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• -Correctness: . 

• -Privacy: any  shares hide .

δ Pr [y = f(x)] ≥ 1 − δ

t ≤ t x

• Compactness:   

• Linear reconstruction: (Default)  
 is a linear function
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HSS landscape:
• First 2-party HSS for log-depth circuits from DDH [BGI16].

• Later 2-party schemes from LWE [BKS19], DCR [FGJS17, OSY21, RS21], LPN [CM21], and 
class groups [ADOS22].

• None supporting >2 parties except those using indistinguishability obfuscation (iO) 
[BGI15], or (specific) fully homomorphic encryption (FHE) schemes [DHRW16, BGI+18].

Sublinear MPC landscape:
• 2-party HSS  2-party sublinear MPC for layered Boolean circuits [BGI16]⟹

• 3-party and 5-party sublinear MPC based on an array of assumptions [BCM23]



Our Results: Multi-Party HSS & More



Our Results: Multi-Party HSS & More

Theorem 1: Assuming Sparse LPN (over ), there exists HSS for arbitrary number of parties, 

with  error and linear reconstruction*, for the following function classes: 
* or  error but non-linear reconstruction

𝔽

1/𝗉𝗈𝗅𝗒(λ)
negl(λ)



Our Results: Multi-Party HSS & More

Theorem 1: Assuming Sparse LPN (over ), there exists HSS for arbitrary number of parties, 

with  error and linear reconstruction*, for the following function classes: 
* or  error but non-linear reconstruction

𝔽

1/𝗉𝗈𝗅𝗒(λ)
negl(λ)

1. degree multivariate polynomials over , consisting of polynomial 
number of monomials, e.g.
O(log λ / log log λ)− 𝔽



Our Results: Multi-Party HSS & More

Theorem 1: Assuming Sparse LPN (over ), there exists HSS for arbitrary number of parties, 

with  error and linear reconstruction*, for the following function classes: 
* or  error but non-linear reconstruction

𝔽

1/𝗉𝗈𝗅𝗒(λ)
negl(λ)

1. degree multivariate polynomials over , consisting of polynomial 
number of monomials, e.g.
O(log λ / log log λ)− 𝔽

.f(x1, …, xm) = ∑
𝗉𝗈𝗅𝗒(λ) terms

xi1…xis , s = O(log λ / log log λ)



Our Results: Multi-Party HSS & More

Theorem 1: Assuming Sparse LPN (over ), there exists HSS for arbitrary number of parties, 

with  error and linear reconstruction*, for the following function classes: 
* or  error but non-linear reconstruction

𝔽

1/𝗉𝗈𝗅𝗒(λ)
negl(λ)

1. degree multivariate polynomials over , consisting of polynomial 
number of monomials, e.g.
O(log λ / log log λ)− 𝔽

.f(x1, …, xm) = ∑
𝗉𝗈𝗅𝗒(λ) terms

xi1…xis , s = O(log λ / log log λ)

2. depth arithmetic circuits over .  (for any )(c ⋅ log log λ)− 𝔽 c < 1



Our Results: Multi-Party HSS & More

Theorem 1: Assuming Sparse LPN (over ), there exists HSS for arbitrary number of parties, 

with  error and linear reconstruction*, for the following function classes: 
* or  error but non-linear reconstruction

𝔽

1/𝗉𝗈𝗅𝗒(λ)
negl(λ)

1. degree multivariate polynomials over , consisting of polynomial 
number of monomials, e.g.
O(log λ / log log λ)− 𝔽

.f(x1, …, xm) = ∑
𝗉𝗈𝗅𝗒(λ) terms

xi1…xis , s = O(log λ / log log λ)

2. depth arithmetic circuits over .  (for any )(c ⋅ log log λ)− 𝔽 c < 1

Theorem 2: Assuming Sparse LPN and OTs*, there exists sublinear MPC for layered Boolean 
circuits, with per-party communication  for a layered circuit of size . 
* known from LPN with noise  [Ale03], or a specific parameter setting for sparse LPN [ABW10]

≈ ω(1) ⋅ S / log log S S
1/ n
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• Prior Applications: hardness of approximation [Ale03], linear-stretch PRGs with constant 
locality [AIK06], constant-overhead commitments [IKOS08], PKE and semi-honest OT 
[ABW10], pseudorandom correlation generators (PCGs) [BCG+18, BCG+19], and constant-rate 
VOLEs [ADI+17, AK23]
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Our Setting:  and  for any .k = 𝗉𝗈𝗅𝗒(log n) ϵ = O(n−δ) δ ∈ (0,1)

Hardness: 

• Matrix  has probability  of being “bad”, i.e. having a sparse linear dependency.A O(n−𝗉𝗈𝗅𝗒 log n)

• Outside of this “bad” choice, the best attacks (ISD-based) takes time .2 Õ (n1−δ)

• This parameter regime is not known to imply PKE [ABW10]  multi-party HSS* potentially 
weaker than PKE.

⟹

* we consider secret-key HSS in this work, public-key HSS necessarily implies PKE
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Future Directions:
• Public-key multi-party HSS? (e.g. computations can be done on inputs from different clients)

• Concrete hardness of Sparse LPN?

• Improved efficiency for practical applications?

Thank you! Questions?

Our Result: Assuming Sparse LPN, there exists HSS for -depth arithmetic circuits, 
and sublinear MPC for layered Boolean circuits, both supporting arbitrary number of parties.
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