
Multi-party Homomorphic Secret Sharing
& Sub-linear MPC from Sparse LPN

Quang Dao Aayush Jain Huijia LinYuval Ishai

Crypto 2023

Homomorphic Secret Sharing (HSS)

(distributed / secret-shared version of homomorphic encryption)

Homomorphic Secret Sharing (HSS)

(distributed / secret-shared version of homomorphic encryption)

Homomorphic Secret Sharing (HSS)

(distributed / secret-shared version of homomorphic encryption)

Share RecEval

Homomorphic Secret Sharing (HSS)

(distributed / secret-shared version of homomorphic encryption)

Share RecEval

x

Homomorphic Secret Sharing (HSS)

(distributed / secret-shared version of homomorphic encryption)

Share RecEval

sh1

x
sh2

shn

Homomorphic Secret Sharing (HSS)

(distributed / secret-shared version of homomorphic encryption)

Share RecEval

sh1

x
sh2

shn

(∀ f ∈ ℱ)

Homomorphic Secret Sharing (HSS)

(distributed / secret-shared version of homomorphic encryption)

⋮

Share RecEval

sh1

x
sh2

shn

shf,1

shf,2

shf,n

(∀ f ∈ ℱ)

Local computation

Homomorphic Secret Sharing (HSS)

(distributed / secret-shared version of homomorphic encryption)

⋮

Share RecEval

sh1

x
sh2

shn

shf,1

shf,2

shf,n

y

(∀ f ∈ ℱ)

Local computation

Homomorphic Secret Sharing (HSS)

(distributed / secret-shared version of homomorphic encryption)

• -Correctness: .

• -Privacy: any shares hide .

δ Pr [y = f(x)] ≥ 1 − δ

t ≤ t x

⋮

Share RecEval

sh1

x
sh2

shn

shf,1

shf,2

shf,n

y

(∀ f ∈ ℱ)

Local computation

Homomorphic Secret Sharing (HSS)

(distributed / secret-shared version of homomorphic encryption)

• -Correctness: .

• -Privacy: any shares hide .

δ Pr [y = f(x)] ≥ 1 − δ

t ≤ t x

• Compactness:

• Linear reconstruction: (Default)
 is a linear function

|𝗌𝗁f,i| ≪ |f|

Rec

⋮

Share RecEval

sh1

x
sh2

shn

shf,1

shf,2

shf,n

y

(∀ f ∈ ℱ)

Local computation

Homomorphic Secret Sharing (HSS)

HSS Application: Sublinear MPC
(secure multi-party computation)

HSS Application: Sublinear MPC
Motivation: “circuit size barrier” in MPC

(secure multi-party computation)

HSS Application: Sublinear MPC
Motivation: “circuit size barrier” in MPC

x1

x2

x3
…

xn

Setting: semi-honest,
 corruptions(n − 1)

C(⃗x)

(secure multi-party computation)

HSS Application: Sublinear MPC
Motivation: “circuit size barrier” in MPC

For “classical” protocols [GMW87, BGW88, BMR90]
and their extensions

x1

x2

x3
…

xn

Setting: semi-honest,
 corruptions(n − 1)

C(⃗x)

(secure multi-party computation)

HSS Application: Sublinear MPC
Motivation: “circuit size barrier” in MPC

For “classical” protocols [GMW87, BGW88, BMR90]
and their extensions

x1

x2

x3
…

xn

Setting: semi-honest,
 corruptions(n − 1)

Comm (per-party):
Ω(|C|)

C(⃗x)

(secure multi-party computation)

HSS Application: Sublinear MPC
Motivation: “circuit size barrier” in MPC Solution: HSS-based MPC

For “classical” protocols [GMW87, BGW88, BMR90]
and their extensions

x1

x2

x3
…

xn

Setting: semi-honest,
 corruptions(n − 1)

Comm (per-party):
Ω(|C|)

C(⃗x)

(secure multi-party computation)

HSS Application: Sublinear MPC
Motivation: “circuit size barrier” in MPC Solution: HSS-based MPC

For “classical” protocols [GMW87, BGW88, BMR90]
and their extensions

x1

x2

x3
…

xn

Setting: semi-honest,
 corruptions(n − 1)

Comm (per-party):
Ω(|C|)

C(⃗x)

(secure multi-party computation)

…

xn
HSSC

x1 x2

x3

HSS Application: Sublinear MPC
Motivation: “circuit size barrier” in MPC Solution: HSS-based MPC

For “classical” protocols [GMW87, BGW88, BMR90]
and their extensions

x1

x2

x3
…

xn

Setting: semi-honest,
 corruptions(n − 1)

Comm (per-party):
Ω(|C|)

Comm (per-party):
Ω (|xi| + |C(⃗x)|)

C(⃗x)

(secure multi-party computation)

…

xn
HSSC

x1 x2

x3

Prior Works: The “2-party” Barrier

Prior Works: The “2-party” Barrier
HSS landscape:

Prior Works: The “2-party” Barrier
HSS landscape:
• First 2-party HSS for log-depth circuits from DDH [BGI16].

Prior Works: The “2-party” Barrier
HSS landscape:
• First 2-party HSS for log-depth circuits from DDH [BGI16].

• Later 2-party schemes from LWE [BKS19], DCR [FGJS17, OSY21, RS21], LPN [CM21], and
class groups [ADOS22].

Prior Works: The “2-party” Barrier
HSS landscape:
• First 2-party HSS for log-depth circuits from DDH [BGI16].

• Later 2-party schemes from LWE [BKS19], DCR [FGJS17, OSY21, RS21], LPN [CM21], and
class groups [ADOS22].

• None supporting >2 parties except those using indistinguishability obfuscation (iO)
[BGI15], or (specific) fully homomorphic encryption (FHE) schemes [DHRW16, BGI+18].

Prior Works: The “2-party” Barrier
HSS landscape:
• First 2-party HSS for log-depth circuits from DDH [BGI16].

• Later 2-party schemes from LWE [BKS19], DCR [FGJS17, OSY21, RS21], LPN [CM21], and
class groups [ADOS22].

• None supporting >2 parties except those using indistinguishability obfuscation (iO)
[BGI15], or (specific) fully homomorphic encryption (FHE) schemes [DHRW16, BGI+18].

Sublinear MPC landscape:

Prior Works: The “2-party” Barrier
HSS landscape:
• First 2-party HSS for log-depth circuits from DDH [BGI16].

• Later 2-party schemes from LWE [BKS19], DCR [FGJS17, OSY21, RS21], LPN [CM21], and
class groups [ADOS22].

• None supporting >2 parties except those using indistinguishability obfuscation (iO)
[BGI15], or (specific) fully homomorphic encryption (FHE) schemes [DHRW16, BGI+18].

Sublinear MPC landscape:
• 2-party HSS 2-party sublinear MPC for layered Boolean circuits [BGI16]⟹

Prior Works: The “2-party” Barrier
HSS landscape:
• First 2-party HSS for log-depth circuits from DDH [BGI16].

• Later 2-party schemes from LWE [BKS19], DCR [FGJS17, OSY21, RS21], LPN [CM21], and
class groups [ADOS22].

• None supporting >2 parties except those using indistinguishability obfuscation (iO)
[BGI15], or (specific) fully homomorphic encryption (FHE) schemes [DHRW16, BGI+18].

Sublinear MPC landscape:
• 2-party HSS 2-party sublinear MPC for layered Boolean circuits [BGI16]⟹

• 3-party and 5-party sublinear MPC based on an array of assumptions [BCM23]

Prior Works: The “2-party” Barrier

Can we achieve HSS and sublinear MPC for arbitrary number of parties,

without using iO or FHE?

HSS landscape:
• First 2-party HSS for log-depth circuits from DDH [BGI16].

• Later 2-party schemes from LWE [BKS19], DCR [FGJS17, OSY21, RS21], LPN [CM21], and
class groups [ADOS22].

• None supporting >2 parties except those using indistinguishability obfuscation (iO)
[BGI15], or (specific) fully homomorphic encryption (FHE) schemes [DHRW16, BGI+18].

Sublinear MPC landscape:
• 2-party HSS 2-party sublinear MPC for layered Boolean circuits [BGI16]⟹

• 3-party and 5-party sublinear MPC based on an array of assumptions [BCM23]

Our Results: Multi-Party HSS & More

Our Results: Multi-Party HSS & More

Theorem 1: Assuming Sparse LPN (over), there exists HSS for arbitrary number of parties,

with error and linear reconstruction*, for the following function classes:
* or error but non-linear reconstruction

𝔽

1/𝗉𝗈𝗅𝗒(λ)
negl(λ)

Our Results: Multi-Party HSS & More

Theorem 1: Assuming Sparse LPN (over), there exists HSS for arbitrary number of parties,

with error and linear reconstruction*, for the following function classes:
* or error but non-linear reconstruction

𝔽

1/𝗉𝗈𝗅𝗒(λ)
negl(λ)

1. degree multivariate polynomials over , consisting of polynomial
number of monomials, e.g.
O(log λ / log log λ)− 𝔽

Our Results: Multi-Party HSS & More

Theorem 1: Assuming Sparse LPN (over), there exists HSS for arbitrary number of parties,

with error and linear reconstruction*, for the following function classes:
* or error but non-linear reconstruction

𝔽

1/𝗉𝗈𝗅𝗒(λ)
negl(λ)

1. degree multivariate polynomials over , consisting of polynomial
number of monomials, e.g.
O(log λ / log log λ)− 𝔽

.f(x1, …, xm) = ∑
𝗉𝗈𝗅𝗒(λ) terms

xi1…xis , s = O(log λ / log log λ)

Our Results: Multi-Party HSS & More

Theorem 1: Assuming Sparse LPN (over), there exists HSS for arbitrary number of parties,

with error and linear reconstruction*, for the following function classes:
* or error but non-linear reconstruction

𝔽

1/𝗉𝗈𝗅𝗒(λ)
negl(λ)

1. degree multivariate polynomials over , consisting of polynomial
number of monomials, e.g.
O(log λ / log log λ)− 𝔽

.f(x1, …, xm) = ∑
𝗉𝗈𝗅𝗒(λ) terms

xi1…xis , s = O(log λ / log log λ)

2. depth arithmetic circuits over . (for any)(c ⋅ log log λ)− 𝔽 c < 1

Our Results: Multi-Party HSS & More

Theorem 1: Assuming Sparse LPN (over), there exists HSS for arbitrary number of parties,

with error and linear reconstruction*, for the following function classes:
* or error but non-linear reconstruction

𝔽

1/𝗉𝗈𝗅𝗒(λ)
negl(λ)

1. degree multivariate polynomials over , consisting of polynomial
number of monomials, e.g.
O(log λ / log log λ)− 𝔽

.f(x1, …, xm) = ∑
𝗉𝗈𝗅𝗒(λ) terms

xi1…xis , s = O(log λ / log log λ)

2. depth arithmetic circuits over . (for any)(c ⋅ log log λ)− 𝔽 c < 1

Theorem 2: Assuming Sparse LPN and OTs*, there exists sublinear MPC for layered Boolean
circuits, with per-party communication for a layered circuit of size .
* known from LPN with noise [Ale03], or a specific parameter setting for sparse LPN [ABW10]

≈ ω(1) ⋅ S / log log S S
1/ n

Our Assumption: Sparse LPN

Learning Parity with Noise (LPN): for , , , ,
we have

A ← 𝔽n×m s ← 𝔽n e ← Ber(𝔽, ϵ)m u ← 𝔽m

(A, sA + e) ≈c (A, u)

Our Assumption: Sparse LPN

Ber(𝔽, ϵ) =

0 w.p. 1 − ϵ
x w.p. ϵ

|𝔽| − 1

∀x ≠ 0

Learning Parity with Noise (LPN): for , , , ,
we have

A ← 𝔽n×m s ← 𝔽n e ← Ber(𝔽, ϵ)m u ← 𝔽m

(A, sA + e) ≈c (A, u)

Our Assumption: Sparse LPN

As e+⋅A ,() uA ,()≈c

Ber(𝔽, ϵ) =

0 w.p. 1 − ϵ
x w.p. ϵ

|𝔽| − 1

∀x ≠ 0

Learning Parity with Noise (LPN): for , , , ,
we have

A ← 𝔽n×m s ← 𝔽n e ← Ber(𝔽, ϵ)m u ← 𝔽m

(A, sA + e) ≈c (A, u)

Our Assumption: Sparse LPN

Sparse LPN: for with sparse columns, , , ,
we have

A ← 𝔽n×m k− s ← 𝔽n e ← Ber(𝔽, ϵ)m u ← 𝔽m

(A, sA + e) ≈c (A, u)

As e+⋅A ,() uA ,()≈c

As e+⋅A ,() uA ,()≈c

sparsek−

Ber(𝔽, ϵ) =

0 w.p. 1 − ϵ
x w.p. ϵ

|𝔽| − 1

∀x ≠ 0

Learning Parity with Noise (LPN): for , , , ,
we have

A ← 𝔽n×m s ← 𝔽n e ← Ber(𝔽, ϵ)m u ← 𝔽m

(A, sA + e) ≈c (A, u)

Our Assumption: Sparse LPN

Sparse LPN: for with sparse columns, , , ,
we have

A ← 𝔽n×m k− s ← 𝔽n e ← Ber(𝔽, ϵ)m u ← 𝔽m

(A, sA + e) ≈c (A, u)

Our Setting: and for any .k = 𝗉𝗈𝗅𝗒(log n) ϵ = O(n−δ) δ ∈ (0,1)

As e+⋅A ,() uA ,()≈c

As e+⋅A ,() uA ,()≈c

sparsek−

Ber(𝔽, ϵ) =

0 w.p. 1 − ϵ
x w.p. ϵ

|𝔽| − 1

∀x ≠ 0

Sparse LPN: for with sparse columns, , , ,
we have

A ← 𝔽n×m k− s ← 𝔽n e ← Ber(𝔽, ϵ)m u ← 𝔽m

(A, sA + e) ≈c (A, u)

Our Setting: and for any .k = 𝗉𝗈𝗅𝗒(log n) ϵ = O(n−δ) δ ∈ (0,1)

Our Assumption: Sparse LPN

Sparse LPN: for with sparse columns, , , ,
we have

A ← 𝔽n×m k− s ← 𝔽n e ← Ber(𝔽, ϵ)m u ← 𝔽m

(A, sA + e) ≈c (A, u)

Our Setting: and for any .k = 𝗉𝗈𝗅𝗒(log n) ϵ = O(n−δ) δ ∈ (0,1)

History:

Our Assumption: Sparse LPN

Sparse LPN: for with sparse columns, , , ,
we have

A ← 𝔽n×m k− s ← 𝔽n e ← Ber(𝔽, ϵ)m u ← 𝔽m

(A, sA + e) ≈c (A, u)

Our Setting: and for any .k = 𝗉𝗈𝗅𝗒(log n) ϵ = O(n−δ) δ ∈ (0,1)

History:

• When , this problem (and close variants) have been studied extensively in works on
average-case complexity [Gol00, CM01, Fei02, MST03, FKO06, AOW15, AL16, KMOW17].

|𝔽| = 2

Our Assumption: Sparse LPN

Sparse LPN: for with sparse columns, , , ,
we have

A ← 𝔽n×m k− s ← 𝔽n e ← Ber(𝔽, ϵ)m u ← 𝔽m

(A, sA + e) ≈c (A, u)

Our Setting: and for any .k = 𝗉𝗈𝗅𝗒(log n) ϵ = O(n−δ) δ ∈ (0,1)

History:

• When , this problem (and close variants) have been studied extensively in works on
average-case complexity [Gol00, CM01, Fei02, MST03, FKO06, AOW15, AL16, KMOW17].

|𝔽| = 2

• Prior Applications: hardness of approximation [Ale03], linear-stretch PRGs with constant
locality [AIK06], constant-overhead commitments [IKOS08], PKE and semi-honest OT
[ABW10], pseudorandom correlation generators (PCGs) [BCG+18, BCG+19], and constant-rate
VOLEs [ADI+17, AK23]

Our Assumption: Sparse LPN

Sparse LPN: for with sparse columns, , , ,
we have

A ← 𝔽n×m k− s ← 𝔽n e ← Ber(𝔽, ϵ)m u ← 𝔽m

(A, sA + e) ≈c (A, u)

Our Setting: and for any .k = 𝗉𝗈𝗅𝗒(log n) ϵ = O(n−δ) δ ∈ (0,1)

Our Assumption: Sparse LPN

Sparse LPN: for with sparse columns, , , ,
we have

A ← 𝔽n×m k− s ← 𝔽n e ← Ber(𝔽, ϵ)m u ← 𝔽m

(A, sA + e) ≈c (A, u)

Our Setting: and for any .k = 𝗉𝗈𝗅𝗒(log n) ϵ = O(n−δ) δ ∈ (0,1)

Hardness:

Our Assumption: Sparse LPN

Sparse LPN: for with sparse columns, , , ,
we have

A ← 𝔽n×m k− s ← 𝔽n e ← Ber(𝔽, ϵ)m u ← 𝔽m

(A, sA + e) ≈c (A, u)

Our Setting: and for any .k = 𝗉𝗈𝗅𝗒(log n) ϵ = O(n−δ) δ ∈ (0,1)

Hardness:

• Matrix has probability of being “bad”, i.e. having a sparse linear dependency.A O(n−𝗉𝗈𝗅𝗒 log n)

Our Assumption: Sparse LPN

Sparse LPN: for with sparse columns, , , ,
we have

A ← 𝔽n×m k− s ← 𝔽n e ← Ber(𝔽, ϵ)m u ← 𝔽m

(A, sA + e) ≈c (A, u)

Our Setting: and for any .k = 𝗉𝗈𝗅𝗒(log n) ϵ = O(n−δ) δ ∈ (0,1)

Hardness:

• Matrix has probability of being “bad”, i.e. having a sparse linear dependency.A O(n−𝗉𝗈𝗅𝗒 log n)

• Outside of this “bad” choice, the best attacks (ISD-based) takes time .2 Õ (n1−δ)

Our Assumption: Sparse LPN

Sparse LPN: for with sparse columns, , , ,
we have

A ← 𝔽n×m k− s ← 𝔽n e ← Ber(𝔽, ϵ)m u ← 𝔽m

(A, sA + e) ≈c (A, u)

Our Setting: and for any .k = 𝗉𝗈𝗅𝗒(log n) ϵ = O(n−δ) δ ∈ (0,1)

Hardness:

• Matrix has probability of being “bad”, i.e. having a sparse linear dependency.A O(n−𝗉𝗈𝗅𝗒 log n)

• Outside of this “bad” choice, the best attacks (ISD-based) takes time .2 Õ (n1−δ)

• This parameter regime is not known to imply PKE [ABW10] multi-party HSS* potentially
weaker than PKE.

⟹

* we consider secret-key HSS in this work, public-key HSS necessarily implies PKE

Our Assumption: Sparse LPN

HSS Construction: Motivation

HSS Construction: Motivation
[BGI16] Template:

HSS Construction: Motivation
[BGI16] Template:
• Each share of an input include:

x ∈ 𝔽

HSS Construction: Motivation
[BGI16] Template:
• Each share of an input include:

x ∈ 𝔽

• (linear) secret share ,[x]

{

HSS Construction: Motivation
[BGI16] Template:
• Each share of an input include:

x ∈ 𝔽

• (linear) secret share ,[x]
• (linearly homomorphic) encryption under key ,Encs(x) s{

HSS Construction: Motivation
[BGI16] Template:
• Each share of an input include:

x ∈ 𝔽

• (linear) secret share ,[x]
• (linearly homomorphic) encryption under key ,Encs(x) s

• secret shares and encryptions .[x ⋅ s] Encs(x ⋅ s){

HSS Construction: Motivation
[BGI16] Template:
• Each share of an input include:

x ∈ 𝔽

• Invariant: any intermediate value is stored as noisy shares .y [y + ey], [y ⋅ s + ey⋅s]

• (linear) secret share ,[x]
• (linearly homomorphic) encryption under key ,Encs(x) s

• secret shares and encryptions .[x ⋅ s] Encs(x ⋅ s){

HSS Construction: Motivation
[BGI16] Template:
• Each share of an input include:

x ∈ 𝔽

• Invariant: any intermediate value is stored as noisy shares .y [y + ey], [y ⋅ s + ey⋅s]
• Multiplication: given and , compute[y + ey], [y ⋅ s + ey⋅s] Encs(x), Encs(x ⋅ s)

• (linear) secret share ,[x]
• (linearly homomorphic) encryption under key ,Encs(x) s

• secret shares and encryptions .[x ⋅ s] Encs(x ⋅ s){

HSS Construction: Motivation
[BGI16] Template:
• Each share of an input include:

x ∈ 𝔽

• Invariant: any intermediate value is stored as noisy shares .y [y + ey], [y ⋅ s + ey⋅s]
• Multiplication: given and , compute[y + ey], [y ⋅ s + ey⋅s] Encs(x), Encs(x ⋅ s)

[Encs(xy + exy)] := ([y + ey], − [y ⋅ s + ey⋅s]) ⋅ Encs(x)

[Encs(xy ⋅ s + exy⋅s)] := ([y + ey], − [y ⋅ s + ey⋅s]) ⋅ Encs(x ⋅ s)

"rounding"
⟹

[xy + exy]
[xy ⋅ s + exy⋅s]

• (linear) secret share ,[x]
• (linearly homomorphic) encryption under key ,Encs(x) s

• secret shares and encryptions .[x ⋅ s] Encs(x ⋅ s){

HSS Construction: Motivation
[BGI16] Template:
• Each share of an input include:

x ∈ 𝔽

• Invariant: any intermediate value is stored as noisy shares .y [y + ey], [y ⋅ s + ey⋅s]
• Multiplication: given and , compute[y + ey], [y ⋅ s + ey⋅s] Encs(x), Encs(x ⋅ s)

[Encs(xy + exy)] := ([y + ey], − [y ⋅ s + ey⋅s]) ⋅ Encs(x)

[Encs(xy ⋅ s + exy⋅s)] := ([y + ey], − [y ⋅ s + ey⋅s]) ⋅ Encs(x ⋅ s)

"rounding"
⟹

[xy + exy]
[xy ⋅ s + exy⋅s]

Limitation: Distributed rounding procedure only works for 2 parties.

• (linear) secret share ,[x]
• (linearly homomorphic) encryption under key ,Encs(x) s

• secret shares and encryptions .[x ⋅ s] Encs(x ⋅ s){

HSS Construction: Motivation

Insight 1: Use LPN-based encryption

HSS Construction: Motivation

Insight 1: Use LPN-based encryption

, where , ,Enc ⃗s(x) := (⃗a, ⟨ ⃗s, ⃗a⟩ + e + x) ⃗a ← 𝔽n e ← Ber(𝔽, ϵ)

HSS Construction: Motivation

Insight 1: Use LPN-based encryption

, where , ,Enc ⃗s(x) := (⃗a, ⟨ ⃗s, ⃗a⟩ + e + x) ⃗a ← 𝔽n e ← Ber(𝔽, ϵ)

, where , for all .Enc ⃗s(x ⋅ si) := (⃗ai, ⟨ ⃗s, ⃗ai⟩ + ei + x ⋅ si) ⃗ai ← 𝔽n ei ← Ber(𝔽, ϵ) i ∈ [n]

HSS Construction: Motivation

Insight 1: Use LPN-based encryption

, where , ,Enc ⃗s(x) := (⃗a, ⟨ ⃗s, ⃗a⟩ + e + x) ⃗a ← 𝔽n e ← Ber(𝔽, ϵ)

, where , for all .Enc ⃗s(x ⋅ si) := (⃗ai, ⟨ ⃗s, ⃗ai⟩ + ei + x ⋅ si) ⃗ai ← 𝔽n ei ← Ber(𝔽, ϵ) i ∈ [n]

 ciphertext over same field as plaintext, no rounding needed!⟹

HSS Construction: Motivation

Insight 1: Use LPN-based encryption

, where , ,Enc ⃗s(x) := (⃗a, ⟨ ⃗s, ⃗a⟩ + e + x) ⃗a ← 𝔽n e ← Ber(𝔽, ϵ)

, where , for all .Enc ⃗s(x ⋅ si) := (⃗ai, ⟨ ⃗s, ⃗ai⟩ + ei + x ⋅ si) ⃗ai ← 𝔽n ei ← Ber(𝔽, ϵ) i ∈ [n]

 ciphertext over same field as plaintext, no rounding needed!⟹

Multiplication: given and , compute[y + ey], ([y ⋅ si + ey⋅si])
n

i=1
Enc ⃗s(x), (Enc ⃗s(x ⋅ si))n

i=1

HSS Construction: Motivation

Insight 1: Use LPN-based encryption

, where , ,Enc ⃗s(x) := (⃗a, ⟨ ⃗s, ⃗a⟩ + e + x) ⃗a ← 𝔽n e ← Ber(𝔽, ϵ)

, where , for all .Enc ⃗s(x ⋅ si) := (⃗ai, ⟨ ⃗s, ⃗ai⟩ + ei + x ⋅ si) ⃗ai ← 𝔽n ei ← Ber(𝔽, ϵ) i ∈ [n]

 ciphertext over same field as plaintext, no rounding needed!⟹

Multiplication: given and , compute[y + ey], ([y ⋅ si + ey⋅si])
n

i=1
Enc ⃗s(x), (Enc ⃗s(x ⋅ si))n

i=1

[xy + exy] := [y + ey] ⋅ (⟨ ⃗s, ⃗a⟩ + e + x) − ∑n
j=1 [y ⋅ sj + ey⋅sj] ⋅ ai

[xy ⋅ si + exy⋅si] := [y + ey] ⋅ (⟨ ⃗s, ⃗ai⟩ + ei + x ⋅ si) − ∑n
j=1 [y ⋅ sj + ey⋅sj] ⋅ ai,j

HSS Construction: Motivation

Insight 1: Use LPN-based encryption

, where , ,Enc ⃗s(x) := (⃗a, ⟨ ⃗s, ⃗a⟩ + e + x) ⃗a ← 𝔽n e ← Ber(𝔽, ϵ)

, where , for all .Enc ⃗s(x ⋅ si) := (⃗ai, ⟨ ⃗s, ⃗ai⟩ + ei + x ⋅ si) ⃗ai ← 𝔽n ei ← Ber(𝔽, ϵ) i ∈ [n]

 ciphertext over same field as plaintext, no rounding needed!⟹

Multiplication: given and , compute[y + ey], ([y ⋅ si + ey⋅si])
n

i=1
Enc ⃗s(x), (Enc ⃗s(x ⋅ si))n

i=1

[xy + exy] := [y + ey] ⋅ (⟨ ⃗s, ⃗a⟩ + e + x) − ∑n
j=1 [y ⋅ sj + ey⋅sj] ⋅ ai

[xy ⋅ si + exy⋅si] := [y + ey] ⋅ (⟨ ⃗s, ⃗ai⟩ + ei + x ⋅ si) − ∑n
j=1 [y ⋅ sj + ey⋅sj] ⋅ ai,j

HSS Construction: Motivation

Insight 1: Use LPN-based encryption

, where , ,Enc ⃗s(x) := (⃗a, ⟨ ⃗s, ⃗a⟩ + e + x) ⃗a ← 𝔽n e ← Ber(𝔽, ϵ)

, where , for all .Enc ⃗s(x ⋅ si) := (⃗ai, ⟨ ⃗s, ⃗ai⟩ + ei + x ⋅ si) ⃗ai ← 𝔽n ei ← Ber(𝔽, ϵ) i ∈ [n]

 ciphertext over same field as plaintext, no rounding needed!⟹

Multiplication: given and , compute[y + ey], ([y ⋅ si + ey⋅si])
n

i=1
Enc ⃗s(x), (Enc ⃗s(x ⋅ si))n

i=1

[xy + exy] := [y + ey] ⋅ (⟨ ⃗s, ⃗a⟩ + e + x) − ∑n
j=1 [y ⋅ sj + ey⋅sj] ⋅ ai

[xy ⋅ si + exy⋅si] := [y + ey] ⋅ (⟨ ⃗s, ⃗ai⟩ + ei + x ⋅ si) − ∑n
j=1 [y ⋅ sj + ey⋅sj] ⋅ ai,j

HSS Construction: Motivation

Insight 1: Use LPN-based encryption

, where , ,Enc ⃗s(x) := (⃗a, ⟨ ⃗s, ⃗a⟩ + e + x) ⃗a ← 𝔽n e ← Ber(𝔽, ϵ)

, where , for all .Enc ⃗s(x ⋅ si) := (⃗ai, ⟨ ⃗s, ⃗ai⟩ + ei + x ⋅ si) ⃗ai ← 𝔽n ei ← Ber(𝔽, ϵ) i ∈ [n]

 ciphertext over same field as plaintext, no rounding needed!⟹

Multiplication: given and , compute[y + ey], ([y ⋅ si + ey⋅si])
n

i=1
Enc ⃗s(x), (Enc ⃗s(x ⋅ si))n

i=1

[xy + exy] := [y + ey] ⋅ (⟨ ⃗s, ⃗a⟩ + e + x) − ∑n
j=1 [y ⋅ sj + ey⋅sj] ⋅ ai

[xy ⋅ si + exy⋅si] := [y + ey] ⋅ (⟨ ⃗s, ⃗ai⟩ + ei + x ⋅ si) − ∑n
j=1 [y ⋅ sj + ey⋅sj] ⋅ ai,j

HSS Construction: Motivation

Insight 1: Use LPN-based encryption

, where , ,Enc ⃗s(x) := (⃗a, ⟨ ⃗s, ⃗a⟩ + e + x) ⃗a ← 𝔽n e ← Ber(𝔽, ϵ)

, where , for all .Enc ⃗s(x ⋅ si) := (⃗ai, ⟨ ⃗s, ⃗ai⟩ + ei + x ⋅ si) ⃗ai ← 𝔽n ei ← Ber(𝔽, ϵ) i ∈ [n]

 ciphertext over same field as plaintext, no rounding needed!⟹

Multiplication: given and , compute[y + ey], ([y ⋅ si + ey⋅si])
n

i=1
Enc ⃗s(x), (Enc ⃗s(x ⋅ si))n

i=1

[xy + exy] := [y + ey] ⋅ (⟨ ⃗s, ⃗a⟩ + e + x) − ∑n
j=1 [y ⋅ sj + ey⋅sj] ⋅ ai

[xy ⋅ si + exy⋅si] := [y + ey] ⋅ (⟨ ⃗s, ⃗ai⟩ + ei + x ⋅ si) − ∑n
j=1 [y ⋅ sj + ey⋅sj] ⋅ ai,j

HSS Construction: Motivation

Insight 1: Use LPN-based encryption

, where , ,Enc ⃗s(x) := (⃗a, ⟨ ⃗s, ⃗a⟩ + e + x) ⃗a ← 𝔽n e ← Ber(𝔽, ϵ)

, where , for all .Enc ⃗s(x ⋅ si) := (⃗ai, ⟨ ⃗s, ⃗ai⟩ + ei + x ⋅ si) ⃗ai ← 𝔽n ei ← Ber(𝔽, ϵ) i ∈ [n]

 ciphertext over same field as plaintext, no rounding needed!⟹

Multiplication: given and , compute[y + ey], ([y ⋅ si + ey⋅si])
n

i=1
Enc ⃗s(x), (Enc ⃗s(x ⋅ si))n

i=1

[xy + exy] := [y + ey] ⋅ (⟨ ⃗s, ⃗a⟩ + e + x) − ∑n
j=1 [y ⋅ sj + ey⋅sj] ⋅ ai

[xy ⋅ si + exy⋅si] := [y + ey] ⋅ (⟨ ⃗s, ⃗ai⟩ + ei + x ⋅ si) − ∑n
j=1 [y ⋅ sj + ey⋅sj] ⋅ ai,j

Problem: Noise grows by factor of too fast!O(n) ⟹

HSS Construction: Motivation

HSS Construction: Motivation

Insight 2: Use Sparse LPN-based encryption

, where is -sparse, ,Enc ⃗s(x) := (⃗a, ⟨ ⃗s, ⃗a⟩ + e + x) ⃗a ← 𝔽n k e ← Ber(𝔽, ϵ)

, where is -sparse, for all .Enc ⃗s(x ⋅ si) := (⃗ai, ⟨ ⃗s, ⃗ai⟩ + ei + x ⋅ si) ⃗ai ← 𝔽n k ei ← Ber(𝔽, ϵ) i ∈ [n]

HSS Construction: Motivation

Insight 2: Use Sparse LPN-based encryption

, where is -sparse, ,Enc ⃗s(x) := (⃗a, ⟨ ⃗s, ⃗a⟩ + e + x) ⃗a ← 𝔽n k e ← Ber(𝔽, ϵ)

, where is -sparse, for all .Enc ⃗s(x ⋅ si) := (⃗ai, ⟨ ⃗s, ⃗ai⟩ + ei + x ⋅ si) ⃗ai ← 𝔽n k ei ← Ber(𝔽, ϵ) i ∈ [n]

Multiplication: given and , compute[y + ey], ([y ⋅ si + ey⋅si])
n

i=1
Enc ⃗s(x), (Enc ⃗s(x ⋅ si))n

i=1

[xy + exy] := [y + ey] ⋅ (⟨ ⃗s, ⃗a⟩ + e + x) − ∑ai≠0 [y ⋅ sj + ey⋅sj] ⋅ ai

[xy ⋅ si + exy⋅si] := [y + ey] ⋅ (⟨ ⃗s, ⃗ai⟩ + ei + x ⋅ si) − ∑ai,j≠0 [y ⋅ sj + ey⋅sj] ⋅ ai,j

HSS Construction: Motivation

Insight 2: Use Sparse LPN-based encryption

, where is -sparse, ,Enc ⃗s(x) := (⃗a, ⟨ ⃗s, ⃗a⟩ + e + x) ⃗a ← 𝔽n k e ← Ber(𝔽, ϵ)

, where is -sparse, for all .Enc ⃗s(x ⋅ si) := (⃗ai, ⟨ ⃗s, ⃗ai⟩ + ei + x ⋅ si) ⃗ai ← 𝔽n k ei ← Ber(𝔽, ϵ) i ∈ [n]

Multiplication: given and , compute[y + ey], ([y ⋅ si + ey⋅si])
n

i=1
Enc ⃗s(x), (Enc ⃗s(x ⋅ si))n

i=1

[xy + exy] := [y + ey] ⋅ (⟨ ⃗s, ⃗a⟩ + e + x) − ∑ai≠0 [y ⋅ sj + ey⋅sj] ⋅ ai

[xy ⋅ si + exy⋅si] := [y + ey] ⋅ (⟨ ⃗s, ⃗ai⟩ + ei + x ⋅ si) − ∑ai,j≠0 [y ⋅ sj + ey⋅sj] ⋅ ai,j

HSS Construction: Motivation

Insight 2: Use Sparse LPN-based encryption

, where is -sparse, ,Enc ⃗s(x) := (⃗a, ⟨ ⃗s, ⃗a⟩ + e + x) ⃗a ← 𝔽n k e ← Ber(𝔽, ϵ)

, where is -sparse, for all .Enc ⃗s(x ⋅ si) := (⃗ai, ⟨ ⃗s, ⃗ai⟩ + ei + x ⋅ si) ⃗ai ← 𝔽n k ei ← Ber(𝔽, ϵ) i ∈ [n]

Multiplication: given and , compute[y + ey], ([y ⋅ si + ey⋅si])
n

i=1
Enc ⃗s(x), (Enc ⃗s(x ⋅ si))n

i=1

[xy + exy] := [y + ey] ⋅ (⟨ ⃗s, ⃗a⟩ + e + x) − ∑ai≠0 [y ⋅ sj + ey⋅sj] ⋅ ai

[xy ⋅ si + exy⋅si] := [y + ey] ⋅ (⟨ ⃗s, ⃗ai⟩ + ei + x ⋅ si) − ∑ai,j≠0 [y ⋅ sj + ey⋅sj] ⋅ ai,j

Noise growth: only each time for degree- monomials, noise grows by .O(k) ⟹ d kO(d)

HSS Construction: Motivation

HSS Construction: Parameters

HSS Construction: Parameters
Parameter Setting: To achieve a desired correctness error for
degree- polynomials with terms, we need:

1/𝗉𝗈𝗅𝗒(λ)
d M

HSS Construction: Parameters
Parameter Setting: To achieve a desired correctness error for
degree- polynomials with terms, we need:

1/𝗉𝗈𝗅𝗒(λ)
d M

, where is the initial noise rate.
1

n−δ
⋅ kO(d) ⋅ M <

1
𝗉𝗈𝗅𝗒(λ)

ϵ =
1

n−δ

HSS Construction: Parameters
Parameter Setting: To achieve a desired correctness error for
degree- polynomials with terms, we need:

1/𝗉𝗈𝗅𝗒(λ)
d M

, where is the initial noise rate.
1

n−δ
⋅ kO(d) ⋅ M <

1
𝗉𝗈𝗅𝗒(λ)

ϵ =
1

n−δ

For any , , and , it suffices to set
 for a large enough exponent .

d = O(log λ / log log λ) M = 𝗉𝗈𝗅𝗒(λ) k = 𝗉𝗈𝗅𝗒 log n
n = O (λC) C

HSS Construction: Parameters

Advantages:

Parameter Setting: To achieve a desired correctness error for
degree- polynomials with terms, we need:

1/𝗉𝗈𝗅𝗒(λ)
d M

, where is the initial noise rate.
1

n−δ
⋅ kO(d) ⋅ M <

1
𝗉𝗈𝗅𝗒(λ)

ϵ =
1

n−δ

For any , , and , it suffices to set
 for a large enough exponent .

d = O(log λ / log log λ) M = 𝗉𝗈𝗅𝗒(λ) k = 𝗉𝗈𝗅𝗒 log n
n = O (λC) C

HSS Construction: Parameters

Advantages:
• Our HSS can be used with any linear secret sharing scheme.

Parameter Setting: To achieve a desired correctness error for
degree- polynomials with terms, we need:

1/𝗉𝗈𝗅𝗒(λ)
d M

, where is the initial noise rate.
1

n−δ
⋅ kO(d) ⋅ M <

1
𝗉𝗈𝗅𝗒(λ)

ϵ =
1

n−δ

For any , , and , it suffices to set
 for a large enough exponent .

d = O(log λ / log log λ) M = 𝗉𝗈𝗅𝗒(λ) k = 𝗉𝗈𝗅𝗒 log n
n = O (λC) C

HSS Construction: Parameters

Advantages:
• Our HSS can be used with any linear secret sharing scheme.

• Small computation overhead for each multiplication.O(k) = 𝗉𝗈𝗅𝗒 log n

Parameter Setting: To achieve a desired correctness error for
degree- polynomials with terms, we need:

1/𝗉𝗈𝗅𝗒(λ)
d M

, where is the initial noise rate.
1

n−δ
⋅ kO(d) ⋅ M <

1
𝗉𝗈𝗅𝗒(λ)

ϵ =
1

n−δ

For any , , and , it suffices to set
 for a large enough exponent .

d = O(log λ / log log λ) M = 𝗉𝗈𝗅𝗒(λ) k = 𝗉𝗈𝗅𝗒 log n
n = O (λC) C

HSS Construction: Security

HSS Construction: Security
HSS Security: For any subset of parties of size , and any , we need to showT ≤ t x, x′ ∈ 𝔽

HSS Construction: Security
HSS Security: For any subset of parties of size , and any , we need to showT ≤ t x, x′ ∈ 𝔽

{[x]ℓ, ([x ⋅ si]ℓ)n
i=1}ℓ∈T

∪ {Enc ⃗s(x), (Enc ⃗s(x ⋅ si))n
i=1} ≈c {[x′]ℓ, ([x′ ⋅ si]ℓ)n

i=1}ℓ∈T
∪ {Enc ⃗s(x′), (Enc ⃗s(x′ ⋅ si))n

i=1}

HSS Construction: Security
HSS Security: For any subset of parties of size , and any , we need to showT ≤ t x, x′ ∈ 𝔽

{[x]ℓ, ([x ⋅ si]ℓ)n
i=1}ℓ∈T

∪ {Enc ⃗s(x), (Enc ⃗s(x ⋅ si))n
i=1} ≈c {[x′]ℓ, ([x′ ⋅ si]ℓ)n

i=1}ℓ∈T
∪ {Enc ⃗s(x′), (Enc ⃗s(x′ ⋅ si))n

i=1}
• Secret shares are indistinguishable due to -privacy of .t [⋅]

HSS Construction: Security
HSS Security: For any subset of parties of size , and any , we need to showT ≤ t x, x′ ∈ 𝔽

{[x]ℓ, ([x ⋅ si]ℓ)n
i=1}ℓ∈T

∪ {Enc ⃗s(x), (Enc ⃗s(x ⋅ si))n
i=1} ≈c {[x′]ℓ, ([x′ ⋅ si]ℓ)n

i=1}ℓ∈T
∪ {Enc ⃗s(x′), (Enc ⃗s(x′ ⋅ si))n

i=1}
• Secret shares are indistinguishable due to -privacy of .t [⋅]

• Encryptions due to semantic security.Enc ⃗s(x) ≈c Enc ⃗s(x′)

HSS Construction: Security

KDM Security: Need to show key-dependent message (KDM) security of .(Enc ⃗s(x ⋅ si))n
i=1

HSS Security: For any subset of parties of size , and any , we need to showT ≤ t x, x′ ∈ 𝔽

{[x]ℓ, ([x ⋅ si]ℓ)n
i=1}ℓ∈T

∪ {Enc ⃗s(x), (Enc ⃗s(x ⋅ si))n
i=1} ≈c {[x′]ℓ, ([x′ ⋅ si]ℓ)n

i=1}ℓ∈T
∪ {Enc ⃗s(x′), (Enc ⃗s(x′ ⋅ si))n

i=1}
• Secret shares are indistinguishable due to -privacy of .t [⋅]

• Encryptions due to semantic security.Enc ⃗s(x) ≈c Enc ⃗s(x′)

HSS Construction: Security

KDM Security: Need to show key-dependent message (KDM) security of .(Enc ⃗s(x ⋅ si))n
i=1

• Existing KDM proofs for LWE/LPN do not apply!
 Problem is distribution of sparse matrices not uniform.⟹

HSS Security: For any subset of parties of size , and any , we need to showT ≤ t x, x′ ∈ 𝔽

{[x]ℓ, ([x ⋅ si]ℓ)n
i=1}ℓ∈T

∪ {Enc ⃗s(x), (Enc ⃗s(x ⋅ si))n
i=1} ≈c {[x′]ℓ, ([x′ ⋅ si]ℓ)n

i=1}ℓ∈T
∪ {Enc ⃗s(x′), (Enc ⃗s(x′ ⋅ si))n

i=1}
• Secret shares are indistinguishable due to -privacy of .t [⋅]

• Encryptions due to semantic security.Enc ⃗s(x) ≈c Enc ⃗s(x′)

HSS Construction: Security

KDM Security: Need to show key-dependent message (KDM) security of .(Enc ⃗s(x ⋅ si))n
i=1

• Existing KDM proofs for LWE/LPN do not apply!
 Problem is distribution of sparse matrices not uniform.⟹

• Our Idea: use security for -sparse to argue KDM security for -sparsek (2k − 1)

HSS Security: For any subset of parties of size , and any , we need to showT ≤ t x, x′ ∈ 𝔽

{[x]ℓ, ([x ⋅ si]ℓ)n
i=1}ℓ∈T

∪ {Enc ⃗s(x), (Enc ⃗s(x ⋅ si))n
i=1} ≈c {[x′]ℓ, ([x′ ⋅ si]ℓ)n

i=1}ℓ∈T
∪ {Enc ⃗s(x′), (Enc ⃗s(x′ ⋅ si))n

i=1}
• Secret shares are indistinguishable due to -privacy of .t [⋅]

• Encryptions due to semantic security.Enc ⃗s(x) ≈c Enc ⃗s(x′)

HSS Construction: Security

KDM Security: Need to show key-dependent message (KDM) security of .(Enc ⃗s(x ⋅ si))n
i=1

• Existing KDM proofs for LWE/LPN do not apply!
 Problem is distribution of sparse matrices not uniform.⟹

• Our Idea: use security for -sparse to argue KDM security for -sparsek (2k − 1)

• Technical Issue: our proof only works for ! HSS for can be done in |𝔽| > 2 ⟹ 𝔽2 𝔽4

HSS Security: For any subset of parties of size , and any , we need to showT ≤ t x, x′ ∈ 𝔽

{[x]ℓ, ([x ⋅ si]ℓ)n
i=1}ℓ∈T

∪ {Enc ⃗s(x), (Enc ⃗s(x ⋅ si))n
i=1} ≈c {[x′]ℓ, ([x′ ⋅ si]ℓ)n

i=1}ℓ∈T
∪ {Enc ⃗s(x′), (Enc ⃗s(x′ ⋅ si))n

i=1}
• Secret shares are indistinguishable due to -privacy of .t [⋅]

• Encryptions due to semantic security.Enc ⃗s(x) ≈c Enc ⃗s(x′)

Summary

Summary

Our Result: Assuming Sparse LPN, there exists HSS for -depth arithmetic circuits,
and sublinear MPC for layered Boolean circuits, both supporting arbitrary number of parties.

O(log log)

Summary

Future Directions:

Our Result: Assuming Sparse LPN, there exists HSS for -depth arithmetic circuits,
and sublinear MPC for layered Boolean circuits, both supporting arbitrary number of parties.

O(log log)

Summary

Future Directions:
• Public-key multi-party HSS? (e.g. computations can be done on inputs from different clients)

Our Result: Assuming Sparse LPN, there exists HSS for -depth arithmetic circuits,
and sublinear MPC for layered Boolean circuits, both supporting arbitrary number of parties.

O(log log)

Summary

Future Directions:
• Public-key multi-party HSS? (e.g. computations can be done on inputs from different clients)

• Concrete hardness of Sparse LPN?

Our Result: Assuming Sparse LPN, there exists HSS for -depth arithmetic circuits,
and sublinear MPC for layered Boolean circuits, both supporting arbitrary number of parties.

O(log log)

Summary

Future Directions:
• Public-key multi-party HSS? (e.g. computations can be done on inputs from different clients)

• Concrete hardness of Sparse LPN?

• Improved efficiency for practical applications?

Our Result: Assuming Sparse LPN, there exists HSS for -depth arithmetic circuits,
and sublinear MPC for layered Boolean circuits, both supporting arbitrary number of parties.

O(log log)

Summary

Future Directions:
• Public-key multi-party HSS? (e.g. computations can be done on inputs from different clients)

• Concrete hardness of Sparse LPN?

• Improved efficiency for practical applications?

Thank you! Questions?

Our Result: Assuming Sparse LPN, there exists HSS for -depth arithmetic circuits,
and sublinear MPC for layered Boolean circuits, both supporting arbitrary number of parties.

O(log log)

