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Lower bound

2PC unidirectional message
4 rounds [Katz-Ostrovsky’04]

MPC Simultaneous message
4 rounds
[Garg-Mukherjee-Pandey-Polychroniadou’16]

Upper bound

[Yao86, BMR90, KO04, IPS08, IKOPS11, ORS15, GMPP16, BHP17, ACJ17, BL18, GS18, BGJKKS18, HHPV18,
FMV19, CCGJO20]
Matching upper bound with minimal assumption (4-round OT)
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Reusable Setting
Suppose Alice and Bob want to continuously evaluate multiple functions f1(x1, y1), f2(x2, y2), . . .
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x3 f3 y3

Can we reuse the previous interactions to reduce the number of rounds?
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Optimal Round Complexity for Different Modes of Reusability

if both inputs and function change
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The first two rounds can be reused!

if only the function changes
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Related Work — Reusable MPC with trusted setup
[Benhamouda-Lin’20, Bartusek-Garg-Masny-Mukherjee’20, Ananth-Jain-Jin-Malavolta’21’22,
Benhamouda-Jain-Komargodski-Lin’21, Bartusek-Garg-Srinivasan-Zhang’22]
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Two-round malicious-secure MPC protocol
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Related Work

Reusable MPC in the plain model
[Fernando-Jain-Komargodski’23]

Plain model
Two rounds where the first round can be reused
Super-polynomial-time Simulator



Our Results

Reusable 2PC
(DDH or QR) + ZAP ===> Four-round Reusable 2PC

ZAP

[Dwork-Naor’00] Two-round public coin witness indistinguishable proof.

Reusable MPC
Four-round Reusable 2PC/OT + (semi-malicious) Two-round Reusable MPC + ZAP ===> Four-round
Reusable MPC

Semi-malicious Two-round Reusable MPC

DDH [BGMM20], pairing [BL20], LWE [AJJM20, AJJM21, BJKL21], LPN [BGSZ22]
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security for malicious senders)

ZK: zero-knowledge protocol (proof of knowledge)

Issue
ZK and OT need to be reusably secure!

A four-round OT that both the receiver and the sender may change input.
A four-round ZK that the prover may send multiple fourth-round messages proving different statements
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Reusable Zero-knowledge [Feige-Lapidot-Shamir’90]
TD: trapdoor generation protocol
ECom: extractable commitment scheme
WI: witness indistinguishable proof
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Extractable commitment needs to be reusable and delayed-input. Use symmetric-key encryption!

Witness indistinguishable proof needs to be reusable. Use ZAP!
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Reusable Zero-knowledge
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ZK only require OWF; Our r-ZK requires ZAP
inevitably need > OWF assumption due to state-of-the-art; implies preprocessing NIZK

Only three-round reusable, not two-round reusable

Inherent in unidirectional message model;
For 2PC, Bob needs to keep a secret state across different reuse sessions to check the consistency of the
third-round message
not an issue in simultaneous message model/MPC
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Reusable OT: both sender and receiver may change input

[Katz-Ostrovsky’04,Ostrovsky-Richelson-Scafuro’15, Friolo-Masny-Venturi’19]

Receiver Sender

ECom1(s0, s1)ECom1

ECom2

ECom3ECom3(s0, s1)

s

pk⊕ s

s1−b

zap1

zap2

ct1, ct2

Sender’s reusability comes for free. Use symmetric-key encryption
Receiver reusability: not reusably secure

If ECom is not delayed-input: insecure for the sender both s0, s1 will be leaked
If ECom is delayed-input: insecure for the receiver pick s1−b maliciously

Need to reconcile between giving the receiver too much freedom and too little freedom
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Naor’s bit commitment scheme [Naor’91]

s{
b = 0 PRG(sd)

b = 1 PRG(sd)⊕ s

sd

Insecure (equivocal) if PRG(sd)⊕ s = PRG(sd′)

Most choices of s satisfies s ̸= PRG(sd)⊕ PRG(sd′)

If PRG : {0, 1}λ → {0, 1}3λ, 2λ × 2λ choices of PRG(sd)⊕ PRG(sd′) and 23λ choices of s.
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Reusable OT

ECom1

ECom2

ECom3(s0, s1)ECom3(sd1, sd2)

s

pk⊕ s

s1−b

pk⊕ s

PRG(sd1−b)

zap1

zap2

ct1, ct2

Insecure if pk = s⊕ PRG(sd1−b) is some valid public key.
We need that: most s are “good”, i.e., ̸= PRG(sd)⊕ pk.

A special kind of PKE
pseudorandom public key
valid public keys are scarce
maliciously chosen invalid public keys still hide the message
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1 pseudorandom public key
2 valid public keys are scarce
3 maliciously chosen invalid public keys still hide the message

Special PKE scheme from DDH

Public key domain
(
g ga

gb gc

)
.

Valid public key c = ab, invalid public key c ̸= ab

Encryption

(u, v) ·
(
g ga

gb gc

)
⊕ (0,msg)

We also show how to construct it from SSP-OT and QR.
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Reusable MPC
Based on appropriate adaptations of [Choudhuri-Ciampi-Goyal-Jain-Ostrovsky’20]
Replace OT and ZK with our r-OT and r-ZK
Additionally, we need two-round reusable semi-malicious MPC
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Summary

x1 y1

f1

f2

f3
...

Reuse Session

x2 y2

g1

g2

g3

...
Reuse Session

x3 y3

h1

h2

h3

...
Reuse Session

Reusable 2PC from
DDH or QR
ZAP

Reusable MPC from
Reusable 2pc
(semi-malicious) two-round
reusable MPC
ZAP

Thanks! Questions? ia.cr/2023/1006

ia.cr/2023/1006

