials over [, consisting of polynomial
number of monomials, e.qg.

fonx)= Y x..x, s=0(ogl/ loglogA).
poly(1) terms

2. (c-loglogA)—depth arithmetic circuits over . (foranyc < 1)

Our Results: Multi-Party HSS & More

Theorem 1: Assuming Sparse LPN (over F), there exists HSS for arbitrary number of parties, |

with 1/poly(4) error and linear reconstruction*, for the following function classes:

t * or negl(1) error but non-linear reconstruction

1. O(log A/ loglog A)—degree multivariate polynomials over [, consisting of polynomial
number of monomials, e.qg.

fonx)= Y x..x, s=0(ogl/ loglogA).

poly(1) terms

| 2. (c-loglog A)—depth arithmetic circuits over [. (for any ¢ < 1) -,

i Theorem 2: Assuming Sparse LPN and OTs*, there exists sublinear MPC for layered Boolean

CiI’CUitS, with per-party communication ~ w(1) - S/ loglogS for a layered circuit of size S.

,* known from LPN with noise 1/\/; [Ale03], or a specific parameter setting for sparse LPN [ABW10]

Our Assumption: Sparse LPN

Our Assumption: Sparse LPN

Learning Parity with Noise (LPN): for A « F™™, s « ", e « Ber(F, e)m u « ",
We have ...

(A,sA+e)~. (A, u)

Our Assumption: Sparse LPN

Learning Parity with Noise (LPN): for A « F™™, s « ", e « Ber(F, e)m u « ",
We have ...

(A,sA+e)~. (A, u)

,

Our Assumption: Sparse LPN

Learning Parity with Noise (LPN): for A « F™™, s « ", e « Ber(F, e)m u « ",

(A, 54 + ¢) ~e (A, u) Ber([F, €) = 4 X W.p. F -1
Vx #£0
(, . P | e
Sparse LPN: for A « ™ with k=sparse columns, s « ", ¢ « Ber(F,¢)" , u < F",
we have
(A,sA+e)~. (A, u)
k—sparse

Our Assumption: Sparse LPN

Learning Parity with Noise (LPN): for A « F™™, s « ", e « Ber(F, e)m u « ",

(A, SA -+ e) %c (A9 I/t) éBer([F, e) = 4 X W.p. Ho1 .
: Vx #0
(’ . R T
Sparse LPN: for A « " with k—sparse columns, s « ", e < Ber(F,e)" , u < F",
we have
(A,sA +e) ~,. (A, u)
k—sparse

Our Setting: k = poly(logn) and € = O(n~°) for any 6 € (0,1).

Our Assumption: Sparse LPN

Sparse LPN: for A « ™ with k=sparse columns, s « ", ¢ « Ber(F,¢)" , u < F",
we have

(A,sA +e) ~,. (A, u)

Our Setting: k = poly(logn) and € = O(n~°) for any 6 € (0,1).

Our Assumption: Sparse LPN

Sparse LPN: for A « ™ with k=sparse columns, s « ", ¢ « Ber(F,¢)" , u < F",
we have

(A,sA +e) ~,. (A, u)

Our Setting: k = poly(logn) and € = O(n~°) for any 6 € (0,1).

History:

Our Assumption: Sparse LPN

Sparse LPN: for A « ™ with k=sparse columns, s « ", ¢ « Ber(F,¢)" , u < F",
we have

(A,sA +e) ~,. (A, u)

Our Setting: k = poly(logn) and € = O(n~°) for any 6 € (0,1).

History:

e When || = 2, this problem (and close variants) have been studied extensively in works on

average-case complexity [Gol00, CMO01, Fei02, MST03, FKO06, AOW15, AL16, KMOW17].

Our Assumption: Sparse LPN

Sparse LPN: for A « ™ with k=sparse columns, s « ", ¢ « Ber(F,¢)" , u < F",
we have

(A,sA +e) ~,. (A, u)

Our Setting: k = poly(logn) and € = O(n~°) for any 6 € (0,1).

History:

e When || = 2, this problem (and close variants) have been studied extensively in works on

average-case complexity [Gol00, CMO01, Fei02, MST03, FKO06, AOW15, AL16, KMOW17].

* Prior Applications: hardness of approximation [Ale03], linear-stretch PRGs with constant

locality [AIKO6], constant-overhead commitments [IKOS08], PKE and semi-honest OT

[ABW10], pseudorandom correlation generators (PCGs) [BCG+18, BCG+19], and constant-rate
VOLEs [ADI+17, AK23]

Our Assumption: Sparse LPN

Sparse LPN: for A « ™ with k=sparse columns, s « ", ¢ « Ber(F,¢)" , u < F",
we have

(A,sA +e) ~,. (A, u)

Our Setting: k = poly(logn) and € = O(n~°) for any 6 € (0,1).

Our Assumption: Sparse LPN

Sparse LPN: for A « ™ with k=sparse columns, s « ", ¢ « Ber(F,¢)" , u < F",
we have

(A,sA +e) ~,. (A, u)

Our Setting: k = poly(logn) and € = O(n~°) for any 6 € (0,1).

Hardness:

Our Assumption: Sparse LPN

Sparse LPN: for A « ™ with k=sparse columns, s « ", ¢ « Ber(F,¢)" , u < F",
we have

(A,sA +e) ~,. (A, u)

Our Setting: k = poly(logn) and € = O(n~°) for any 6 € (0,1).

Hardness:

e Matrix A has probability O(nP°Y1°¢") of being “bad”, i.e. having a sparse linear dependency.

Our Assumption: Sparse LPN

Sparse LPN: for A « ™ with k=sparse columns, s « ", ¢ « Ber(F,¢)" , u < F",
we have
(A,sA +e) ~,. (A, u)

Our Setting: k = poly(logn) and € = O(n~°) for any 6 € (0,1).

Hardness:

e Matrix A has probability O(nP°Y1°¢") of being “bad”, i.e. having a sparse linear dependency.

e Qutside of this “bad” choice, the best attacks (ISD-based) takes time 25(”1_5>.

Our Assumption: Sparse LPN

Sparse LPN: for A « ™ with k=sparse columns, s « ", ¢ « Ber(F,¢)" , u < F",
we have

(A,sA +e) ~,. (A, u)

Our Setting: k = poly(logn) and € = O(n~°) for any 6 € (0,1).

Hardness:

e Matrix A has probability O(nP°Y1°¢") of being “bad”, i.e. having a sparse linear dependency.

e Qutside of this “bad” choice, the best attacks (ISD-based) takes time 25(”1_5>.

e This parameter regime is not known to imply PKE [ABW10] = multi-party HSS* potentially
weaker than PKE.

HSS Construction: Motivation

HSS Construction: Motivation

[BGI16] Template:

HSS Construction: Motivation

[BGI16] Template:

e Each share of an input x € Finclude:

HSS Construction: Motivation

[BGI16] Template: {0 (linear) secret share [x],

e Each share of an input x € Finclude:

HSS Construction: Motivation

[BGI16] Template= e (linear) secret share [x],

* Each share of an input x € Finclude: < e (linearly homomorphic) encryption Enc (x) under key s,

HSS Construction: Motivation

[BGI16] Template= e (linear) secret share [x],

* Each share of an input x € Finclude: < e (linearly homomorphic) encryption Enc (x) under key s,

e secret shares [x - s] and encryptions Enc(x -).

HSS Construction: Motivation

[BGI16] Template= e (linear) secret share [x],

* Each share of an input x € Finclude: < e (linearly homomorphic) encryption Enc (x) under key s,

e secret shares [x - s] and encryptions Enc(x -).

e Invariant: any intermediate value y is stored as noisy shares [y + ey], [y -8 + ey,s].

HSS Construction: Motivation

[BGI16] Template= e (linear) secret share [x],

* Each share of an input x € Finclude: < e (linearly homomorphic) encryption Enc (x) under key s,

e secret shares [x - s] and encryptions Enc(x -).

e Invariant: any intermediate value y is stored as noisy shares [y + ey], [y -8 + ey,s].

o Multiplication: given [y + ey], [y -§ + e, | and Ency(x), Enc(x - s), compute

HSS Construction: Motivation

[BGI16] Template= e (linear) secret share [x],

* Each share of an input x € Finclude: < e (linearly homomorphic) encryption Enc (x) under key s,

e secret shares [x - s] and encryptions Enc(x -).

e Invariant: any intermediate value y is stored as noisy shares [y + ey], [y -8 + ey,s].

o Multiplication: given [y + ey], [y -§ + e, | and Ency(x), Enc(x - s), compute

Ency(xy + e,)| = < ytel, —|y-s+ ey,s]) - Ency(x)

"rounding" | [*Y T €0
— i .

Enc(xy-s + e,)| = (yt+el,—|y-s+e.) - Enc(x -) Ay 3 T Cxys.

HSS Construction: Motivation

[BGI16] Template= e (linear) secret share [x],

* Each share of an input x € Finclude: < e (linearly homomorphic) encryption Enc (x) under key s,

e secret shares [x - s] and encryptions Enc(x -).

e Invariant: any intermediate value y is stored as noisy shares [y + ey], [y -8 + ey,s].

o Multiplication: given [y + ey], [y -§ + e, | and Ency(x), Enc(x - s), compute

Ency(xy + e,)| = < ytel, —|y-s+ ey,s]) - Ency(x)

"rounding" | [*Y T €0
— i .

Enc(xy-s + e,)| = (yt+el,—|y-s+e.) - Enc(x -) Ay 3 T Cxys.

Limitation: Distributed rounding procedure only works for 2 parties.

HSS Construction: Motivation

HSS Construction: Motivation

Insight 1: Use LPN-based encryption

HSS Construction: Motivation

Insight 1: Use LPN-based encryption

Enc.(x) := (Zi, (s,a) + e+ x), where a < ", e « Ber(F, ¢),

HSS Construction: Motivation

Insight 1: Use LPN-based encryption

Enc.(x) := (Zi, (s,a) + e+ x), where a < ", e « Ber(F, ¢),

Enc(x - s;) := (Eil-, (s,d;)+e +x- Si), where d; < ", e; < Ber(F, ¢) for all i € [n].

HSS Construction: Motivation

Insight 1: Use LPN-based encryption

Enc.(x) := (Zi, (s,a) + e+ x), where a < ", e < Ber(F, ¢),
Encyx-s;) := (Eil-, (s,d;)+e +x- Si), where a; < [, e, « Ber(F, €) for all i € [n].

—> ciphertext over same field as plaintext, no rounding needed!

HSS Construction: Motivation

Insight 1: Use LPN-based encryption

Enc.(x) := (Zi, (s,a) + e+ x), where a < ", e « Ber(F, ¢),

Enc(x - s;) := (Eil-, (s,d;)+e +x- Si), where d; < ", e; < Ber(F, ¢) for all i € [n].

—> ciphertext over same field as plaintext, no rounding needed!

Multiplication: given

o)

n

y-s; + ey,sl])

=

1

and Enc:(x), (Enc;(x-si)) , compute

n
=1

HSS Construction: Motivation

Insight 1: Use LPN-based encryption

Enc.(x) := (Zi, (s,a) + e+ x), where a < ", e < Ber(F, ¢),
Encyx-s;) := (Eil-, (s,d;)+e +x- Si), where a; < [, e, « Ber(F, €) for all i € [n].

—> ciphertext over same field as plaintext, no rounding needed!

n

Multiplication: given |y + ey], (y-s; + ey,sl]) and Enc:(x), (Encg(x : Si)) , compute

n
=1
=1

xy + e | =|y+e| - ((5.d)+e+x) - Z;;l y-siten| - a
xy-s;+ e, | =|y+te, -((3,5i)+ei+x-si) — 2;;1 ySsiten| - a;;

HSS Construction: Motivation

Insight 1: Use LPN-based encryption

Enc.(x) := (Zi, (s,a) + e+ x), where a < ", e < Ber(F, ¢),
Encyx-s;) := (Eil-, (s,d;)+e +x- Si), where a; < [, e, « Ber(F, €) for all i € [n].

—> ciphertext over same field as plaintext, no rounding needed!

n

Multiplication: given |y + ey], (y-s; + ey,sl]) and Enc:(x), (Encg(x : Si)) , compute

n
=1
=1

xy 4+ e | = [v+e|- ((5.d)+e+x) - Z;;l y-siten| - a
xy-s; e | =1y te, -((f,ﬁi)+ei+x-si) — Z;.l:l ySsiten| - a;;

HSS Construction: Motivation

Insight 1: Use LPN-based encryption

Enc.(x) := (Zi, (s,a) + e+ x), where a < ", e < Ber(F, ¢),
Encyx-s;) := (Eil-, (s,d;)+e +x- Si), where a; < [, e, « Ber(F, €) for all i € [n].

—> ciphertext over same field as plaintext, no rounding needed!

- _ n
Multiplication: given |y + ey], (y-s; + ey,s]) and Enc:(x), (Encg(x : si))’fl . compute
] =
' ' i=1
] 1 _)_). o e :
Dot = el (@ te+ty) - X [Viste.| 4

bt ey = [ire] @@ e+xs) - T[]

llllllllllllllllll

HSS Construction: Motivation

Insight 1: Use LPN-based encryption

Enc.(x) := (Zi, (s,a) + e+ x), where a < ", e < Ber(F, ¢),
Encyx-s;) := (Eil-, (s,d;)+e +x- Si), where a; < [, e, « Ber(F, €) for all i € [n].

—> ciphertext over same field as plaintext, no rounding needed!

n

Multiplication: given |y + ey], (y-s; + ey,sl]) and Enc:(x), (Encg(x : Si)) , compute

n
=1
=1

xy + e | =|y+e| - ((5.d)+e+x) - Z;;l y-siten| - a
xy-s;+ e, | =|y+te, -((3,5i)+ei+x-si) — 2;;1 ySsiten| - a;;

HSS Construction: Motivation

Insight 1: Use LPN-based encryption

Enc.(x) := (Zi, (s,a) + e+ x), where a < ", e < Ber(F, ¢),
Encyx-s;) := (Eil-, (s,d;)+e +x- Si), where a; < [, e, « Ber(F, €) for all i € [n].

—> ciphertext over same field as plaintext, no rounding needed!

- _ n
Multiplication: given |y + ey], (y-s; + ey,sl]) and Enc:(x), (Encg(x : si)):l_l, compute
' ' i=1

llllllllllll
IIIIIIIIIIIIIIII

xy + e, | = y_|_ey} - ((5,a) +e+ x) — 2 ilyes "‘es P

. .?

IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII
lllllllllll

llllllllll

]
IIIIIIIIIIII
YFasnmEEEEEEES h— —

HSS Construction: Motivation

Insight 1: Use LPN-based encryption

Enc.(x) := (Zi, (s,a) + e+ x), where a < ", e < Ber(F, ¢),
Encyx-s;) := (Eil-, (s,d;)+e +x- Si), where a; < [, e, « Ber(F, €) for all i € [n].

—> ciphertext over same field as plaintext, no rounding needed!

- _ n
Multiplication: given |y + ey], (y-s; + ey,sl]) and Enc:(x), (Encg(x : si)):l_l, compute
' ' i=1

llllllllllll
IIIIIIIIIIIIIIII

xy + e, | = y_|_ey} - ((5,a) +e+ x) — 2 ilyes "‘es P

e = R . 4 '.....-
T T T T T T TR EEs -III_

IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII

s+ e = v +8] - (G B x-s) - BB+ 80

L]
IIIIIIIIIIIIII

Problem: Noise grows by factor of O(n) = too fast!

HSS Construction: Motivation

HSS Construction: Motivation

Insight 2: Use Sparse LPN-based encryption

Enc.(x) := (Zi, (s,a) + e+ x), where a < " is k-sparse, e < Ber(F, ¢),

Enc(x - s;) := (Eil-, (s,d;)+e +x- Si), where d; « " is k-sparse, ¢, < Ber(F, ¢) for all i € [n].

HSS Construction: Motivation

Insight 2: Use Sparse LPN-based encryption

Enc.(x) := (Zi, (s,a) + e+ x), where a < " is k-sparse, e < Ber(F, ¢),

Enc(x - s;) := (Eil-, (s,d;)+e +x- Si), where d; « " is k-sparse, ¢, < Ber(F, ¢) for all i € [n].

n

Multiplication: given |y + ey], (y-s; + ey,sl]) and Enc(x), (Encg(x : Si)) , compute

n
=1
=1

xy + e | :=|y+e -((E’,Zi)+e+x) — zaﬁeo y-sitenlq

AV i * _Y+ €| ° ((S,dl-> +e +x- Sl-) — Zaiﬁéo Y s; + €y.5,| " i

exy-sl- :

HSS Construction: Motivation

Insight 2: Use Sparse LPN-based encryption

Enc.(x) := (Zi, (s,a) + e+ x), where a < " is k-sparse, e < Ber(F, ¢),

Enc(x - s;) := (Eil-, (s,d;)+e +x- Si), where d; « " is k-sparse, ¢, < Ber(F, ¢) for all i € [n].

- n
Multiplication: given |y + ey], ([y -8 + ey,sl]) and Enc(x), (Encg(x : Si))?_l, compute
‘ i=1

lllllllllllllllll

..............

lllllllll
. e

R exy] a y+ey] | <<§’ d) +e+ x) B Za,;«féo Y3 +§ey-s-§ az

lllllllllllllllllllllllllllllllllllll

lllll
llllllllllll

Xy S, + e | = y+e] : ((3, a.) +§ei§+x-si) — Z .

HSS Construction: Motivation

Insight 2: Use Sparse LPN-based encryption

Enc.(x) := (Zi, (s,a) + e+ x), where a < " is k-sparse, e < Ber(F, ¢),

Enc(x - s;) := (Eil-, (s,d;)+e +x- Si), where d; « " is k-sparse, ¢, < Ber(F, ¢) for all i € [n].

- _ n
Multiplication: given |y + ey], (y-s; + ey,sl]) and Enc(x), (Encg(x : Si)):l:l, compute
‘ ‘ i=1

lllllllllllllllll

..............

lllllllll
. e

o+ e, = @] (G0 @) - B8 @

llllllllllllllllllllllllllllll
lllllllllll

SOR L] y"'éeyi (S +Hgg+xos:) — By |V 5+ | i

llllll

Noise growth: only O(k) each time = for degree-d monomials, noise grows by k%@ .

HSS Construction: Parameters

HSS Construction: Parameters

Parameter Setting: To achieve a desired 1/poly(41) correctness error for

degree-d polynomials with M terms, we need:

HSS Construction: Parameters

Parameter Setting: To achieve a desired 1/poly(41) correctness error for

degree-d polynomials with M terms, we need:

O(d) 1 : . ey :
- k M < ~ where € = = is the initial noise rate.

n—o poly(4) n-

HSS Construction: Parameters

Parameter Setting: To achieve a desired 1/poly(41) correctness error for

degree-d polynomials with M terms, we need:

O(d) 1 : . ey :
- k M < ~ where € = = is the initial noise rate.

n—o poly(4) n-

For any d = O(log A/ loglog 4), M = poly(4), and k = poly log n, it suffices to set
n=20 (/IC) for a large enough exponent C.

HSS Construction: Parameters

Parameter Setting: To achieve a desired 1/poly(41) correctness error for

degree-d polynomials with M terms, we need:

O(d) 1 : . ey :
- k M < ~ where € = = is the initial noise rate.

n—o poly(4) n-

For any d = O(log A/ loglog 4), M = poly(4), and k = poly log n, it suffices to set

n=20 (/IC) for a large enough exponent C.

Advantages:

HSS Construction: Parameters

Parameter Setting: To achieve a desired 1/poly(41) correctness error for

degree-d polynomials with M terms, we need:

O(d) 1 : . ey :
- k M < ~ where € = = is the initial noise rate.

n—o poly(4) n-

For any d = O(log A/ loglog 4), M = poly(4), and k = poly log n, it suffices to set

n=20 (/IC) for a large enough exponent C.

Advantages:

® Our HSS can be used with any linear secret sharing scheme.

HSS Construction: Parameters

Parameter Setting: To achieve a desired 1/poly(41) correctness error for

degree-d polynomials with M terms, we need:

O(d) 1 : . ey :
- k M < ~ where € = = is the initial noise rate.

n—o poly(4) n-

For any d = O(log A/ loglog 4), M = poly(4), and k = poly log n, it suffices to set

n=20 (/IC) for a large enough exponent C.

Advantages:

® Our HSS can be used with any linear secret sharing scheme.

e Small computation overhead O(k) = poly log n for each multiplication.

HSS Construction: Security

HSS Construction: Security

HSS Security: For any subset of parties T of size < ¢, and any x, x’ € [, we need to show

HSS Construction: Security

HSS Security: For any subset of parties T of size < ¢, and any x, x’ € [, we need to show

{[x]f, ([x : Si]f)?:l }KET U {Encg(x), (Enc;(x : Si)):;l} 3 {[x’]f, ([x’ : sl.]f):;1 }KET U {Encg(x’), (Encg(x’ : sl-)):l:l}

HSS Construction: Security

HSS Security: For any subset of parties T of size < ¢, and any x, x’ € [, we need to show

{[x]f, ([x : sl.]f)?=1 }KET U {Encg(x), (Enc;(x : si)):l:l} 3 {[x’]f, ([x’ : sl.]f):l_1 }feT U {EI/ZC_;(X,), (Encg(x’ : sl-)):l:l}

e Secret shares are indistinguishable due to #-privacy of [- |.

HSS Construction: Security

HSS Security: For any subset of parties T of size < ¢, and any x, x’ € [, we need to show

ll

(s (Leesd) |

e Secret shares are indistinguishable due to #-privacy of [- |.

feT -------------------- =1 i=1) poqpi Ve85

e Encryptions Enc:(x) =~. Enc:(x’) due to semantic security.

HSS Construction: Security

HSS Security: For any subset of parties T of size < ¢, and any x, x’ € [, we need to show

(s (Leesd) |

e Secret shares are indistinguishable due to #-privacy of [- |.

ll

feT -------------------- =1 i=1) poqpi Ve85

e Encryptions Enc:(x) =~. Enc:(x’) due to semantic security.

KDM Security: Need to show key-dependent message (KDM) security of (Encg(x : Sl-))?_1

HSS Construction: Security

HSS Security: For any subset of parties T of size < ¢, and any x, x’ € [, we need to show

{[x] 2, ([x - 5. f):l_l} U {Enc;:(x, (Enc;(x : sl-)):;l} 2 {[x’] 2, ([x’ - 5] ?/ﬂ)?:l} U {Encg(x% (Enc(x"- Si)):l:l}

— feT -------------------- feT ¢

IIIIIIIIIIIIIIIIIIIII

e Secret shares are indistinguishable due to #-privacy of [- |.

e Encryptions Enc:(x) =~. Enc:(x’) due to semantic security.

KDM Security: Need to show key-dependent message (KDM) security of (Ency(x - s,))

n
i=1

e Existing KDM proofs for LWE/LPN do not apply!
—> Problem is distribution of sparse matrices not uniform.

HSS Construction: Security

HSS Security: For any subset of parties T of size < ¢, and any x, x’ € [, we need to show

{[x] 2, ([x - 5. f):l_l} U {Enc§(x, (Enc;(x : sl-)):;l} 2 {[x’] 2, ([x’ - 5] ?/ﬂ)?:l} U {Encg(x% (Enc(x"- Si)):lzl}

— KET -------------------- feT ¢

IIIIIIIIIIIIIIIIIIIII

e Secret shares are indistinguishable due to #-privacy of [- |.

e Encryptions Enc:(x) =~. Enc:(x’) due to semantic security.

KDM Security: Need to show key-dependent message (KDM) security of (Ency(x - s,))

n
i=1

e Existing KDM proofs for LWE/LPN do not apply!
—> Problem is distribution of sparse matrices not uniform.

e Our Idea: use security for k-sparse to argue KDM security for (2k — 1)-sparse

HSS Construction: Security

HSS Security: For any subset of parties T of size < ¢, and any x, x’ € [, we need to show

{[x] 2, ([x - 5. f):l_l} U {Enc§(x, (Enc;(x : sl-)):;l} 2 {[x’] 2, ([x’ - 5] ?/ﬂ)?:l} U {Encg(x% (Enc(x"- Si)):lzl}

— KET -------------------- feT ¢

IIIIIIIIIIIIIIIIIIIII

e Secret shares are indistinguishable due to #-privacy of [- |.

e Encryptions Enc:(x) =~. Enc:(x’) due to semantic security.

KDM Security: Need to show key-dependent message (KDM) security of (Ency(x - s,))

n
i=1

e Existing KDM proofs for LWE/LPN do not apply!
—> Problem is distribution of sparse matrices not uniform.

e Our Idea: use security for k-sparse to argue KDM security for (2k — 1)-sparse

e Technical Issue: our proof only works for |[F| > 2! = HSS for [, can be done in [,

Summary

Our Result: Assuming Sparse LPN, there exists HSS for O(log log)-depth arithmetic circuits, J
and sublinear MPC for layered Boolean circuits, both supporting arbitrary number of parties. |

Summary

Our Result: Assuming Sparse LPN, there exists HSS for O(log log)-depth arithmetic circuits, '
and sublinear MPC for layered Boolean circuits, both supporting arbitrary number of parties. |

Future Directions:

Summary

Our Result: Assuming Sparse LPN, there exists HSS for O(log log)-depth arithmetic circuits, J
and sublinear MPC for layered Boolean circuits, both supporting arbitrary number of parties. |

Future Directions:

* Public-key multi-party HSS? (e.q. computations can be done on inputs from different clients)

Summary

Our Result: Assuming Sparse LPN, there exists HSS for O(log log)-depth arithmetic circuits, J
and sublinear MPC for layered Boolean circuits, both supporting arbitrary number of parties. |

Future Directions:

* Public-key multi-party HSS? (e.q. computations can be done on inputs from different clients)

* Concrete hardness of Sparse LPN?

Summary

Our Result: Assuming Sparse LPN, there exists HSS for O(log log)-depth arithmetic circuits, '
and sublinear MPC for layered Boolean circuits, both supporting arbitrary number of parties. |

Future Directions:

* Public-key multi-party HSS?
* Concrete hardness of Sparse LPN?

* Improved efficiency for practical applications?

Summary

Our Result: Assuming Sparse LPN, there exists HSS for O(log log)-depth arithmetic circuits, '
and sublinear MPC for layered Boolean circuits, both supporting arbitrary number of parties. |

Future Directions:

* Public-key multi-party HSS?
* Concrete hardness of Sparse LPN?

* Improved efficiency for practical applications?

Thank you! Questions?

