
Reusable Secure Computation in the Plain Model

Vipul Goyal

NTT Research & CMU

Akshayaram Srinivasan

TIFR –> UToronto

Mingyuan Wang

UC Berkeley

Aug 2023 @ Crypto’23



x1 x2

x3x4

f(x1, x2, x3, x4)

trusted party

≈

Secure Multiparty Computation

plain model

dishonest majority

malicious security (black-box simulation)

polynomial-time simulator

Objective
Construct round-optimal protocol.



x1 x2

x3x4

f(x1, x2, x3, x4)

trusted party

≈

Secure Multiparty Computation

plain model

dishonest majority

malicious security (black-box simulation)

polynomial-time simulator

Objective
Construct round-optimal protocol.



x1 x2

x3x4

f(x1, x2, x3, x4)

trusted party

≈

Secure Multiparty Computation

plain model

dishonest majority

malicious security (black-box simulation)

polynomial-time simulator

Objective
Construct round-optimal protocol.



x1 x2

x3x4

f(x1, x2, x3, x4)

trusted party

≈

Secure Multiparty Computation

plain model

dishonest majority

malicious security (black-box simulation)

polynomial-time simulator

Objective
Construct round-optimal protocol.



x1 x2

x3x4

f(x1, x2, x3, x4)

trusted party

≈

Secure Multiparty Computation

plain model

dishonest majority

malicious security (black-box simulation)

polynomial-time simulator

Objective
Construct round-optimal protocol.



Lower bound

2PC unidirectional message
4 rounds [Katz-Ostrovsky’04]

MPC Simultaneous message
4 rounds
[Garg-Mukherjee-Pandey-Polychroniadou’16]

Upper bound

[Yao86, BMR90, KO04, IPS08, IKOPS11, ORS15, GMPP16, BHP17, ACJ17, BL18, GS18, BGJKKS18, HHPV18,
FMV19, CCGJO20]
Matching upper bound with minimal assumption (4-round OT)



Lower bound

2PC unidirectional message
4 rounds [Katz-Ostrovsky’04]

MPC Simultaneous message
4 rounds
[Garg-Mukherjee-Pandey-Polychroniadou’16]

Upper bound

[Yao86, BMR90, KO04, IPS08, IKOPS11, ORS15, GMPP16, BHP17, ACJ17, BL18, GS18, BGJKKS18, HHPV18,
FMV19, CCGJO20]
Matching upper bound with minimal assumption (4-round OT)



Lower bound

2PC unidirectional message
4 rounds [Katz-Ostrovsky’04]

MPC Simultaneous message
4 rounds
[Garg-Mukherjee-Pandey-Polychroniadou’16]

Upper bound

[Yao86, BMR90, KO04, IPS08, IKOPS11, ORS15, GMPP16, BHP17, ACJ17, BL18, GS18, BGJKKS18, HHPV18,
FMV19, CCGJO20]
Matching upper bound with minimal assumption (4-round OT)



Reusable Setting
Suppose Alice and Bob want to continuously evaluate multiple functions f1(x1, y1), f2(x2, y2), . . .

x1 f1 y1x1 f1 y1

x2 f2 y2

x3 f3 y3

Can we reuse the previous interactions to reduce the number of rounds?



Reusable Setting
Suppose Alice and Bob want to continuously evaluate multiple functions f1(x1, y1), f2(x2, y2), . . .

x1 f1 y1x1 f1 y1

x2 f2 y2

x3 f3 y3

Can we reuse the previous interactions to reduce the number of rounds?



Reusable Setting
Suppose Alice and Bob want to continuously evaluate multiple functions f1(x1, y1), f2(x2, y2), . . .

x1 f1 y1x1 f1 y1

x2 f2 y2

x3 f3 y3

Can we reuse the previous interactions to reduce the number of rounds?



Reusable Setting
Suppose Alice and Bob want to continuously evaluate multiple functions f1(x1, y1), f2(x2, y2), . . .

x1 f1 y1x1 f1 y1

x2 f2 y2

x3 f3 y3

Can we reuse the previous interactions to reduce the number of rounds?



Optimal Round Complexity for Different Modes of Reusability

if both inputs and function change

x1 y1f1

x2 f2 y2

Residual attack if only one round of interaction.

The first two rounds can be reused!

if only the function changes

x1 y1f1

f2

The first three rounds can be reused!



Optimal Round Complexity for Different Modes of Reusability

if both inputs and function change

x1 y1f1

x2 f2 y2

Residual attack if only one round of interaction.

The first two rounds can be reused!

if only the function changes

x1 y1f1

f2

The first three rounds can be reused!



Optimal Round Complexity for Different Modes of Reusability

if both inputs and function change

x1 y1f1

x2 f2 y2

Residual attack if only one round of interaction.

The first two rounds can be reused!

if only the function changes

x1 y1f1

f2

The first three rounds can be reused!



Optimal Round Complexity for Different Modes of Reusability

if both inputs and function change

x1 y1f1

x2 f2 y2

Residual attack if only one round of interaction.

The first two rounds can be reused!

if only the function changes

x1 y1f1

f2

The first three rounds can be reused!



Optimal Round Complexity for Different Modes of Reusability

if both inputs and function change

x1 y1f1

x2 f2 y2

Residual attack if only one round of interaction.

The first two rounds can be reused!

if only the function changes

x1 y1f1

f2

The first three rounds can be reused!



Our Model for Round-optimal Reusable Secure Computation

x1 y1

f1

f2

f3

...

Reuse Session

x2 y2

g1

g2

g3

...

Reuse Session

x3 y3

h1

h2

h3

...

Reuse Session



Our Model for Round-optimal Reusable Secure Computation

x1 y1

f1

f2

f3

...

Reuse Session

x2 y2

g1

g2

g3

...

Reuse Session

x3 y3

h1

h2

h3

...

Reuse Session



Our Model for Round-optimal Reusable Secure Computation

x1 y1

f1

f2

f3

...

Reuse Session

x2 y2

g1

g2

g3

...

Reuse Session

x3 y3

h1

h2

h3

...

Reuse Session



Our Model for Round-optimal Reusable Secure Computation

x1 y1

f1

f2

f3

...

Reuse Session

x2 y2

g1

g2

g3

...

Reuse Session

x3 y3

h1

h2

h3

...

Reuse Session



Our Model for Round-optimal Reusable Secure Computation

x1 y1

f1

f2

f3

...

Reuse Session

x2 y2

g1

g2

g3

...

Reuse Session

x3 y3

h1

h2

h3

...

Reuse Session



Our Model for Round-optimal Reusable Secure Computation

x1 y1

f1

f2

f3

...

Reuse Session

x2 y2

g1

g2

g3

...

Reuse Session

x3 y3

h1

h2

h3

...

Reuse Session



Our Model for Round-optimal Reusable Secure Computation

x1 y1

f1

f2

f3

...

Reuse Session

x2 y2

g1

g2

g3

...

Reuse Session

x3 y3

h1

h2

h3

...

Reuse Session



Our Model for Round-optimal Reusable Secure Computation

x1 y1

f1

f2

f3

...

Reuse Session

x2 y2

g1

g2

g3

...

Reuse Session

x3 y3

h1

h2

h3

...

Reuse Session



Our Model for Round-optimal Reusable Secure Computation

x1 y1

×

Reuse Session

x2 y2

g1

×
g2

g3

...

Reuse Session

x3 y3

h1

h2

Reuse Session



Our Model for Round-optimal Reusable Secure Computation

x1 y1

×

Reuse Session

x2 y2

g1

×
g2

g3

...

Reuse Session

x3 y3

h1

h2

Reuse Session



Our Model for Round-optimal Reusable Secure Computation

x1 y1

×

Reuse Session

x2 y2

g1

×
g2

g3

...

Reuse Session

x3 y3

h1

h2

Reuse Session



Our Model for Round-optimal Reusable Secure Computation

x1 y1

×

Reuse Session

x2 y2

g1

×
g2

g3

...

Reuse Session

x3 y3

h1

h2

Reuse Session



Our Model for Round-optimal Reusable Secure Computation

x1 y1

×

Reuse Session

x2 y2

g1

×
g2

g3

...

Reuse Session

x3 y3

h1

h2

Reuse Session



Our Model for Round-optimal Reusable Secure Computation

x1 y1

×

Reuse Session

x2 y2

g1

×
g2

g3

...

Reuse Session

x3 y3

h1

h2

Reuse Session



Our Model for Round-optimal Reusable Secure Computation

x1 y1

×

Reuse Session

x2 y2

g1

×
g2

g3

...

Reuse Session

x3 y3

h1

h2

Reuse Session



Our Model for Round-optimal Reusable Secure Computation

x1 y1

×

Reuse Session

x2 y2

g1

×
g2

g3

...

Reuse Session

x3 y3

h1

h2

Reuse Session



Related Work — Reusable MPC with trusted setup
[Benhamouda-Lin’20, Bartusek-Garg-Masny-Mukherjee’20, Ananth-Jain-Jin-Malavolta’21’22,
Benhamouda-Jain-Komargodski-Lin’21, Bartusek-Garg-Srinivasan-Zhang’22]

In the CRS model
Two-round malicious-secure MPC protocol
First round can be reused

CRS generation

x1 y1

f1

f2

f3

...
Reuse Session

x2 y2

g1

g2

g3

...
Reuse Session

x3 y3

h1

h2

h3

...
Reuse Session



Related Work — Reusable MPC with trusted setup
[Benhamouda-Lin’20, Bartusek-Garg-Masny-Mukherjee’20, Ananth-Jain-Jin-Malavolta’21’22,
Benhamouda-Jain-Komargodski-Lin’21, Bartusek-Garg-Srinivasan-Zhang’22]

In the CRS model
Two-round malicious-secure MPC protocol
First round can be reused

CRS generation

x1 y1

f1

f2

f3

...
Reuse Session

x2 y2

g1

g2

g3

...
Reuse Session

x3 y3

h1

h2

h3

...
Reuse Session



Related Work

Reusable MPC in the plain model
[Fernando-Jain-Komargodski’23]

Plain model
Two rounds where the first round can be reused
Super-polynomial-time Simulator



Our Results

Reusable 2PC
(DDH or QR) + ZAP ===> Four-round Reusable 2PC

ZAP

[Dwork-Naor’00] Two-round public coin witness indistinguishable proof.

Reusable MPC
Four-round Reusable 2PC/OT + (semi-malicious) Two-round Reusable MPC + ZAP ===> Four-round
Reusable MPC

Semi-malicious Two-round Reusable MPC

DDH [BGMM20], pairing [BL20], LWE [AJJM20, AJJM21, BJKL21], LPN [BGSZ22]



Our Results

Reusable 2PC
(DDH or QR) + ZAP ===> Four-round Reusable 2PC

ZAP

[Dwork-Naor’00] Two-round public coin witness indistinguishable proof.

Reusable MPC
Four-round Reusable 2PC/OT + (semi-malicious) Two-round Reusable MPC + ZAP ===> Four-round
Reusable MPC

Semi-malicious Two-round Reusable MPC

DDH [BGMM20], pairing [BL20], LWE [AJJM20, AJJM21, BJKL21], LPN [BGSZ22]



Technical Challenges: 2PC

ot1
ot2

ot3
ot4

zk1

zk2

zk3

zk4 gc

GC: garbled circuit
OT: four-round oblivious transfer (simulation security for malicious receiver; indistinguishability-based
security for malicious senders)

ZK: zero-knowledge protocol (proof of knowledge)

Issue
ZK and OT need to be reusably secure!

A four-round OT that both the receiver and the sender may change input.
A four-round ZK that the prover may send multiple fourth-round messages proving different statements



Technical Challenges: 2PC

ot1
ot2

ot3
ot4

zk1

zk2

zk3

zk4 gc

GC: garbled circuit
OT: four-round oblivious transfer (simulation security for malicious receiver; indistinguishability-based
security for malicious senders)
ZK: zero-knowledge protocol (proof of knowledge)

Issue
ZK and OT need to be reusably secure!

A four-round OT that both the receiver and the sender may change input.
A four-round ZK that the prover may send multiple fourth-round messages proving different statements



Technical Challenges: 2PC

ot1
ot2

ot3
ot4

zk1

zk2

zk3

zk4 gc

GC: garbled circuit
OT: four-round oblivious transfer (simulation security for malicious receiver; indistinguishability-based
security for malicious senders)
ZK: zero-knowledge protocol (proof of knowledge)

Issue
ZK and OT need to be reusably secure!

A four-round OT that both the receiver and the sender may change input.
A four-round ZK that the prover may send multiple fourth-round messages proving different statements



Technical Challenges: 2PC

ot1
ot2

ot3
ot4

zk1

zk2

zk3

zk4 gc

GC: garbled circuit
OT: four-round oblivious transfer (simulation security for malicious receiver; indistinguishability-based
security for malicious senders)
ZK: zero-knowledge protocol (proof of knowledge)

Issue
ZK and OT need to be reusably secure!

A four-round OT that both the receiver and the sender may change input.

A four-round ZK that the prover may send multiple fourth-round messages proving different statements



Technical Challenges: 2PC

ot1
ot2

ot3
ot4

zk1

zk2

zk3

zk4 gc

GC: garbled circuit
OT: four-round oblivious transfer (simulation security for malicious receiver; indistinguishability-based
security for malicious senders)
ZK: zero-knowledge protocol (proof of knowledge)

Issue
ZK and OT need to be reusably secure!

A four-round OT that both the receiver and the sender may change input.
A four-round ZK that the prover may send multiple fourth-round messages proving different statements



Reusable Zero-knowledge [Feige-Lapidot-Shamir’90]
TD: trapdoor generation protocol
ECom: extractable commitment scheme
WI: witness indistinguishable proof

st st, π

td1

td2

td3

wi1

wi2
wi3

zap1

zap2

ECom1(π)ECom1(k)

ECom2

ECom3ECom3,SKE(k, π)

Extractable commitment needs to be reusable and delayed-input. Use symmetric-key encryption!

Witness indistinguishable proof needs to be reusable. Use ZAP!



Reusable Zero-knowledge [Feige-Lapidot-Shamir’90]
TD: trapdoor generation protocol
ECom: extractable commitment scheme
WI: witness indistinguishable proof

st st, π

td1

td2

td3

wi1

wi2
wi3

zap1

zap2

ECom1(π)ECom1(k)

ECom2

ECom3ECom3,SKE(k, π)

Extractable commitment needs to be reusable and delayed-input. Use symmetric-key encryption!

Witness indistinguishable proof needs to be reusable. Use ZAP!



Reusable Zero-knowledge [Feige-Lapidot-Shamir’90]
TD: trapdoor generation protocol
ECom: extractable commitment scheme
WI: witness indistinguishable proof

st st, π

td1

td2

td3

wi1

wi2
wi3

zap1

zap2

ECom1(π)ECom1(k)

ECom2

ECom3ECom3,SKE(k, π)

Extractable commitment needs to be reusable and delayed-input. Use symmetric-key encryption!

Witness indistinguishable proof needs to be reusable. Use ZAP!



Reusable Zero-knowledge [Feige-Lapidot-Shamir’90]
TD: trapdoor generation protocol
ECom: extractable commitment scheme
WI: witness indistinguishable proof

st st, π

td1

td2

td3

wi1

wi2
wi3

zap1

zap2

ECom1(π)ECom1(k)

ECom2

ECom3ECom3,SKE(k, π)

Extractable commitment needs to be reusable and delayed-input. Use symmetric-key encryption!

Witness indistinguishable proof needs to be reusable. Use ZAP!



Reusable Zero-knowledge [Feige-Lapidot-Shamir’90]
TD: trapdoor generation protocol
ECom: extractable commitment scheme
WI: witness indistinguishable proof

st st, π

td1

td2

td3

wi1

wi2
wi3

zap1

zap2

ECom1(π)ECom1(k)

ECom2

ECom3ECom3,SKE(k, π)

Extractable commitment needs to be reusable and delayed-input. Use symmetric-key encryption!

Witness indistinguishable proof needs to be reusable. Use ZAP!



Reusable Zero-knowledge

td1

td2

td3zap1

zap2

ECom1(k)

ECom2

ECom3,SKE(k, π)

ZK only require OWF; Our r-ZK requires ZAP
inevitably need > OWF assumption due to state-of-the-art; implies preprocessing NIZK

Only three-round reusable, not two-round reusable

Inherent in unidirectional message model;
For 2PC, Bob needs to keep a secret state across different reuse sessions to check the consistency of the
third-round message
not an issue in simultaneous message model/MPC



Reusable Zero-knowledge

td1

td2

td3zap1

zap2

ECom1(k)

ECom2

ECom3,SKE(k, π)

ZK only require OWF; Our r-ZK requires ZAP
inevitably need > OWF assumption due to state-of-the-art; implies preprocessing NIZK

Only three-round reusable, not two-round reusable

Inherent in unidirectional message model;
For 2PC, Bob needs to keep a secret state across different reuse sessions to check the consistency of the
third-round message
not an issue in simultaneous message model/MPC



Reusable Zero-knowledge

td1

td2

td3zap1

zap2

ECom1(k)

ECom2

ECom3,SKE(k, π)

ZK only require OWF; Our r-ZK requires ZAP
inevitably need > OWF assumption due to state-of-the-art; implies preprocessing NIZK

Only three-round reusable, not two-round reusable

Inherent in unidirectional message model;
For 2PC, Bob needs to keep a secret state across different reuse sessions to check the consistency of the
third-round message
not an issue in simultaneous message model/MPC



Reusable Zero-knowledge

td1

td2

td3zap1

zap2

ECom1(k)

ECom2

ECom3,SKE(k, π)

ZK only require OWF; Our r-ZK requires ZAP
inevitably need > OWF assumption due to state-of-the-art; implies preprocessing NIZK

Only three-round reusable, not two-round reusable
Inherent in unidirectional message model;

For 2PC, Bob needs to keep a secret state across different reuse sessions to check the consistency of the
third-round message
not an issue in simultaneous message model/MPC



Reusable Zero-knowledge

td1

td2

td3zap1

zap2

ECom1(k)

ECom2

ECom3,SKE(k, π)

ZK only require OWF; Our r-ZK requires ZAP
inevitably need > OWF assumption due to state-of-the-art; implies preprocessing NIZK

Only three-round reusable, not two-round reusable
Inherent in unidirectional message model;
For 2PC, Bob needs to keep a secret state across different reuse sessions to check the consistency of the
third-round message

not an issue in simultaneous message model/MPC



Reusable Zero-knowledge

td1

td2

td3zap1

zap2

ECom1(k)

ECom2

ECom3,SKE(k, π)

ZK only require OWF; Our r-ZK requires ZAP
inevitably need > OWF assumption due to state-of-the-art; implies preprocessing NIZK

Only three-round reusable, not two-round reusable
Inherent in unidirectional message model;
For 2PC, Bob needs to keep a secret state across different reuse sessions to check the consistency of the
third-round message
not an issue in simultaneous message model/MPC



Reusable OT: both sender and receiver may change input

[Katz-Ostrovsky’04,Ostrovsky-Richelson-Scafuro’15, Friolo-Masny-Venturi’19]

Receiver Sender

ECom1(s0, s1)ECom1

ECom2

ECom3ECom3(s0, s1)

s

pk⊕ s

s1−b

zap1

zap2

ct1, ct2

Sender’s reusability comes for free. Use symmetric-key encryption
Receiver reusability: not reusably secure

If ECom is not delayed-input: insecure for the sender both s0, s1 will be leaked
If ECom is delayed-input: insecure for the receiver pick s1−b maliciously

Need to reconcile between giving the receiver too much freedom and too little freedom



Reusable OT: both sender and receiver may change input

[Katz-Ostrovsky’04,Ostrovsky-Richelson-Scafuro’15, Friolo-Masny-Venturi’19]

Receiver Sender

ECom1(s0, s1)ECom1

ECom2

ECom3ECom3(s0, s1)

s

pk⊕ s

s1−b

zap1

zap2

ct1, ct2

Sender’s reusability comes for free. Use symmetric-key encryption

Receiver reusability: not reusably secure

If ECom is not delayed-input: insecure for the sender both s0, s1 will be leaked
If ECom is delayed-input: insecure for the receiver pick s1−b maliciously

Need to reconcile between giving the receiver too much freedom and too little freedom



Reusable OT: both sender and receiver may change input

[Katz-Ostrovsky’04,Ostrovsky-Richelson-Scafuro’15, Friolo-Masny-Venturi’19]

Receiver Sender

ECom1(s0, s1)ECom1

ECom2

ECom3ECom3(s0, s1)

s

pk⊕ s

s1−b

zap1

zap2

ct1, ct2

Sender’s reusability comes for free. Use symmetric-key encryption
Receiver reusability: not reusably secure

If ECom is not delayed-input: insecure for the sender both s0, s1 will be leaked
If ECom is delayed-input: insecure for the receiver pick s1−b maliciously

Need to reconcile between giving the receiver too much freedom and too little freedom



Reusable OT: both sender and receiver may change input

[Katz-Ostrovsky’04,Ostrovsky-Richelson-Scafuro’15, Friolo-Masny-Venturi’19]

Receiver Sender

ECom1(s0, s1)ECom1

ECom2

ECom3ECom3(s0, s1)

s

pk⊕ s

s1−b

zap1

zap2

ct1, ct2

Sender’s reusability comes for free. Use symmetric-key encryption
Receiver reusability: not reusably secure

If ECom is not delayed-input: insecure for the sender both s0, s1 will be leaked

If ECom is delayed-input: insecure for the receiver pick s1−b maliciously

Need to reconcile between giving the receiver too much freedom and too little freedom



Reusable OT: both sender and receiver may change input

[Katz-Ostrovsky’04,Ostrovsky-Richelson-Scafuro’15, Friolo-Masny-Venturi’19]

Receiver Sender

ECom1(s0, s1)ECom1

ECom2

ECom3ECom3(s0, s1)

s

pk⊕ s

s1−b

zap1

zap2

ct1, ct2

Sender’s reusability comes for free. Use symmetric-key encryption
Receiver reusability: not reusably secure

If ECom is not delayed-input: insecure for the sender both s0, s1 will be leaked
If ECom is delayed-input: insecure for the receiver pick s1−b maliciously

Need to reconcile between giving the receiver too much freedom and too little freedom



Reusable OT: both sender and receiver may change input

[Katz-Ostrovsky’04,Ostrovsky-Richelson-Scafuro’15, Friolo-Masny-Venturi’19]

Receiver Sender

ECom1(s0, s1)ECom1

ECom2

ECom3ECom3(s0, s1)

s

pk⊕ s

s1−b

zap1

zap2

ct1, ct2

Sender’s reusability comes for free. Use symmetric-key encryption
Receiver reusability: not reusably secure

If ECom is not delayed-input: insecure for the sender both s0, s1 will be leaked
If ECom is delayed-input: insecure for the receiver pick s1−b maliciously

Need to reconcile between giving the receiver too much freedom and too little freedom



Naor’s bit commitment scheme [Naor’91]

s{
b = 0 PRG(sd)

b = 1 PRG(sd)⊕ s

sd

Insecure (equivocal) if PRG(sd)⊕ s = PRG(sd′)

Most choices of s satisfies s ̸= PRG(sd)⊕ PRG(sd′)

If PRG : {0, 1}λ → {0, 1}3λ, 2λ × 2λ choices of PRG(sd)⊕ PRG(sd′) and 23λ choices of s.



Naor’s bit commitment scheme [Naor’91]

s{
b = 0 PRG(sd)

b = 1 PRG(sd)⊕ s

sd

Insecure (equivocal) if PRG(sd)⊕ s = PRG(sd′)

Most choices of s satisfies s ̸= PRG(sd)⊕ PRG(sd′)

If PRG : {0, 1}λ → {0, 1}3λ, 2λ × 2λ choices of PRG(sd)⊕ PRG(sd′) and 23λ choices of s.



Naor’s bit commitment scheme [Naor’91]

s{
b = 0 PRG(sd)

b = 1 PRG(sd)⊕ s

sd

Insecure (equivocal) if PRG(sd)⊕ s = PRG(sd′)

Most choices of s satisfies s ̸= PRG(sd)⊕ PRG(sd′)

If PRG : {0, 1}λ → {0, 1}3λ, 2λ × 2λ choices of PRG(sd)⊕ PRG(sd′) and 23λ choices of s.



Reusable OT

ECom1

ECom2

ECom3(s0, s1)ECom3(sd1, sd2)

s

pk⊕ s

s1−b

pk⊕ s

PRG(sd1−b)

zap1

zap2

ct1, ct2

Insecure if pk = s⊕ PRG(sd1−b) is some valid public key.
We need that: most s are “good”, i.e., ̸= PRG(sd)⊕ pk.

A special kind of PKE
pseudorandom public key
valid public keys are scarce
maliciously chosen invalid public keys still hide the message



Reusable OT

ECom1

ECom2

ECom3(s0, s1)ECom3(sd1, sd2)

s

pk⊕ s

s1−b

pk⊕ s

PRG(sd1−b)

zap1

zap2

ct1, ct2

Insecure if pk = s⊕ PRG(sd1−b) is some valid public key.
We need that: most s are “good”, i.e., ̸= PRG(sd)⊕ pk.

A special kind of PKE
pseudorandom public key
valid public keys are scarce
maliciously chosen invalid public keys still hide the message



Reusable OT

ECom1

ECom2

ECom3(s0, s1)ECom3(sd1, sd2)

s

pk⊕ s

s1−b

pk⊕ s

PRG(sd1−b)

zap1

zap2

ct1, ct2

Insecure if pk = s⊕ PRG(sd1−b) is some valid public key.

We need that: most s are “good”, i.e., ̸= PRG(sd)⊕ pk.

A special kind of PKE
pseudorandom public key
valid public keys are scarce
maliciously chosen invalid public keys still hide the message



Reusable OT

ECom1

ECom2

ECom3(s0, s1)ECom3(sd1, sd2)

s

pk⊕ s

s1−b

pk⊕ s

PRG(sd1−b)

zap1

zap2

ct1, ct2

Insecure if pk = s⊕ PRG(sd1−b) is some valid public key.
We need that: most s are “good”, i.e., ̸= PRG(sd)⊕ pk.

A special kind of PKE
pseudorandom public key
valid public keys are scarce
maliciously chosen invalid public keys still hide the message



Reusable OT

ECom1

ECom2

ECom3(s0, s1)ECom3(sd1, sd2)

s

pk⊕ s

s1−b

pk⊕ s

PRG(sd1−b)

zap1

zap2

ct1, ct2

Insecure if pk = s⊕ PRG(sd1−b) is some valid public key.
We need that: most s are “good”, i.e., ̸= PRG(sd)⊕ pk.

A special kind of PKE
pseudorandom public key
valid public keys are scarce
maliciously chosen invalid public keys still hide the message



1 pseudorandom public key
2 valid public keys are scarce
3 maliciously chosen invalid public keys still hide the message

Special PKE scheme from DDH

Public key domain
(
g ga

gb gc

)
.

Valid public key c = ab, invalid public key c ̸= ab

Encryption

(u, v) ·
(
g ga

gb gc

)
⊕ (0,msg)

We also show how to construct it from SSP-OT and QR.



1 pseudorandom public key
2 valid public keys are scarce
3 maliciously chosen invalid public keys still hide the message

Special PKE scheme from DDH

Public key domain
(
g ga

gb gc

)
.

Valid public key c = ab, invalid public key c ̸= ab

Encryption

(u, v) ·
(
g ga

gb gc

)
⊕ (0,msg)

We also show how to construct it from SSP-OT and QR.



1 pseudorandom public key
2 valid public keys are scarce
3 maliciously chosen invalid public keys still hide the message

Special PKE scheme from DDH

Public key domain
(
g ga

gb gc

)
.

Valid public key c = ab, invalid public key c ̸= ab

Encryption

(u, v) ·
(
g ga

gb gc

)
⊕ (0,msg)

We also show how to construct it from SSP-OT and QR.



Reusable 2PC

r-ot1
r-ot2

r-ot3
r-ot4

r-zk1

r-zk2

r-zk3

r-zk4 gc

Reusable MPC
Based on appropriate adaptations of [Choudhuri-Ciampi-Goyal-Jain-Ostrovsky’20]
Replace OT and ZK with our r-OT and r-ZK
Additionally, we need two-round reusable semi-malicious MPC



Reusable 2PC

r-ot1
r-ot2

r-ot3
r-ot4

r-zk1

r-zk2

r-zk3

r-zk4 gc

Reusable MPC
Based on appropriate adaptations of [Choudhuri-Ciampi-Goyal-Jain-Ostrovsky’20]
Replace OT and ZK with our r-OT and r-ZK
Additionally, we need two-round reusable semi-malicious MPC



Summary

x1 y1

f1

f2

f3
...

Reuse Session

x2 y2

g1

g2

g3

...
Reuse Session

x3 y3

h1

h2

h3

...
Reuse Session

Reusable 2PC from
DDH or QR
ZAP

Reusable MPC from
Reusable 2pc
(semi-malicious) two-round
reusable MPC
ZAP

Thanks! Questions? ia.cr/2023/1006

ia.cr/2023/1006

