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Homomorphic Secret Sharing (HSS)

(distributed / secret-shared version of homomorphic encryption)

e o0-Correctness: Pr [y = f(x)] >1—0. * Compactness: [shy;| < [f]

e t-Privacy: any < 7 shares hide x. * Linear reconstruction: (Default)

Rec is a linear function
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(secure multi-party computation)

Motivation: “circuit size barrier” in MPC Solution: HSS-based MPC

Setting: semi-honest,

(n — 1) corruptions

Comm (per-party):
QC)

For “classical” protocols [GMW87, BGW88, BMR?0] Comm (per-party):
and their extensions Q (x| + |CG)|)
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HSS landscape:

e First 2-party HSS for log-depth circuits from DDH [BGI16].

* Later 2-party schemes from LWE [BKS19], DCR [FGJS17, OSY21, RS21], LPN [CM21], and
class groups [ADOS22].

* None supporting >2 parties except those using indistinguishability obfuscation (iO)
[BGI15], or (specific) fully homomorphic encryption (FHE) schemes [DHRW16, BGI+18].

Sublinear MPC landscape:

e 2-party HSS = 2-party sublinear MPC for layered Boolean circuits [BGI16]

e 3-party and 5-party sublinear MPC based on an array of assumptions [BCM23]

Can we achieve HSS and sublinear MPC for arbitrary number of parties,

without using iO or FHE?
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Our Results: Multi-Party HSS & More

Theorem 1: Assuming Sparse LPN (over F), there exists HSS for arbitrary number of parties, |

with 1/poly(4) error and linear reconstruction*, for the following function classes:

t * or negl(1) error but non-linear reconstruction

1. O(log A/ loglog A)—degree multivariate polynomials over [, consisting of polynomial
number of monomials, e.qg.

fonx)= Y x..x, s=0(ogl/ loglogA).

poly(1) terms

| 2. (c-loglog A)—depth arithmetic circuits over [. (for any ¢ < 1) -,

i Theorem 2: Assuming Sparse LPN and OTs*, there exists sublinear MPC for layered Boolean

CiI’CUitS, with per-party communication ~ w(1) - S/ loglogS for a layered circuit of size S.

,* known from LPN with noise 1/\/; [Ale03], or a specific parameter setting for sparse LPN [ABW10]
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History:

e When || = 2, this problem (and close variants) have been studied extensively in works on

average-case complexity [Gol00, CMO01, Fei02, MST03, FKO06, AOW15, AL16, KMOW17].

* Prior Applications: hardness of approximation [Ale03], linear-stretch PRGs with constant

locality [AIKO6], constant-overhead commitments [IKOS08], PKE and semi-honest OT

[ABW10], pseudorandom correlation generators (PCGs) [BCG+18, BCG+19], and constant-rate
VOLEs [ADI+17, AK23]
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Sparse LPN: for A « ™ with k=sparse columns, s « ", ¢ « Ber(F,¢)" , u < F",
we have

(A,sA +e) ~,. (A, u)

Our Setting: k = poly(logn) and € = O(n~°) for any 6 € (0,1).

Hardness:

e Matrix A has probability O(nP°Y1°¢") of being “bad”, i.e. having a sparse linear dependency.

e Qutside of this “bad” choice, the best attacks (ISD-based) takes time 25(”1_5>.

e This parameter regime is not known to imply PKE [ABW10] = multi-party HSS* potentially
weaker than PKE.




HSS Construction: Motivation



HSS Construction: Motivation

[BGI16] Template:




HSS Construction: Motivation

[BGI16] Template:

e Each share of an input x € Finclude:




HSS Construction: Motivation

[BGI16] Template: {0 (linear) secret share [x],

e Each share of an input x € Finclude:



HSS Construction: Motivation

[BGI16] Template= e (linear) secret share [x],

* Each share of an input x € Finclude: < e (linearly homomorphic) encryption Enc (x) under key s,




HSS Construction: Motivation

[BGI16] Template= e (linear) secret share [x],

* Each share of an input x € Finclude: < e (linearly homomorphic) encryption Enc (x) under key s,

e secret shares [x - s] and encryptions Enc(x - ).



HSS Construction: Motivation

[BGI16] Template= e (linear) secret share [x],

* Each share of an input x € Finclude: < e (linearly homomorphic) encryption Enc (x) under key s,

e secret shares [x - s] and encryptions Enc(x - ).

e Invariant: any intermediate value y is stored as noisy shares [y + ey], [y -8 + ey,s].



HSS Construction: Motivation

[BGI16] Template= e (linear) secret share [x],

* Each share of an input x € Finclude: < e (linearly homomorphic) encryption Enc (x) under key s,

e secret shares [x - s] and encryptions Enc(x - ).

e Invariant: any intermediate value y is stored as noisy shares [y + ey], [y -8 + ey,s].

o Multiplication: given [y + ey], [y -§ + e, | and Ency(x), Enc(x - s), compute



HSS Construction: Motivation

[BGI16] Template= e (linear) secret share [x],

* Each share of an input x € Finclude: < e (linearly homomorphic) encryption Enc (x) under key s,

e secret shares [x - s] and encryptions Enc(x - ).

e Invariant: any intermediate value y is stored as noisy shares [y + ey], [y -8 + ey,s].

o Multiplication: given [y + ey], [y -§ + e, | and Ency(x), Enc(x - s), compute

Ency(xy + e, )| = < ytel, —|y-s+ ey,s]) - Ency(x)

"rounding" | [*Y T €0
— i .

Enc(xy-s + e, )| = ( yt+el,—|y-s+e. ) - Enc(x - ) Ay 3 T Cxys.




HSS Construction: Motivation

[BGI16] Template= e (linear) secret share [x],

* Each share of an input x € Finclude: < e (linearly homomorphic) encryption Enc (x) under key s,

e secret shares [x - s] and encryptions Enc(x - ).

e Invariant: any intermediate value y is stored as noisy shares [y + ey], [y -8 + ey,s].

o Multiplication: given [y + ey], [y -§ + e, | and Ency(x), Enc(x - s), compute

Ency(xy + e, )| = < ytel, —|y-s+ ey,s]) - Ency(x)

"rounding" | [*Y T €0
— i .

Enc(xy-s + e, )| = ( yt+el,—|y-s+e. ) - Enc(x - ) Ay 3 T Cxys.

Limitation: Distributed rounding procedure only works for 2 parties.
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Problem: Noise grows by factor of O(n) = too fast!
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Insight 2: Use Sparse LPN-based encryption

Enc.(x) := (Zi, (s,a) + e+ x), where a < " is k-sparse, e < Ber(F, ¢),

Enc(x - s;) := (Eil-, (s,d;)+e +x- Si), where d; « " is k-sparse, ¢, < Ber(F, ¢) for all i € [n].

- n
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Insight 2: Use Sparse LPN-based encryption

Enc.(x) := (Zi, (s,a) + e+ x), where a < " is k-sparse, e < Ber(F, ¢),

Enc(x - s;) := (Eil-, (s,d;)+e +x- Si), where d; « " is k-sparse, ¢, < Ber(F, ¢) for all i € [n].

- _ n
Multiplication: given |y + ey], ( y-s; + ey,sl]) and Enc(x), (Encg(x : Si)):l:l, compute
‘ ‘ i=1

lllllllllllllllll

..............

lllllllll
. e

o+ e, = @] (G0 @) - B8 @

------------------
-----------------

llllllllllllllllllllllllllllll
lllllllllll

SOR L] y"'éeyi (S +Hgg+xos:) — By |V 5+ | i

-------

llllll

Noise growth: only O(k) each time = for degree-d monomials, noise grows by k%@ .
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HSS Construction: Parameters

Parameter Setting: To achieve a desired 1/poly(41) correctness error for

degree-d polynomials with M terms, we need:

O(d) 1 : . ey :
- k M < ~ where € = = is the initial noise rate.

n—o poly(4) n-

For any d = O(log A/ loglog 4), M = poly(4), and k = poly log n, it suffices to set

n=20 (/IC) for a large enough exponent C.

Advantages:

® Our HSS can be used with any linear secret sharing scheme.

e Small computation overhead O(k) = poly log n for each multiplication.
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HSS Security: For any subset of parties T of size < ¢, and any x, x’ € [, we need to show

{[x] 2, ([x - 5. f):l_l} U {Enc§(x, (Enc;(x : sl-)):;l} 2 {[x’] 2, ([x’ - 5] ?/ﬂ)?:l} U {Encg(x% ( Enc(x"- Si)):lzl}

— KET -------------------- feT ¢

IIIIIIIIIIIIIIIIIIIII

e Secret shares are indistinguishable due to #-privacy of [ - |.

e Encryptions Enc:(x) =~. Enc:(x’) due to semantic security.

KDM Security: Need to show key-dependent message (KDM) security of (Ency(x - s,))

n
i=1

e Existing KDM proofs for LWE/LPN do not apply!
—> Problem is distribution of sparse matrices not uniform.

e Our Idea: use security for k-sparse to argue KDM security for (2k — 1)-sparse

e Technical Issue: our proof only works for |[F| > 2! = HSS for [, can be done in [,
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Summary

Our Result: Assuming Sparse LPN, there exists HSS for O(log log)-depth arithmetic circuits, '
and sublinear MPC for layered Boolean circuits, both supporting arbitrary number of parties. |

Future Directions:

* Public-key multi-party HSS?
* Concrete hardness of Sparse LPN?

* Improved efficiency for practical applications?

Thank you! Questions?



