Multi-party Homomorphic Secret Sharing \& Sub-linear MPC from Sparse LPN

Quang Dao
Carnegie
Mellon
University

Yuval Ishai

Huijia Lin

W
UNIVERSITY of
WASHINGTON

Crypto 2023

Homomorphic Secret Sharing (HSS)

Homomorphic Secret Sharing (HSS)

(distributed / secret-shared version of homomorphic encryption)

Homomorphic Secret Sharing (HSS)

(distributed / secret-shared version of homomorphic encryption)

Homomorphic Secret Sharing (HSS)

(distributed / secret-shared version of homomorphic encryption)
Share

Eval Rec

Homomorphic Secret Sharing (HSS)

(distributed / secret-shared version of homomorphic encryption)
Share
Eval Rec

Homomorphic Secret Sharing (HSS)

(distributed / secret-shared version of homomorphic encryption)

Homomorphic Secret Sharing (HSS)

(distributed / secret-shared version of homomorphic encryption)

Homomorphic Secret Sharing (HSS)

(distributed / secret-shared version of homomorphic encryption)

Homomorphic Secret Sharing (HSS)

(distributed / secret-shared version of homomorphic encryption)

Homomorphic Secret Sharing (HSS)

(distributed / secret-shared version of homomorphic encryption)

- δ-Correctness: $\operatorname{Pr}[y=f(x)] \geq 1-\delta$.
- t-Privacy: any $\leq t$ shares hide x.

Homomorphic Secret Sharing (HSS)

(distributed / secret-shared version of homomorphic encryption)

- δ-Correctness: $\operatorname{Pr}[y=f(x)] \geq 1-\delta$.
- t-Privacy: any $\leq t$ shares hide x.
- Compactness: \mid sh $_{f, i}|\ll| f \mid$
- Linear reconstruction: (Default) Rec is a linear function

HSS Application: Sublinear MPC

(secure multi-party computation)

HSS Application: Sublinear MPC

(secure multi-party computation)
Motivation: "circuit size barrier" in MPC

HSS Application: Sublinear MPC

Motivation: "circuit size barrier" in MPC

HSS Application: Sublinear MPC

Motivation: "circuit size barrier" in MPC

For "classical" protocols [GMW87, BGW88, BMR90] and their extensions

HSS Application: Sublinear MPC

Motivation: "circuit size barrier" in MPC

For "classical" protocols [GMW87, BGW88, BMR90] and their extensions

HSS Application: Sublinear MPC

Motivation: "circuit size barrier" in MPC

For "classical" protocols [GMW87, BGW88, BMR90] and their extensions

Solution: HSS-based MPC

HSS Application: Sublinear MPC

Motivation: "circuit size barrier" in MPC

For "classical" protocols [GMW87, BGW88, BMR90] and their extensions

Solution: HSS-based MPC

HSS Application: Sublinear MPC

Motivation: "circuit size barrier" in MPC

For "classical" protocols [GMW87, BGW88, BMR90] and their extensions

Solution: HSS-based MPC

Comm (per-party):
$\Omega\left(\left|x_{i}\right|+|C(\vec{x})|\right)$

Prior Works: The "2-party" Barrier

Prior Works: The "2-party" Barrier

 HSS landscape:
Prior Works: The "2-party" Barrier

HSS landscape:

- First 2-party HSS for log-depth circuits from DDH [BGI16].

Prior Works: The "2-party" Barrier

HSS landscape:

- First 2-party HSS for log-depth circuits from DDH [BGI16].
- Later 2-party schemes from LWE [BKS19], DCR [FGJS17, OSY21, RS21], LPN [CM21], and class groups [ADOS22].

Prior Works: The "2-party" Barrier

HSS landscape:

- First 2-party HSS for log-depth circuits from DDH [BGI16].
- Later 2-party schemes from LWE [BKS19], DCR [FGJS17, OSY21, RS21], LPN [CM21], and class groups [ADOS22].
- None supporting >2 parties except those using indistinguishability obfuscation (iO) [BGI15], or (specific) fully homomorphic encryption (FHE) schemes [DHRW16, BGI+18].

Prior Works: The "2-party" Barrier

HSS landscape:

- First 2-party HSS for log-depth circuits from DDH [BG|16].
- Later 2-party schemes from LWE [BKS19], DCR [FGJS17, OSY21, RS21], LPN [CM21], and class groups [ADOS22].
- None supporting >2 parties except those using indistinguishability obfuscation (iO) [BGI15], or (specific) fully homomorphic encryption (FHE) schemes [DHRW16, BGI+18].

Sublinear MPC landscape:

Prior Works: The "2-party" Barrier

HSS landscape:

- First 2-party HSS for log-depth circuits from DDH [BGI16].
- Later 2-party schemes from LWE [BKS19], DCR [FGJS17, OSY21, RS21], LPN [CM21], and class groups [ADOS22].
- None supporting >2 parties except those using indistinguishability obfuscation (iO) [BGI15], or (specific) fully homomorphic encryption (FHE) schemes [DHRW16, BGI+18].

Sublinear MPC landscape:

- 2-party HSS \Longrightarrow 2-party sublinear MPC for layered Boolean circuits [BGI16]

Prior Works: The "2-party" Barrier

HSS landscape:

- First 2-party HSS for log-depth circuits from DDH [BGI16].
- Later 2-party schemes from LWE [BKS19], DCR [FGJS17, OSY21, RS21], LPN [CM21], and class groups [ADOS22].
- None supporting >2 parties except those using indistinguishability obfuscation (iO) [BGI15], or (specific) fully homomorphic encryption (FHE) schemes [DHRW16, BGI+18].

Sublinear MPC landscape:

- 2-party HSS \Longrightarrow 2-party sublinear MPC for layered Boolean circuits [BGI16]
- 3-party and 5-party sublinear MPC based on an array of assumptions [BCM23]

Prior Works: The "2-party" Barrier

HSS landscape:

- First 2-party HSS for log-depth circuits from DDH [BGI16].
- Later 2-party schemes from LWE [BKS19], DCR [FGJS17, OSY21, RS21], LPN [CM21], and class groups [ADOS22].
- None supporting >2 parties except those using indistinguishability obfuscation (iO) [BGI15], or (specific) fully homomorphic encryption (FHE) schemes [DHRW16, BGI+18].

Sublinear MPC landscape:

- 2-party HSS \Longrightarrow 2-party sublinear MPC for layered Boolean circuits [BGI16]
- 3-party and 5-party sublinear MPC based on an array of assumptions [BCM23]

Can we achieve HSS and sublinear MPC for arbitrary number of parties, without using iO or FHE?

Our Results: Multi-Party HSS \& More

Our Results: Multi-Party HSS \& More

Theorem 1: Assuming Sparse LPN (over \mathbb{F}), there exists HSS for arbitrary number of parties, with $1 / \operatorname{poly}(\lambda)$ error and linear reconstruction*, for the following function classes:

* or negl(λ) error but non-linear reconstruction

Our Results: Multi-Party HSS \& More

Theorem 1: Assuming Sparse LPN (over \mathbb{F}), there exists HSS for arbitrary number of parties, with $1 /$ poly (λ) error and linear reconstruction*, for the following function classes:

* or negl(λ) error but non-linear reconstruction

1. $O(\log \lambda / \log \log \lambda)$-degree multivariate polynomials over \mathbb{F}, consisting of polynomial number of monomials, e.g.

Our Results: Multi-Party HSS \& More

Theorem 1: Assuming Sparse LPN (over \mathbb{F}), there exists HSS for arbitrary number of parties, with $1 / \operatorname{poly}(\lambda)$ error and linear reconstruction*, for the following function classes:

* or negl(λ) error but non-linear reconstruction

1. $O(\log \lambda / \log \log \lambda)$-degree multivariate polynomials over \mathbb{F}, consisting of polynomial number of monomials, e.g.

$$
f\left(x_{1}, \ldots, x_{m}\right)=\sum_{\text {poly }(\lambda) \text { terms }} x_{i_{1}} \ldots x_{i_{s}}, \quad s=O(\log \lambda / \log \log \lambda) .
$$

Our Results: Multi-Party HSS \& More

Theorem 1: Assuming Sparse LPN (over \mathbb{F}), there exists HSS for arbitrary number of parties, with $1 /$ poly (λ) error and linear reconstruction*, for the following function classes:

* or negl(λ) error but non-linear reconstruction

1. $O(\log \lambda / \log \log \lambda)$-degree multivariate polynomials over \mathbb{F}, consisting of polynomial number of monomials, e.g.

$$
f\left(x_{1}, \ldots, x_{m}\right)=\sum_{\text {poly }(\lambda) \text { terms }} x_{i_{1}} \ldots x_{i_{s}}, \quad s=O(\log \lambda / \log \log \lambda) .
$$

2. $(c \cdot \log \log \lambda)$-depth arithmetic circuits over \mathbb{F}. (for any $c<1$)

Our Results: Multi-Party HSS \& More

Theorem 1: Assuming Sparse LPN (over \mathbb{F}), there exists HSS for arbitrary number of parties, with $1 / \operatorname{poly}(\lambda)$ error and linear reconstruction*, for the following function classes:

* or negl(λ) error but non-linear reconstruction

1. $O(\log \lambda / \log \log \lambda)$-degree multivariate polynomials over \mathbb{F}, consisting of polynomial number of monomials, e.g.

$$
f\left(x_{1}, \ldots, x_{m}\right)=\sum_{\text {poly }(\lambda) \text { terms }} x_{i_{1}} \ldots x_{i_{s}}, \quad s=O(\log \lambda / \log \log \lambda) .
$$

2. $(c \cdot \log \log \lambda)$-depth arithmetic circuits over \mathbb{F}. (for any $c<1$)

Theorem 2: Assuming Sparse LPN and OTs*, there exists sublinear MPC for layered Boolean circuits, with per-party communication $\approx \omega(1) \cdot S / \log \log S$ for a layered circuit of size S.

Our Assumption: Sparse LPN

Our Assumption: Sparse LPN

Learning Parity with Noise (LPN): for $A \leftarrow \mathbb{F}^{n \times m}, s \leftarrow \mathbb{F}^{n}, e \leftarrow \operatorname{Ber}(\mathbb{F}, \epsilon)^{m}, u \leftarrow \mathbb{F}^{m}$, we have

$$
(A, s A+e) \approx_{c}(A, u)
$$

$$
\operatorname{Ber}(\mathbb{F}, \epsilon)=\left\{\begin{array}{c}
0 \text { w.p. } 1-\epsilon \\
x \text { w.p. } \frac{\epsilon}{\mid \mathbb{F}-1} \\
\forall x \neq 0
\end{array}\right.
$$

Our Assumption: Sparse LPN

Learning Parity with Noise (LPN): for $A \leftarrow \mathbb{F}^{n \times m}, s \leftarrow \mathbb{F}^{n}, e \leftarrow \operatorname{Ber}(\mathbb{F}, \epsilon)^{m}, u \leftarrow \mathbb{F}^{m}$, we have

$$
\operatorname{Ber}(\mathbb{F}, \epsilon)=\left\{\begin{array}{c}
0 \text { w.p. } 1-\epsilon \\
x \text { w.p. } \frac{\epsilon}{\mid \mathbb{F}-1} \\
\forall x \neq 0
\end{array}\right.
$$

Our Assumption: Sparse LPN

Learning Parity with Noise (LPN): for $A \leftarrow \mathbb{F}^{n \times m}, s \leftarrow \mathbb{F}^{n}, e \leftarrow \operatorname{Ber}(\mathbb{F}, \epsilon)^{m}, u \leftarrow \mathbb{F}^{m}$, we have

$$
\operatorname{Ber}(\mathbb{F}, \epsilon)=\left\{\begin{array}{c}
0 \text { w.p. } 1-\epsilon \\
x \text { w.p. } \frac{\epsilon}{\mid \mathbb{F}-1} \\
\forall x \neq 0
\end{array}\right.
$$

Sparse LPN: for $A \leftarrow \mathbb{F}^{n x m}$ with \underline{k}-sparse columns, $s \leftarrow \mathbb{F}^{n}, e \leftarrow \operatorname{Ber}(\mathbb{F}, \epsilon)^{m}, u \leftarrow \mathbb{F}^{m}$, we have

$$
(A, s A+e) \approx_{c}(A, u)
$$

Our Assumption: Sparse LPN

Learning Parity with Noise (LPN): for $A \leftarrow \mathbb{F}^{n \times m}, s \leftarrow \mathbb{F}^{n}, e \leftarrow \operatorname{Ber}(\mathbb{F}, \epsilon)^{m}, u \leftarrow \mathbb{F}^{m}$, we have

$$
\operatorname{Ber}(\mathbb{F}, \epsilon)=\left\{\begin{array}{c}
0 \text { w.p. } 1-\epsilon \\
x \text { w.p. } \frac{\epsilon}{\mid \mathbb{F}-1} \\
\forall x \neq 0
\end{array}\right.
$$

Sparse LPN: for $A \leftarrow \mathbb{F}^{n x m}$ with \underline{k}-sparse columns, $s \leftarrow \mathbb{F}^{n}, e \leftarrow \operatorname{Ber}(\mathbb{F}, \epsilon)^{m}, u \leftarrow \mathbb{F}^{m}$, we have

$$
(A, s A+e) \approx_{c}(A, u)
$$

Our Setting: $k=\operatorname{poly}(\log n)$ and $\epsilon=O\left(n^{-\delta}\right)$ for any $\delta \in(0,1)$.

Our Assumption: Sparse LPN

 we have

$$
(A, s A+e) \approx_{c}(A, u)
$$

Our Setting: $k=\operatorname{poly}(\log n)$ and $\epsilon=O\left(n^{-\delta}\right)$ for any $\delta \in(0,1)$.

Our Assumption: Sparse LPN

 we have

$$
(A, s A+e) \approx_{c}(A, u)
$$

Our Setting: $k=\operatorname{poly}(\log n)$ and $\epsilon=O\left(n^{-\delta}\right)$ for any $\delta \in(0,1)$.

History:

Our Assumption: Sparse LPN

 we have

$$
(A, s A+e) \approx_{c}(A, u)
$$

Our Setting: $k=\operatorname{poly}(\log n)$ and $\epsilon=O\left(n^{-\delta}\right)$ for any $\delta \in(0,1)$.

History:

- When $|\mathbb{F}|=2$, this problem (and close variants) have been studied extensively in works on average-case complexity [Gol00, CM01, Fei02, MST03, FKO06, AOW15, AL16, KMOW17].

Our Assumption: Sparse LPN

 we have

$$
(A, s A+e) \approx_{c}(A, u)
$$

Our Setting: $k=\operatorname{poly}(\log n)$ and $\epsilon=O\left(n^{-\delta}\right)$ for any $\delta \in(0,1)$.

History:

- When $|\mathbb{F}|=2$, this problem (and close variants) have been studied extensively in works on average-case complexity [Gol00, CM01, Fei02, MST03, FKO06, AOW15, AL16, KMOW17].
- Prior Applications: hardness of approximation [Ale03], linear-stretch PRGs with constant locality [AIK06], constant-overhead commitments [IKOS08], PKE and semi-honest OT [ABW10], pseudorandom correlation generators (PCGs) [BCG+18, BCG+19], and constant-rate VOLEs [ADI+17, AK23]

Our Assumption: Sparse LPN

 we have

$$
(A, s A+e) \approx_{c}(A, u)
$$

Our Setting: $k=\operatorname{poly}(\log n)$ and $\epsilon=O\left(n^{-\delta}\right)$ for any $\delta \in(0,1)$.

Our Assumption: Sparse LPN

 we have

$$
(A, s A+e) \approx_{c}(A, u)
$$

Our Setting: $k=\operatorname{poly}(\log n)$ and $\epsilon=O\left(n^{-\delta}\right)$ for any $\delta \in(0,1)$. Hardness:

Our Assumption: Sparse LPN

 we have

$$
(A, s A+e) \approx_{c}(A, u)
$$

Our Setting: $k=\operatorname{poly}(\log n)$ and $\epsilon=O\left(n^{-\delta}\right)$ for any $\delta \in(0,1)$.

Hardness:

- Matrix A has probability $O\left(n^{- \text {poly } \log n}\right)$ of being "bad", i.e. having a sparse linear dependency.

Our Assumption: Sparse LPN

 we have

$$
(A, s A+e) \approx_{c}(A, u)
$$

Our Setting: $k=\operatorname{poly}(\log n)$ and $\epsilon=O\left(n^{-\delta}\right)$ for any $\delta \in(0,1)$.

Hardness:

- Matrix A has probability $O\left(n^{- \text {poly } \log n}\right)$ of being "bad", i.e. having a sparse linear dependency.
- Outside of this "bad" choice, the best attacks (ISD-based) takes time $2^{\widetilde{O}\left(n^{1-\delta}\right)}$.

Our Assumption: Sparse LPN

 we have

$$
(A, s A+e) \approx_{c}(A, u)
$$

Our Setting: $k=\operatorname{poly}(\log n)$ and $\epsilon=O\left(n^{-\delta}\right)$ for any $\delta \in(0,1)$.

Hardness:

- Matrix A has probability $O\left(n^{- \text {poly } \log n}\right)$ of being "bad", i.e. having a sparse linear dependency.
- Outside of this "bad" choice, the best attacks (ISD-based) takes time $2^{\widetilde{O}\left(n^{1-\delta}\right)}$.
- This parameter regime is not known to imply PKE [ABW10] \Longrightarrow multi-party HSS* potentially weaker than PKE.

HSS Construction: Motivation

HSS Construction: Motivation

[BGI16] Template:

HSS Construction: Motivation

[BGI16] Template:

- Each share of an input $x \in \mathbb{F}$ include:

HSS Construction: Motivation

[BGI16] Template:
$\left\{\begin{array}{l}\text { - (linear) secret share }[x], \\ \end{array}\right.$

HSS Construction: Motivation

[BGI16] Template:

- Each share of an input $x \in \mathbb{F}$ include: $\left\{\begin{array}{l}\bullet \text { (linearly homomorphic) encryption } E n c_{s}(x) \text { under key } s, ~\end{array}\right.$

HSS Construction: Motivation

[BGI16] Template:

- (linearly homomorphic) encryption $E n c_{s}(x)$ under key s, - secret shares $[x \cdot s]$ and encryptions $E n c_{s}(x \cdot s)$.

HSS Construction: Motivation

[BGI16] Template:

$$
\left\{\begin{array}{l}
\bullet \text { (linear) secret share }[x], \\
\text { - (linearly homomorphic) encryption } E n c_{s}(x) \text { under key } s \text {, } \\
\text { - secret shares }[x \cdot s] \text { and encryptions } E n c_{s}(x \cdot s) .
\end{array}\right.
$$

- Invariant: any intermediate value y is stored as noisy shares $\left[y+e_{y}\right],\left[y \cdot s+e_{y \cdot s}\right]$.

HSS Construction: Motivation

[BGI16] Template:

- Each share of an input $x \in \mathbb{F}$ include: $\left\{\right.$ - (linearly homomorphic) encryption $E n c_{s}(x)$ under key s, - secret shares $[x \cdot s]$ and encryptions $E n c_{s}(x \cdot s)$.
- Invariant: any intermediate value y is stored as noisy shares $\left[y+e_{y}\right],\left[y \cdot s+e_{y \cdot s}\right]$.
- Multiplication: given $\left[y+e_{y}\right],\left[y \cdot s+e_{y \cdot s}\right]$ and $E n c_{s}(x), E n c_{s}(x \cdot s)$, compute

HSS Construction: Motivation

[BGI16] Template:

- (linear) secret share $[x]$,

- (linearly homomorphic) encryption $E n c_{s}(x)$ under key s, - secret shares $[x \cdot s]$ and encryptions $E n c_{s}(x \cdot s)$.
- Invariant: any intermediate value y is stored as noisy shares $\left[y+e_{y}\right],\left[y \cdot s+e_{y \cdot s}\right]$.
- Multiplication: given $\left[y+e_{y}\right],\left[y \cdot s+e_{y \cdot s}\right]$ and $E n c_{s}(x), E n c_{s}(x \cdot s)$, compute

$$
\left\{\begin{array} { l }
{ [E n c _ { s } (x y + e _ { x y })] : = ([y + e _ { y }] , - [y \cdot s + e _ { y \cdot s }]) \cdot E n c _ { s } (x) } \\
{ [E n c _ { s } (x y \cdot s + e _ { x y \cdot s }] : = ([y + e _ { y }] , - [y \cdot s + e _ { y \cdot s }]) \cdot E n c _ { s } (x \cdot s) }
\end{array} \stackrel { \text { "rounding" } } { \Longrightarrow } \left\{\begin{array}{l}
{\left[x y+e_{x y}\right]} \\
{\left[x y \cdot s+e_{x y \cdot s}\right]}
\end{array}\right.\right.
$$

HSS Construction: Motivation

[BGI16] Template:

- (linear) secret share $[x]$,

- (linearly homomorphic) encryption $E n c_{s}(x)$ under key s, - secret shares $[x \cdot s]$ and encryptions $E n c_{s}(x \cdot s)$.
- Invariant: any intermediate value y is stored as noisy shares $\left[y+e_{y}\right],\left[y \cdot s+e_{y \cdot s}\right]$.
- Multiplication: given $\left[y+e_{y}\right],\left[y \cdot s+e_{y \cdot s}\right]$ and $E n c_{s}(x), E n c_{s}(x \cdot s)$, compute

$$
\left\{\begin{array} { l }
{ [E n c _ { s } (x y + e _ { x y }]] : = ([y + e _ { y }] , - [y \cdot s + e _ { y \cdot s }]) \cdot E n c _ { s } (x) } \\
{ [E n c _ { s } (x y \cdot s + e _ { x y \cdot s }]] : = ([y + e _ { y }] , - [y \cdot s + e _ { y \cdot s }]) \cdot E n c _ { s } (x \cdot s) }
\end{array} \stackrel { \text { "rounding" } } { \Longrightarrow } \left\{\begin{array}{l}
{\left[x y+e_{x y}\right]} \\
{\left[x y \cdot s+e_{x y \cdot s}\right]}
\end{array}\right.\right.
$$

Limitation: Distributed rounding procedure only works for 2 parties.

HSS Construction: Motivation

HSS Construction: Motivation

Insight 1: Use LPN-based encryption

HSS Construction: Motivation

Insight 1: Use LPN-based encryption

$$
\operatorname{Enc}_{\vec{s}}(x):=(\vec{a},\langle\vec{s}, \vec{a}\rangle+e+x), \text { where } \vec{a} \leftarrow \mathbb{F}^{n}, e \leftarrow \operatorname{Ber}(\mathbb{F}, \epsilon) \text {, }
$$

HSS Construction: Motivation

Insight 1: Use LPN-based encryption
$\operatorname{Enc}_{\vec{s}}(x):=(\vec{a},\langle\vec{s}, \vec{a}\rangle+e+x)$, where $\vec{a} \leftarrow \mathbb{F}^{n}, e \leftarrow \operatorname{Ber}(\mathbb{F}, \epsilon)$,
$E n c_{\vec{s}}\left(x \cdot s_{i}\right):=\left(\vec{a}_{i},\left\langle\vec{s}, \vec{a}_{i}\right\rangle+e_{i}+x \cdot s_{i}\right)$, where $\vec{a}_{i} \leftarrow \mathbb{F}^{n}, e_{i} \leftarrow \operatorname{Ber}(\mathbb{F}, \epsilon)$ for all $i \in[n]$.

HSS Construction: Motivation

Insight 1: Use LPN-based encryption

$$
\begin{aligned}
& \operatorname{Enc}_{\vec{s}}(x):=(\vec{a},\langle\vec{s}, \vec{a}\rangle+e+x), \text { where } \vec{a} \leftarrow \mathbb{F}^{n}, e \leftarrow \operatorname{Ber}(\mathbb{F}, \epsilon), \\
& \operatorname{Enc}_{\vec{s}}\left(x \cdot s_{i}\right):=\left(\vec{a}_{i},\left\langle\vec{s}, \vec{a}_{i}\right\rangle+e_{i}+x \cdot s_{i}\right) \text {, where } \vec{a}_{i} \leftarrow \mathbb{F}^{n}, e_{i} \leftarrow \operatorname{Ber}(\mathbb{F}, \epsilon) \text { for all } i \in[n] .
\end{aligned}
$$

\Longrightarrow ciphertext over same field as plaintext, no rounding needed!

HSS Construction: Motivation

Insight 1: Use LPN-based encryption
$\operatorname{Enc}_{\vec{s}}(x):=(\vec{a},\langle\vec{s}, \vec{a}\rangle+e+x)$, where $\vec{a} \leftarrow \mathbb{F}^{n}, e \leftarrow \operatorname{Ber}(\mathbb{F}, \epsilon)$,
$E n c_{\vec{s}}\left(x \cdot s_{i}\right):=\left(\vec{a}_{i},\left\langle\vec{s}, \vec{a}_{i}\right\rangle+e_{i}+x \cdot s_{i}\right)$, where $\vec{a}_{i} \leftarrow \mathbb{F}^{n}, e_{i} \leftarrow \operatorname{Ber}(\mathbb{F}, \epsilon)$ for all $i \in[n]$.
\Longrightarrow ciphertext over same field as plaintext, no rounding needed!
Multiplication: given $\left[y+e_{y}\right],\left(\left[y \cdot s_{i}+e_{y \cdot s_{i}}\right]\right)_{i=1}^{n}$ and $E n c_{\vec{s}}(x),\left(E n c_{\vec{s}}\left(x \cdot s_{i}\right)\right)_{i=1}^{n}$, compute

HSS Construction: Motivation

Insight 1: Use LPN-based encryption

$$
\begin{aligned}
& \operatorname{Enc}_{\vec{s}}(x):=(\vec{a},\langle\vec{s}, \vec{a}\rangle+e+x), \text { where } \vec{a} \leftarrow \mathbb{F}^{n}, e \leftarrow \operatorname{Ber}(\mathbb{F}, \epsilon), \\
& \operatorname{Enc}_{\vec{s}}\left(x \cdot s_{i}\right):=\left(\vec{a}_{i},\left\langle\vec{s}, \vec{a}_{i}\right\rangle+e_{i}+x \cdot s_{i}\right) \text {, where } \vec{a}_{i} \leftarrow \mathbb{F}^{n}, e_{i} \leftarrow \operatorname{Ber}(\mathbb{F}, \epsilon) \text { for all } i \in[n] .
\end{aligned}
$$

\Longrightarrow ciphertext over same field as plaintext, no rounding needed!
Multiplication: given $\left[y+e_{y}\right],\left(\left[y \cdot s_{i}+e_{y \cdot s_{i}}\right]\right)_{i=1}^{n}$ and $E n c_{\vec{s}}(x),\left(E n c_{\vec{s}}\left(x \cdot s_{i}\right)\right)_{i=1}^{n}$, compute

$$
\left\{\begin{array}{l}
{\left[x y+e_{x y}\right]:=\left[y+e_{y}\right] \cdot(\langle\vec{s}, \vec{a}\rangle+e+x)-\sum_{j=1}^{n}\left[y \cdot s_{j}+e_{y \cdot s_{j}}\right] \cdot a_{i}} \\
{\left[x y \cdot s_{i}+e_{x y \cdot s_{i}}\right]:=\left[y+e_{y}\right] \cdot\left(\left\langle\vec{s}, \vec{a}_{i}\right\rangle+e_{i}+x \cdot s_{i}\right)-\sum_{j=1}^{n}\left[y \cdot s_{j}+e_{y \cdot s_{j}}\right] \cdot a_{i, j}}
\end{array}\right.
$$

HSS Construction: Motivation

Insight 1: Use LPN-based encryption

$$
\begin{aligned}
& \operatorname{Enc}_{\vec{s}}(x):=(\vec{a},\langle\vec{s}, \vec{a}\rangle+e+x), \text { where } \vec{a} \leftarrow \mathbb{F}^{n}, e \leftarrow \operatorname{Ber}(\mathbb{F}, \epsilon), \\
& \operatorname{Enc}_{\vec{s}}\left(x \cdot s_{i}\right):=\left(\vec{a}_{i},\left\langle\vec{s}, \vec{a}_{i}\right\rangle+e_{i}+x \cdot s_{i}\right) \text {, where } \vec{a}_{i} \leftarrow \mathbb{F}^{n}, e_{i} \leftarrow \operatorname{Ber}(\mathbb{F}, \epsilon) \text { for all } i \in[n] .
\end{aligned}
$$

\Longrightarrow ciphertext over same field as plaintext, no rounding needed!
Multiplication: given $\left[y+e_{y}\right],\left(\left[y \cdot s_{i}+e_{y \cdot s_{i}}\right]\right)_{i=1}^{n}$ and $E n c_{\vec{s}}(x),\left(E n c_{\vec{s}}\left(x \cdot s_{i}\right)\right)_{i=1}^{n}$, compute

$$
\left\{\begin{array}{l}
{\left[x y+e_{x y}\right]:=\left[y+e_{y}\right] \cdot(\langle\vec{s}, \vec{a}\rangle+e+x)-\sum_{j=1}^{n}\left[y \cdot s_{j}+e_{y \cdot s_{j}}\right] \cdot a_{i}} \\
{\left[x y \cdot s_{i}+e_{x y \cdot s_{i}}\right]:=\left[y+e_{y}\right] \cdot\left(\left\langle\vec{s}, \vec{a}_{i}\right\rangle+e_{i}+x \cdot s_{i}\right)-\sum_{j=1}^{n}\left[y \cdot s_{j}+e_{y \cdot s_{j}}\right] \cdot a_{i, j}}
\end{array}\right.
$$

HSS Construction: Motivation

Insight 1: Use LPN-based encryption

$$
\begin{aligned}
& \operatorname{Enc}_{\vec{s}}(x):=(\vec{a},\langle\vec{s}, \vec{a}\rangle+e+x), \text { where } \vec{a} \leftarrow \mathbb{F}^{n}, e \leftarrow \operatorname{Ber}(\mathbb{F}, \epsilon), \\
& \operatorname{Enc}_{\vec{s}}\left(x \cdot s_{i}\right):=\left(\vec{a}_{i},\left\langle\vec{s}, \vec{a}_{i}\right\rangle+e_{i}+x \cdot s_{i}\right) \text {, where } \vec{a}_{i} \leftarrow \mathbb{F}^{n}, e_{i} \leftarrow \operatorname{Ber}(\mathbb{F}, \epsilon) \text { for all } i \in[n] .
\end{aligned}
$$

\Longrightarrow ciphertext over same field as plaintext, no rounding needed!
Multiplication: given $\left[y+e_{y}\right],\left(\left[y \cdot s_{i}+e_{y \cdot s_{i}}\right]\right)_{i=1}^{n}$ and $E n c_{\vec{s}}(x),\left(E n c_{\vec{s}}\left(x \cdot s_{i}\right)\right)_{i=1}^{n}$, compute

$$
\left\{\begin{array}{l}
\left.\left[x y+e_{x y}\right]:=\left[y+e_{y}\right] \cdot(\hat{(s)}, \vec{a})+e+x\right)-\sum_{j=1}^{n}\left[y \cdot s_{j}+e_{y \cdot s_{j}}\right] \cdot a_{i} \\
{\left[x y \cdot s_{i}+e_{x y \cdot s_{i}}\right]:=\left[y+e_{y}\right] \cdot\left(\left(\vec{s}, \vec{a}_{i}\right)+e_{i}+x \cdot s_{i}\right)-\sum_{j=1}^{n}\left[y \cdot s_{j}+e_{y \cdot s_{j}}\right] \cdot a_{i, j}}
\end{array}\right.
$$

HSS Construction: Motivation

Insight 1: Use LPN-based encryption

$$
\begin{aligned}
& \operatorname{Enc}_{\vec{s}}(x):=(\vec{a},\langle\vec{s}, \vec{a}\rangle+e+x), \text { where } \vec{a} \leftarrow \mathbb{F}^{n}, e \leftarrow \operatorname{Ber}(\mathbb{F}, \epsilon), \\
& \operatorname{Enc}_{\vec{s}}\left(x \cdot s_{i}\right):=\left(\vec{a}_{i},\left\langle\vec{s}, \vec{a}_{i}\right\rangle+e_{i}+x \cdot s_{i}\right) \text {, where } \vec{a}_{i} \leftarrow \mathbb{F}^{n}, e_{i} \leftarrow \operatorname{Ber}(\mathbb{F}, \epsilon) \text { for all } i \in[n] .
\end{aligned}
$$

\Longrightarrow ciphertext over same field as plaintext, no rounding needed!
Multiplication: given $\left[y+e_{y}\right],\left(\left[y \cdot s_{i}+e_{y \cdot s_{i}}\right]\right)_{i=1}^{n}$ and $E n c_{\vec{s}}(x),\left(E n c_{\vec{s}}\left(x \cdot s_{i}\right)\right)_{i=1}^{n}$, compute

$$
\left\{\begin{array}{l}
{\left[x y+e_{x y}\right]:=\left[y+e_{y}\right] \cdot(\langle\vec{s}, \vec{a}\rangle+e+x)-\sum_{j=1}^{n}\left[y \cdot s_{j}+e_{y \cdot s_{j}}\right] \cdot a_{i}} \\
{\left[x y \cdot s_{i}+e_{x y \cdot s_{i}}\right]:=\left[y+e_{y}\right] \cdot\left(\left\langle\vec{s}, \vec{a}_{i}\right\rangle+e_{i}+x \cdot s_{i}\right)-\sum_{j=1}^{n}\left[y \cdot s_{j}+e_{y \cdot s_{j}}\right] \cdot a_{i, j}}
\end{array}\right.
$$

HSS Construction: Motivation

Insight 1: Use LPN-based encryption

$$
\begin{aligned}
& \operatorname{Enc}_{\vec{s}}(x):=(\vec{a},\langle\vec{s}, \vec{a}\rangle+e+x), \text { where } \vec{a} \leftarrow \mathbb{F}^{n}, e \leftarrow \operatorname{Ber}(\mathbb{F}, \epsilon), \\
& \operatorname{Enc}_{\vec{s}}\left(x \cdot s_{i}\right):=\left(\vec{a}_{i},\left\langle\vec{s}, \vec{a}_{i}\right\rangle+e_{i}+x \cdot s_{i}\right) \text {, where } \vec{a}_{i} \leftarrow \mathbb{F}^{n}, e_{i} \leftarrow \operatorname{Ber}(\mathbb{F}, \epsilon) \text { for all } i \in[n] .
\end{aligned}
$$

\Longrightarrow ciphertext over same field as plaintext, no rounding needed!
Multiplication: given $\left[y+e_{y}\right],\left(\left[y \cdot s_{i}+e_{y \cdot s_{i}}\right]\right)_{i=1}^{n}$ and $E n c_{\vec{s}}(x),\left(E n c_{\vec{s}}\left(x \cdot s_{i}\right)\right)_{i=1}^{n}$, compute

$$
\left\{\begin{array}{l}
{\left[x y+e_{x y}\right]:=\left[y+e_{y}\right] \cdot(\langle\vec{s}, \vec{a}\rangle+e+x)-\sum_{j=1}^{n}\left[y \cdot s_{j}+e_{y \cdot s}\right] \cdot a_{i}} \\
{\left[x y \cdot s_{i}+e_{x y \cdot s_{i}}\right]:=\left[y+e_{y}\right] \cdot\left(\left\langle\vec{s}, \vec{a}_{i}\right\rangle+e_{i}+x \cdot s_{i}\right)-\sum_{j=1}^{n}\left[y \cdot s_{j}+e_{y \cdot s_{i}}\right] \cdot a_{i, j}}
\end{array}\right.
$$

HSS Construction: Motivation

Insight 1: Use LPN-based encryption

$$
\begin{aligned}
& \operatorname{Enc}_{\vec{s}}(x):=(\vec{a},\langle\vec{s}, \vec{a}\rangle+e+x), \text { where } \vec{a} \leftarrow \mathbb{F}^{n}, e \leftarrow \operatorname{Ber}(\mathbb{F}, \epsilon), \\
& \operatorname{Enc}_{\vec{s}}\left(x \cdot s_{i}\right):=\left(\vec{a}_{i},\left\langle\vec{s}, \vec{a}_{i}\right\rangle+e_{i}+x \cdot s_{i}\right) \text {, where } \vec{a}_{i} \leftarrow \mathbb{F}^{n}, e_{i} \leftarrow \operatorname{Ber}(\mathbb{F}, \epsilon) \text { for all } i \in[n] .
\end{aligned}
$$

\Longrightarrow ciphertext over same field as plaintext, no rounding needed!
Multiplication: given $\left[y+e_{y}\right],\left(\left[y \cdot s_{i}+e_{y \cdot s_{i}}\right]\right)_{i=1}^{n}$ and $E n c_{\vec{s}}(x),\left(E n c_{\vec{s}}\left(x \cdot s_{i}\right)\right)_{i=1}^{n}$, compute

$$
\left\{\begin{array}{l}
{\left[x y+e_{x y}\right]:=\left[y+e_{y}\right] \cdot(\langle\vec{s}, \vec{a}\rangle+e+x)-\sum_{j=1}^{n}\left[y \cdot s_{j}+e_{y \cdot s_{i}}\right] \cdot a_{i}} \\
{\left[x y \cdot s_{i}+e_{x y \cdot s_{i}}\right]:=\left[y+e_{y}\right] \cdot\left(\left\langle\vec{s}, \vec{a}_{i}\right\rangle+e_{i}+x \cdot s_{i}\right)-\sum_{j=1}^{n}\left[y \cdot s_{j}+e_{y \cdot s_{i}}\right] \cdot a_{i, j}}
\end{array}\right.
$$

Problem: Noise grows by factor of $O(n) \Longrightarrow$ too fast!

HSS Construction: Motivation

HSS Construction: Motivation

Insight 2: Use Sparse LPN-based encryption
$\operatorname{Enc}_{\vec{s}}(x):=(\vec{a},\langle\vec{s}, \vec{a}\rangle+e+x)$, where $\vec{a} \leftarrow \mathbb{F}^{n}$ is k-sparse, $e \leftarrow \operatorname{Ber}(\mathbb{F}, \epsilon)$,
$E n c_{\vec{s}}\left(x \cdot s_{i}\right):=\left(\vec{a}_{i},\left\langle\vec{s}, \vec{a}_{i}\right\rangle+e_{i}+x \cdot s_{i}\right)$, where $\vec{a}_{i} \leftarrow \mathbb{F}^{n}$ is \underline{k}-sparse, $e_{i} \leftarrow \operatorname{Ber}(\mathbb{F}, e)$ for all $i \in[n]$.

HSS Construction: Motivation

Insight 2: Use Sparse LPN-based encryption

$$
E n c_{\vec{s}}(x):=(\vec{a},\langle\vec{s}, \vec{a}\rangle+e+x) \text {, where } \vec{a} \leftarrow \mathbb{F}^{n} \text { is } \underline{k \text {-sparse }, ~} e \leftarrow \operatorname{Ber}(\mathbb{F}, \epsilon) \text {, }
$$

$$
\operatorname{Enc}_{\vec{s}}\left(x \cdot s_{i}\right):=\left(\vec{a}_{i},\left\langle\vec{s}, \vec{a}_{i}\right\rangle+e_{i}+x \cdot s_{i}\right) \text {, where } \vec{a}_{i} \leftarrow \mathbb{F}^{n} \text { is } \underline{k \text {-sparse, }} e_{i} \leftarrow \operatorname{Ber}(\mathbb{F}, \epsilon) \text { for all } i \in[n] .
$$

Multiplication: given $\left[y+e_{y}\right],\left(\left[y \cdot s_{i}+e_{y \cdot s_{i}}\right]\right)_{i=1}^{n}$ and $E n c_{\vec{s}}(x),\left(E n c_{\vec{s}}\left(x \cdot s_{i}\right)\right)_{i=1^{\prime}}^{n}$ compute

$$
\left\{\begin{array}{l}
{\left[x y+e_{x y}\right]:=\left[y+e_{y}\right] \cdot(\langle\vec{s}, \vec{a}\rangle+e+x)-\sum_{a_{i} \neq 0}\left[y \cdot s_{j}+e_{y \cdot s_{j}}\right] \cdot a_{i}} \\
{\left[x y \cdot s_{i}+e_{x y \cdot s_{i}}\right]:=\left[y+e_{y}\right] \cdot\left(\left\langle\vec{s}, \vec{a}_{i}\right\rangle+e_{i}+x \cdot s_{i}\right)-\sum_{a_{i, j} \neq 0}\left[y \cdot s_{j}+e_{y \cdot s_{j}}\right] \cdot a_{i, j}}
\end{array}\right.
$$

HSS Construction: Motivation

Insight 2: Use Sparse LPN-based encryption
$\operatorname{Enc}_{\vec{s}}(x):=(\vec{a},\langle\vec{s}, \vec{a}\rangle+e+x)$, where $\vec{a} \leftarrow \mathbb{F}^{n}$ is k-sparse, $e \leftarrow \operatorname{Ber}(\mathbb{F}, \epsilon)$,
$E n c_{\vec{s}}\left(x \cdot s_{i}\right):=\left(\vec{a}_{i},\left\langle\vec{s}, \vec{a}_{i}\right\rangle+e_{i}+x \cdot s_{i}\right)$, where $\vec{a}_{i} \leftarrow \mathbb{F}^{n}$ is \underline{k}-sparse, $e_{i} \leftarrow \operatorname{Ber}(\mathbb{F}, e)$ for all $i \in[n]$.
Multiplication: given $\left[y+e_{y}\right],\left(\left[y \cdot s_{i}+e_{y \cdot s_{j}}\right)_{i=1}^{n}\right.$ and $\operatorname{Enc}_{\bar{s}}(x),\left(\operatorname{Enc}_{\vec{s}}\left(x \cdot s_{i}\right)\right)_{i=1^{\prime}}^{n}$ compute

$$
\left\{\begin{array}{l}
{\left[x y+e_{x y}\right]:=\left[y+e_{y}\right] \cdot\left(\left\langle\langle, \vec{a}\rangle+e^{2}+x\right)-\sum_{a \neq 0}\left[y \cdot s_{j}+e_{y, s}\right] \cdot a_{i}\right.} \\
{\left[x y \cdot s_{i}+e_{x y, s_{i}}\right]:=\left[y+e_{y}\right] \cdot\left(\left\langle\vec{s}, \vec{a}_{i}\right\rangle+e_{i}+x \cdot s_{i}\right)-\sum_{a_{i} \neq 0}\left[y \cdot s_{j}+e_{y, s}\right] \cdot a_{i, j}}
\end{array}\right.
$$

HSS Construction: Motivation

Insight 2: Use Sparse LPN-based encryption

$$
\operatorname{Enc}_{\vec{s}}(x):=(\vec{a},\langle\vec{s}, \vec{a}\rangle+e+x) \text {, where } \vec{a} \leftarrow \mathbb{F}^{n} \text { is } \underline{k} \text {-sparse, } e \leftarrow \operatorname{Ber}(\mathbb{F}, \epsilon) \text {, }
$$

$$
\operatorname{Enc}_{\vec{s}}\left(x \cdot s_{i}\right):=\left(\vec{a}_{i},\left\langle\vec{s}, \vec{a}_{i}\right\rangle+e_{i}+x \cdot s_{i}\right) \text {, where } \vec{a}_{i} \leftarrow \mathbb{F}^{n} \text { is } \underline{k \text {-sparse, }} e_{i} \leftarrow \operatorname{Ber}(\mathbb{F}, \epsilon) \text { for all } i \in[n] .
$$

Multiplication: given $\left[y+e_{y}\right],\left(\left[y \cdot s_{i}+e_{y \cdot s_{i}}\right]\right)_{i=1}^{n}$ and $E n c_{\vec{s}}(x),\left(E n c_{\vec{s}}\left(x \cdot s_{i}\right)\right)_{i=1}^{n}$, compute

$$
\left\{\begin{array}{l}
{\left[x y+e_{x y}\right]:=\left[y+e_{y}\right] \cdot(\langle\overrightarrow{\vec{a}}, \vec{a}\rangle+e+x)-\sum_{a_{i} \neq 0}\left[y \cdot s_{j}+e_{y \cdot s}\right] \cdot a_{i}} \\
{\left[x y \cdot s_{i}+e_{x y \cdot s_{i}}\right]:=\left[y+e_{y}\right] \cdot\left(\left\langle\vec{s}, \vec{a}_{i}\right\rangle+e_{i}+x \cdot s_{i}\right)-\sum_{a_{i} \neq 0}\left[y \cdot s_{j}+e_{y \cdot s^{\prime}}\right] \cdot a_{i, j}}
\end{array}\right.
$$

Noise growth: only $O(k)$ each time \Longrightarrow for degree- d monomials, noise grows by $k^{O(d)}$.

HSS Construction: Parameters

HSS Construction: Parameters

Parameter Setting: To achieve a desired 1/poly (λ) correctness error for degree- d polynomials with M terms, we need:

HSS Construction: Parameters

Parameter Setting: To achieve a desired $1 /$ poly (λ) correctness error for degree- d polynomials with M terms, we need:

$$
\frac{1}{n^{-\delta}} \cdot k^{O(d)} \cdot M<\frac{1}{\operatorname{poly}(\lambda)}, \quad \text { where } \epsilon=\frac{1}{n^{-\delta}} \text { is the initial noise rate. }
$$

HSS Construction: Parameters

Parameter Setting: To achieve a desired $1 /$ poly (λ) correctness error for degree- d polynomials with M terms, we need:

$$
\frac{1}{n^{-\delta}} \cdot k^{O(d)} \cdot M<\frac{1}{\operatorname{poly}(\lambda)}, \quad \text { where } \epsilon=\frac{1}{n^{-\delta}} \text { is the initial noise rate. }
$$

For any $d=O(\log \lambda / \log \log \lambda), M=\operatorname{poly}(\lambda)$, and $k=$ poly $\log n$, it suffices to set $n=O\left(\lambda^{C}\right)$ for a large enough exponent C.

HSS Construction: Parameters

Parameter Setting: To achieve a desired $1 /$ poly (λ) correctness error for degree- d polynomials with M terms, we need:

$$
\frac{1}{n^{-\delta}} \cdot k^{O(d)} \cdot M<\frac{1}{\operatorname{poly}(\lambda)}, \quad \text { where } \epsilon=\frac{1}{n^{-\delta}} \text { is the initial noise rate. }
$$

For any $d=O(\log \lambda / \log \log \lambda), M=\operatorname{poly}(\lambda)$, and $k=$ poly $\log n$, it suffices to set $n=O\left(\lambda^{C}\right)$ for a large enough exponent C.

Advantages:

HSS Construction: Parameters

Parameter Setting: To achieve a desired $1 /$ poly (λ) correctness error for degree- d polynomials with M terms, we need:

$$
\frac{1}{n^{-\delta}} \cdot k^{O(d)} \cdot M<\frac{1}{\operatorname{poly}(\lambda)}, \quad \text { where } \epsilon=\frac{1}{n^{-\delta}} \text { is the initial noise rate. }
$$

For any $d=O(\log \lambda / \log \log \lambda), M=$ poly (λ), and $k=$ poly $\log n$, it suffices to set $n=O\left(\lambda^{C}\right)$ for a large enough exponent C.

Advantages:

- Our HSS can be used with any linear secret sharing scheme.

HSS Construction: Parameters

Parameter Setting: To achieve a desired $1 /$ poly (λ) correctness error for degree- d polynomials with M terms, we need:

$$
\frac{1}{n^{-\delta}} \cdot k^{O(d)} \cdot M<\frac{1}{\operatorname{poly}(\lambda)}, \quad \text { where } \epsilon=\frac{1}{n^{-\delta}} \text { is the initial noise rate. }
$$

For any $d=O(\log \lambda / \log \log \lambda), M=$ poly (λ), and $k=$ poly $\log n$, it suffices to set $n=O\left(\lambda^{C}\right)$ for a large enough exponent C.

Advantages:

- Our HSS can be used with any linear secret sharing scheme.
- Small computation overhead $O(k)=$ poly $\log n$ for each multiplication.

HSS Construction: Security

HSS Construction: Security

HSS Security: For any subset of parties T of size $\leq t$, and any $x, x^{\prime} \in \mathbb{F}$, we need to show

HSS Construction: Security

HSS Security: For any subset of parties T of size $\leq t$, and any $x, x^{\prime} \in \mathbb{F}$, we need to show
$\left\{[x]_{\epsilon},\left(\left[x \cdot s_{i l e}\right)_{i=1}^{n}\right\}_{\epsilon \in T} \cup\left\{E n c_{s}(x),\left(E n c_{\bar{s}}\left(x \cdot s_{i}\right)\right)_{i=1}^{n}\right\} \approx_{c}\left\{[x]_{\epsilon},\left(\left[x^{\prime} \cdot s_{i l}\right]\right)_{i=1}^{n}\right\}_{\ell \in T} \cup\left\{E n c_{s}\left(x^{\prime}\right),\left(E n c_{\bar{s}}\left(x^{\prime} \cdot s_{i}\right)\right)_{i=1}^{n}\right\}\right.$

HSS Construction: Security

HSS Security: For any subset of parties T of size $\leq t$, and any $x, x^{\prime} \in \mathbb{F}$, we need to show
$\left\{[x]_{\epsilon},\left(\left[x \cdot s_{i}\right]_{\ell}\right)_{i=1}^{n}\right\}_{\ell \in T} \cup\left\{\operatorname{En}_{c_{s}}(x),\left(E n_{\bar{s}}\left(x \cdot s_{i}\right)\right)_{i=1}^{n}\right\} \approx_{c}\left\{\left[x^{\prime}\right]_{\epsilon},\left(\left[x^{\prime} \cdot s_{i l} \ell\right)_{i=1}^{n}\right\}_{\ell \in T} \cup\left\{\operatorname{Enc}_{\bar{s}}\left(x^{\prime}\right),\left(E n c_{\bar{s}}\left(x^{\prime} \cdot s_{i}\right)\right)_{i=1}^{n}\right\}\right.$

- Secret shares are indistinguishable due to t-privacy of $[\cdot]$.

HSS Construction: Security

HSS Security: For any subset of parties T of size $\leq t$, and any $x, x^{\prime} \in \mathbb{F}$, we need to show

- Secret shares are indistinguishable due to t-privacy of $[\cdot]$.
- Encryptions $E n c_{\vec{s}}(x) \approx_{c} E n c_{\vec{s}}\left(x^{\prime}\right)$ due to semantic security.

HSS Construction: Security

HSS Security: For any subset of parties T of size $\leq t$, and any $x, x^{\prime} \in \mathbb{F}$, we need to show

- Secret shares are indistinguishable due to t-privacy of $[\cdot]$.
- Encryptions $E n c_{\vec{s}}(x) \approx_{c} E n c_{\vec{s}}\left(x^{\prime}\right)$ due to semantic security.

KDM Security: Need to show key-dependent message (KDM) security of $\left(E n c_{\vec{s}}\left(x \cdot s_{i}\right)\right)_{i=1}^{n}$.

HSS Construction: Security

HSS Security: For any subset of parties T of size $\leq t$, and any $x, x^{\prime} \in \mathbb{F}$, we need to show $\left\{[x]_{\ell},\left(\left[x \cdot s_{i}\right]_{\ell}\right)_{i=1}^{n}\right\}_{\ell \in T} \cup\left\{\operatorname{Enc}_{\bar{s}}(x),\left(E n c_{\bar{s}}\left(x \cdot s_{i}\right)\right)_{i=1}^{n}\right\} \approx_{c}\left\{\left[x^{\prime}\right]_{\ell},\left(\left[x^{\prime} \cdot s_{i}\right]_{\ell}\right)_{i=1}^{n}\right\}_{\ell \in \mathbb{T}} \cup\left\{\operatorname{Enc}_{\bar{s}}(x)\right.$) $\left.\left(E n c_{\bar{s}}\left(x^{\prime} \cdot s_{i}\right)\right)_{i=1}^{n}\right\}$

- Secret shares are indistinguishable due to t-privacy of $[\cdot]$.
- Encryptions $E n c_{\vec{s}}(x) \approx_{c} E n c_{\vec{s}}\left(x^{\prime}\right)$ due to semantic security.

KDM Security: Need to show key-dependent message (KDM) security of $\left(\operatorname{Enc}_{\vec{s}}\left(x \cdot s_{i}\right)\right)_{i=1}^{n}$.

- Existing KDM proofs for LWE/LPN do not apply!
\Longrightarrow Problem is distribution of sparse matrices not uniform.

HSS Construction: Security

HSS Security: For any subset of parties T of size $\leq t$, and any $x, x^{\prime} \in \mathbb{F}$, we need to show $\left\{[x]_{\ell},\left(\left[x \cdot s_{i}\right]_{\ell}\right)_{i=1}^{n}\right\}_{\ell \in T} \cup\left\{\operatorname{Enc}_{\bar{s}}(x),\left(E n c_{\bar{s}}\left(x \cdot s_{i}\right)\right)_{i=1}^{n}\right\} \approx_{c}\left\{\left[x^{\prime}\right]_{\ell},\left(\left[x^{\prime} \cdot s_{i}\right]_{\ell}\right)_{i=1}^{n}\right\}_{\ell \in \mathbb{T}} \cup\left\{\operatorname{Enc}_{\bar{s}}(x)\right.$) $\left.\left(E n c_{\bar{s}}\left(x^{\prime} \cdot s_{i}\right)\right)_{i=1}^{n}\right\}$

- Secret shares are indistinguishable due to t-privacy of $[\cdot]$.
- Encryptions $E n c_{\vec{s}}(x) \approx_{c} E n c_{\vec{s}}\left(x^{\prime}\right)$ due to semantic security.

KDM Security: Need to show key-dependent message (KDM) security of $\left(\operatorname{Enc}_{\vec{s}}\left(x \cdot s_{i}\right)\right)_{i=1}^{n}$.

- Existing KDM proofs for LWE/LPN do not apply!
\Longrightarrow Problem is distribution of sparse matrices not uniform.
- Our Idea: use security for k-sparse to argue KDM security for ($2 k-1$)-sparse

HSS Construction: Security

HSS Security: For any subset of parties T of size $\leq t$, and any $x, x^{\prime} \in \mathbb{F}$, we need to show
$\left\{[x]_{\ell},\left(\left[x \cdot s_{i}\right]_{\ell}\right)_{i=1}^{n}\right\}_{\ell \in T} \cup\left\{\operatorname{Enc}_{\vec{s}}(x),\left(E n c_{\bar{s}}\left(x \cdot s_{i}\right)\right)_{i=1}^{n}\right\} \approx_{c}\left\{\left[x^{\prime}\right]_{\ell},\left(\left[x^{\prime} \cdot s_{i}\right]_{\ell}\right)_{i=1}^{n}\right\}_{\ell \in T} \cup\left\{\operatorname{Enc}_{\bar{s}}\left(x^{\prime}\right),\left(E n c_{\bar{s}}\left(x^{\prime} \cdot s_{i}\right)\right)_{i=1}^{n}\right\}$

- Secret shares are indistinguishable due to t-privacy of $[\cdot]$.
- Encryptions $E n c_{\vec{s}}(x) \approx_{c} E n c_{\vec{s}}\left(x^{\prime}\right)$ due to semantic security.

KDM Security: Need to show key-dependent message (KDM) security of $\left(\operatorname{Enc}_{\vec{s}}\left(x \cdot s_{i}\right)\right)_{i=1}^{n}$.

- Existing KDM proofs for LWE/LPN do not apply!
\Longrightarrow Problem is distribution of sparse matrices not uniform.
- Our Idea: use security for k-sparse to argue KDM security for ($2 k-1$)-sparse
- Technical Issue: our proof only works for $|\mathbb{F}|>2!\Longrightarrow$ HSS for \mathbb{F}_{2} can be done in \mathbb{F}_{4}

Summary

Summary

Our Result: Assuming Sparse LPN, there exists HSS for $O(\log \log)$-depth arithmetic circuits, and sublinear MPC for layered Boolean circuits, both supporting arbitrary number of parties.

Summary

Our Result: Assuming Sparse LPN, there exists HSS for $O(\log \log)$-depth arithmetic circuits, and sublinear MPC for layered Boolean circuits, both supporting arbitrary number of parties.

Future Directions:

Summary

Our Result: Assuming Sparse LPN, there exists HSS for $O(\log \log)$-depth arithmetic circuits, and sublinear MPC for layered Boolean circuits, both supporting arbitrary number of parties.

Future Directions:

- Public-key multi-party HSS? (e.g. computations can be done on inputs from different clients)

Summary

Our Result: Assuming Sparse LPN, there exists HSS for $O(\log \log)$-depth arithmetic circuits, and sublinear MPC for layered Boolean circuits, both supporting arbitrary number of parties.

Future Directions:

- Public-key multi-party HSS? (e.g. computations can be done on inputs from different clients)
- Concrete hardness of Sparse LPN?

Summary

Our Result: Assuming Sparse LPN, there exists HSS for O (log log)-depth arithmetic circuits, and sublinear MPC for layered Boolean circuits, both supporting arbitrary number of parties.

Future Directions:

- Public-key multi-party HSS? (e.g. computations can be done on inputs from different clients)
- Concrete hardness of Sparse LPN?
- Improved efficiency for practical applications?

Summary

Our Result: Assuming Sparse LPN, there exists HSS for O (log log)-depth arithmetic circuits, and sublinear MPC for layered Boolean circuits, both supporting arbitrary number of parties.

Future Directions:

- Public-key multi-party HSS? (e.g. computations can be done on inputs from different clients)
- Concrete hardness of Sparse LPN?
- Improved efficiency for practical applications?

Thank you! Questions?

