Learning With Physical Rounding for Linear and Quadratic Leakage Functions

Clément Hoffmann¹, Pierrick Méaux², <u>Charles Momin¹</u>, Yann Rotella³, François-Xavier Standaert¹, Balazs Udvarhelyi¹

 ¹ Crypto Group, ICTEAM Institute, UCLouvain, Louvain-la-Neuve, Belgium
 ² Luxembourg University, SnT, Luxembourg
 ³ Université Paris-Saclay, UVSQ, CNRS, Laboratoire de mathématiques de Versailles, 78000, Versailles, France Outline

1. Background

- 2. Generalization of LWPR leakage model
- 3. Leakage function hypotheses validation
- 4. Conclusion

Outline

1. Background

2. Generalization of LWPR leakage model

3. Leakage function hypotheses validation

4. Conclusion

Block cipher SCA security (DPA setting)

Same long-term k for each p_i

Interest of re-keying

Implementation cost

Masking order

Interest of re-keying

Interest of re-keying

Attack path considering fresh re-keying

Attack path considering fresh re-keying

Attack path considering fresh re-keying

Adversarial model 1 Medwed, Standaert, Großschädl and Regazzoni (2010)

- Noisy leakage
- Finite field multiplication:
 k^{*} = r ⋅ k over 𝔽₂𝔅 (key homomorphic)
- Efficient implementation
- Significant noise level required

Adversarial model 2 Dziembowski, Faust, Herold, Journault, Masny and Standaert (2016)

- Unbounded leakage
- wPRF with rounded inner product:
 k^{*} = [⟨k, r⟩]_p, k, r ∈ Zⁿ_{2q} (nearly key homomorphic)
- Large key requirement (cost and perfs)

Adversarial model 3 Duval, Méaux, Momin and Standaert (2021)

- ► Noise free (compressive) leakage
- ▶ Finite field matrices product: $k^* = \mathbf{K} \cdot (\mathbf{r}, 1), \mathbf{r} \in \mathbb{F}_p^n, \mathbf{K} \in \mathbb{F}_p^{m \times (n+1)}$ (key homomorphic)
- Similar to Crypto Dark Matter wPRF (Boneh, Ishai, Passelègue, Sahai and Wu, 2018):

$$\mathtt{F}_{\mathsf{K}}(r) = \mathtt{map}(\mathsf{K} \cdot r)$$

with (non-linear) map = L

 \rightarrow map done by the physics (no cost)!

Learning With Physical Rounding (LWPR)

- ► Hard physical learning problem → Similarity with LWE and LWR.
- \blacktriangleright ${\cal A}$ try to recover ${\bf K}$ from samples

$$(\mathbf{r}, L(k^*)) = (\mathbf{r}, L(\mathbf{K} \cdot (\mathbf{r}, 1))) = (\mathbf{r}, L(\mathbf{K} \odot \mathbf{r}))$$

with
$$\mathbf{r} \in \mathbb{F}_p^n, \mathbf{K} \in \mathbb{F}_p^{m imes (n+1)}$$

Requires an assumption on L

Learning With Physical Rounding (LWPR)

- ► Hard physical learning problem → Similarity with LWE and LWR.
- \blacktriangleright ${\cal A}$ try to recover ${\bf K}$ from samples

$$(\mathbf{r}, \mathtt{L}(k^*)) = (\mathbf{r}, \mathtt{L}(\mathbf{K} \cdot (\mathbf{r}, 1))) = (\mathbf{r}, \mathtt{L}(\mathbf{K} \odot \mathbf{r}))$$

with
$$\mathbf{r} \in \mathbb{F}_p^n, \mathbf{K} \in \mathbb{F}_p^{m imes (n+1)}$$

- Requires an assumption on L
- CHES21 ([DMMS21]): Hamming Weight (HW) leakage assumption only.
 This work: generalization to a class of leakage function L

Outline

1. Background

2. Generalization of LWPR leakage model

3. Leakage function hypotheses validation

4. Conclusion

Generalization of the physical leakage model

- ▶ CHES21: L = HW
- ► More realistic model:

$$L(k^*) = \sum_{i=1}^{n_b} \alpha_i \beta_i(k^*)$$

with $\alpha_i \in \mathbb{R}, L(k^*) \in \mathbb{R}$

Generalization of the physical leakage model

- ▶ CHES21: L = HW
- ► More realistic model:

$$L(k^*) = \sum_{i=1}^{n_b} \alpha_i \beta_i(k^*)$$

n

with $\alpha_i \in \mathbb{R}, L(k^*) \in \mathbb{R}$ • LWPR case: $\forall i, \alpha_i = 1, \beta_i(k^*) = k^*(i) \rightarrow L(k^*) = HW(k^*)$

Formal security analysis setting

► Considering that L can be interpreted over F_p → algebraic system over F_p with unknowns K_{i,j}

Formal security analysis setting

- ► Considering that L can be interpreted over F_p → algebraic system over F_p with unknowns K_{i,j}
- ► *s*-bounded pseudo-linear leakage functions (serial case):

$$\mathtt{L} pprox \mathtt{F}_{a}: \mathbb{F}_{p}
ightarrow \mathbb{F}_{p}, y
ightarrow \sum_{i=1}^{t} a_{i} \cdot y(i)$$

with $a_i \in [0, s], s \in \mathbb{F}_p, t = \lceil \log p \rceil, st < p$

Formal security analysis setting

- ► Considering that L can be interpreted over F_p → algebraic system over F_p with unknowns K_{i,j}
- ► *s*-bounded pseudo-linear leakage functions (serial case):

$$\mathtt{L} \approx \mathtt{F}_a : \mathbb{F}_p \to \mathbb{F}_p, y \to \sum_{i=1}^t a_i \cdot y(i)$$

with $a_i \in [0, s], s \in \mathbb{F}_p, t = \lceil \log p \rceil, st < p$

- Hypothesis:
 - Bounded degree of L
 - ► Bounded *s*
 - ightarrow Leads to attack complexity $\geq \mathcal{O}(2^{\lambda})$

Intuition on s-bounded pseudo-linear function

• Consider
$$p = 7$$
, $t = 3$, $F_a = 1 \cdot y(1) + 2 \cdot y(2) + 2 \cdot y(3)$

у		y(i)		$F_a(y)$
0	0	0	0	0
1	1	0	0	1
2	0	1	0	2
3	1	1	0	3
4	0	0	1	2
5	1	0	1	3
6	0	1	1	4

→ Linear over the bits → Non-linear over F_p > 2 main images (i.e., 2, 3) with main preimage size $v_{F_a} = 2$

Concrete attacks analysis

Exact algebraic system attack

 $\begin{bmatrix} \kappa_{(1,1)} & \kappa_{(1,2)} & \cdots & \kappa_{(1,n+1)} \\ \kappa_{(2,1)} & \vdots \\ \vdots & \vdots & \vdots \\ \kappa_{(m,1)} & \cdots & \cdots & \kappa_{(m,n+1)} \end{bmatrix} \times \begin{bmatrix} r_1 \\ r_2 \\ \vdots \\ r_n \\ 1 \end{bmatrix} = \begin{bmatrix} k_1^* \\ k_2^* \\ \vdots \\ k_m^* \end{bmatrix} \xrightarrow{l} F_a(k_1^*) = F_a(K_1 \Box r) \\ \vdots \\ k_m^* \end{bmatrix} \xrightarrow{l} Complexity \\ \approx \mathcal{O}(V_d^2) = Complexity \\ \approx \mathcal{O}(V_d^2) =$

Other contributions (see paper):

- Noisy linear system complexity (non-linearity)
- Adaptation for parallel case (required)
- ► Worst-case *s*-bounded leakage

▶ Knowing F_a, *I*, *r*, solve for K_(1,*) = K₁
 ▶ Complexity ≈ O(V_d²) = O((^{n+d}_n)²)
 ▶ d = deg(F_a) ≥ v_{Fa}

Outline

1. Background

2. Generalization of LWPR leakage model

3. Leakage function hypotheses validation

4. Conclusion

Experimental setup

► HW // implem. of LWPR

▶
$$n = m = 4$$
, $p = 2^{31} - 1$

- ► 3 congestion levels
 - Unconstrained
 - Constrained
 - Virtually amplified

Example of congestion

					- 11			12	
		111						11	
		10							
		11.						1	
	_	11+						11	11.11-
	9								111 11
	1							21	
		111						11	
		111							
		111						11	
		11+							
		Ϊĥ.						11	
		11+						11	
		1Ú!							
								11	
		II.							
								11	
		10						11	III lies
	7								11 111
								11	
		111						11	
		Н.							
		W.							
		11.						11	
		111						11	
		11.							
					1111	111111	1111	11	11. W
					111				11.18
		111			111			1	LL .
		111			11111		1111	1	11.
		IJ١					1111		15.02
					1001	1111	1111	11	11. Y
		111		1111				1	1111
				1111	11111				111111
		111		11111	miii	1000	11111	1	10.11
		11v		1006	1000	HDD)			11.116
				11111	1111	11111	11111	. 15	11 11
		111			11111		1111	1	112 11
						11100			1111
		11+			- 11				IN U
anan mana dinan		Π ₁			- 10			11	16.11
* 11, 5555 T. 19 H. 11, 11					- N.	11		4	10.55
					- 11				1111
ועוע ענא אווע		ЦŅ	1111		- AL	31		U.	DI DI

► Noiseless linear regression model of degree 1

► Correlation based SCA security: $N = \frac{c}{\hat{\rho}(M_{r1},L)^2}$

Correlation results

 $\Rightarrow 1^{st}$ degree LR model captures most of the information.

Bound on the value of \boldsymbol{s}

• Considering s-bounded leakage (discretized version of M_{r1} denoted M_{r1}^s)

$$oldsymbol{\hat{a}} = \left\lceil lpha \cdot rac{s}{\max(lpha)}
ight
ceil$$

Bound on the value of \boldsymbol{s}

• Considering s-bounded leakage (discretized version of M_{r1} denoted M_{r1}^s)

$$oldsymbol{\hat{a}} = \left\lceil oldsymbol{lpha} \cdot rac{oldsymbol{s}}{\mathsf{max}(oldsymbol{lpha})}
ight
ceil$$

Correlation chain rules

$$\hat{\rho}(M_{r1}^{s},L) = \hat{\rho}(M_{r1}^{s},M_{r1})\cdot\hat{\rho}(M_{r1},L)$$
$$= (1-\phi)\cdot\hat{\rho}(M_{r1},L)$$

Bound on the value of \boldsymbol{s}

• Considering s-bounded leakage (discretized version of M_{r1} denoted M_{r1}^s)

$$oldsymbol{\hat{a}} = \left\lceil oldsymbol{lpha} \cdot rac{oldsymbol{s}}{\mathsf{max}(oldsymbol{lpha})}
ight
ceil$$

Correlation chain rules

$$\hat{\rho}(M_{r1}^{s},L) = \hat{\rho}(M_{r1}^{s},M_{r1})\cdot\hat{\rho}(M_{r1},L) = (1-\phi)\cdot\hat{\rho}(M_{r1},L)$$

▶ With $s = 2^8 \rightarrow \phi < 10^{-6}$

Discretized model coefficients

Learning With Physical Rounding for Linear and Quadratic Leakage Functions

Putting things together

► From experimentation: reasonable physical leakage hypotheses → s-bounded physical leakage analysis sound.

Practical implementation analyzed:

- ▶ 124-bit *k**
- Parallel implementation (3 congestion flavours)

$$s = 2^{12}$$

ightarrow complexity $> \mathcal{O}(2^{124})$

► (Going further, LWPR secure for quadratic leakage function, see paper)

Outline

1. Background

2. Generalization of LWPR leakage model

3. Leakage function hypotheses validation

4. Conclusion

Conclusion

- ▶ LWPR is secure for wide class of (sound) leakage function
 - ▶ if implemented with parallelism (the more, the better).
 - \blacktriangleright when ${\cal A}$ follows our natural attack path.

► Open problem:

- ► Analysis based on cardinality of leakage function → link s to quality of measurement apparatus
- Multivariate analysis
- Improved cryptanalysis to break LWPR
- ► Integration in PQ crypto

Questions?

Supplementary material

Parallelism Requirement Intuition: LWPR case

- ▶ Serial recombination of k^*
 - one 31-bit words k_i^* per cycle.
- \mathcal{A} obtains independent $L(k_i^*)$
 - ▶ she can filter worst-case leakage e.g., $HW(k_i^*) = 0 \rightarrow k_i^* = 0$ (with prob. 1/p)
- (n+1) w.c. observations $\rightarrow \mathbf{K}_i$ recovery
- Parallelism limits the risk ([DMMS21])

Parallelism Requirement Intuition: LWPR case

$$\begin{bmatrix} K_{(1,1)} & K_{(1,2)} & \cdots & K_{(1,n+1)} \\ K_{(2,1)} & K_{(2,2)} & \cdots & K_{(2,n+1)} \\ K_{(3,1)} & K_{(3,2)} & \cdots & K_{(3,n+1)} \\ K_{(4,1)} & K_{(4,2)} & \cdots & K_{(4,n+1)} \end{bmatrix} \times \begin{bmatrix} r_1^2 \\ r_2^2 \\ \vdots \\ r_n^2 \\ 1 \end{bmatrix} = \begin{bmatrix} k_1^2 \\ k_2^2 \\ k_3^2 \\ k_4^2 \end{bmatrix}$$

- ▶ Serial recombination of k^*
 - one 31-bit words k_i^* per cycle.
- \mathcal{A} obtains independent $L(k_i^*)$
 - ▶ she can filter worst-case leakage e.g., $HW(k_i^*) = 0 \rightarrow k_i^* = 0$ (with prob. 1/p)
- (n+1) w.c. observations $\rightarrow \mathbf{K}_i$ recovery
- Parallelism limits the risk ([DMMS21])

Parallelism Requirement Intuition: LWPR case

$$\begin{bmatrix} K_{(1,1)} & K_{(1,2)} & \cdots & K_{(1,n+1)} \\ K_{(2,1)} & K_{(2,2)} & \cdots & K_{(2,n+1)} \\ K_{(3,1)} & K_{(3,2)} & \cdots & K_{(3,n+1)} \\ K_{(4,1)} & K_{(4,2)} & \cdots & K_{(4,n+1)} \end{bmatrix} \times \begin{bmatrix} r_1^3 \\ r_2^3 \\ \vdots \\ r_n^3 \\ 1 \end{bmatrix} = \begin{bmatrix} k_1^{*3} \\ k_2^{*3} \\ k_3^{*3} \\ k_4^{*3} \end{bmatrix}$$

- ▶ Serial recombination of k^*
 - one 31-bit words k_i^* per cycle.
- \mathcal{A} obtains independent $L(k_i^*)$
 - ▶ she can filter worst-case leakage e.g., $HW(k_i^*) = 0 \rightarrow k_i^* = 0$ (with prob. 1/p)
- (n+1) w.c. observations $\rightarrow \mathbf{K}_i$ recovery
- Parallelism limits the risk ([DMMS21])