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Block cipher SCA security (DPA setting)
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▶ Popular contermeasure: masking

→ hard to guess k from li s
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Block cipher SCA security (SPA setting)
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Adversarial model 1
Medwed, Standaert, Großschädl and Regazzoni (2010)

RK

k

r

k∗

A

L(k∗) + N

▶ Noisy leakage

▶ Finite field multiplication:
k∗ = r · k over F2K

(key homomorphic)

▶ Efficient implementation

▶ Significant noise level required
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Adversarial model 2
Dziembowski, Faust, Herold, Journault, Masny and Standaert (2016)

RK

k

r

k∗

A

▶ Unbounded leakage

▶ wPRF with rounded inner product:
k∗ = ⌊⟨k, r⟩⌋p, k, r ∈ Zn

2q

(nearly key homomorphic)

▶ Large key requirement
(cost and perfs)
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Adversarial model 3
Duval, Méaux, Momin and Standaert (2021)

RK

k

r

k∗

A

L(k∗)

▶ Noise free (compressive) leakage

▶ Finite field matrices product:

k∗ = K · (r, 1), r ∈ Fn
p,K ∈ Fm×(n+1)

p

(key homomorphic)
▶ Similar to Crypto Dark Matter wPRF

(Boneh, Ishai, Passelègue, Sahai and Wu, 2018):

FK(r) = map(K · r)

with (non-linear) map = L

→ map done by the physics (no cost)!
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Learning With Physical Rounding (LWPR)

K ⊡ r

K

r

k∗

A

L(K ⊡ r)

▶ Hard physical learning problem
→ Similarity with LWE and LWR.

▶ A try to recover K from samples

(r, L(k∗)) = (r, L(K·(r, 1))) = (r, L(K⊡r))

with r ∈ Fn
p,K ∈ Fm×(n+1)

p

▶ Requires an assumption on L
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(r, L(k∗)) = (r, L(K·(r, 1))) = (r, L(K⊡r))

with r ∈ Fn
p,K ∈ Fm×(n+1)

p

▶ Requires an assumption on L

▶ CHES21 ([DMMS21]): Hamming Weight (HW) leakage assumption only.

▶ This work: generalization to a class of leakage function L
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Generalization of the physical leakage model

▶ CHES21: L = HW

▶ More realistic model:

L(k∗) =

nb∑
i=1

αiβi(k
∗)

with αi ∈ R, L(k∗) ∈ R

▶ LWPR case: ∀i , αi = 1, βi(k
∗) = k∗(i) → L(k∗) = HW(k∗)
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Formal security analysis setting

▶ Considering that L can be interpreted over Fp

→ algebraic system over Fp with unknowns Ki ,j

▶ s−bounded pseudo-linear leakage functions (serial case):

L ≈ Fa : Fp → Fp, y →
t∑

i=1

ai · y(i)

with ai ∈ [0, s], s ∈ Fp, t = ⌈log p⌉, st < p
▶ Hypothesis:

▶ Bounded degree of L
▶ Bounded s
→ Leads to attack complexity ≥ O(2λ)
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Intuition on s-bounded pseudo-linear function

▶ Consider p = 7, t = 3, Fa = 1 · y(1) + 2 · y(2) + 2 · y(3)
y y(i) Fa(y)
0 0 0 0 0
1 1 0 0 1
2 0 1 0 2
3 1 1 0 3
4 0 0 1 2
5 1 0 1 3
6 0 1 1 4

→ Linear over the bits

⇔ Fa : Fp → Fp,

y → 6y6 + 2y5 + 5y3 + 2y

→ Non-linear over Fp
▶ 2 main images (i.e., 2, 3) with main preimage size vFa = 2
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Concrete attacks analysis

Exact algebraic system attack

K(1,1) K(1,2) . . . K(1,n+1)

K(2,1)
...

...
...

K(m,1) . . . . . . K(m,n+1)




×

r1
r2
...
rn

1



=
k∗1

k∗2
...

k∗m





A

l = Fa(k
∗
1 ) = Fa(K1 ⊡ r)

▶ Knowing Fa, l , r , solve for
K(1,∗) = K1

▶ Complexity

≈ O(V 2
d ) = O

((
n+d
n

)2)
▶ d = deg(Fa) ≥ vFa

Other contributions (see paper):

▶ Noisy linear system complexity (non-linearity)

▶ Adaptation for parallel case (required)

▶ Worst-case s-bounded leakage
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Experimental setup

KEY
MEMORY

NONCE
MEMORY

▶ HW // implem. of LWPR

▶ n = m = 4, p = 231 − 1
▶ 3 congestion levels

▶ Unconstrained
▶ Constrained
▶ Virtually amplified
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Example of congestion

Unconstrained Constrained

▶ Same architecture:
▶ White: unused ressource
▶ Blue: used ressource
▶ Red: same signal route
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Physical L function assumptions assesment

▶ Noiseless linear regression model of degree 1

K1 ⊡ r = k∗1

(
K 1, r1

)×na

l = [l1, l2, . . . , lna]

lna1

▶ Correlation based SCA security: N = c
ρ̂(Mr1,L)

2
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Correlation results
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⇒ 1st degree LR model captures most of the information.
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Bound on the value of s

▶ Considering s-bounded leakage (discretized version of Mr1 denoted M s
r1 )

â =

⌈
α · s

max(α)

⌉

▶ Correlation chain rules

ρ̂ (M s
r1, L) = ρ̂ (M s

r1,Mr1) · ρ̂ (Mr1, L)

= (1− ϕ) · ρ̂ (Mr1, L)

▶ With s = 28 → ϕ < 10−6
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Discretized model coefficients
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Putting things together

▶ From experimentation: reasonable physical leakage hypotheses
→ s-bounded physical leakage analysis sound.

▶ Practical implementation analyzed:
▶ 124-bit k∗

▶ Parallel implementation (3 congestion flavours)
▶ s = 212

→ complexity > O(2124)

▶ (Going further, LWPR secure for quadratic leakage function, see paper)
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Conclusion

▶ LWPR is secure for wide class of (sound) leakage function
▶ if implemented with parallelism (the more, the better).
▶ when A follows our natural attack path.

▶ Open problem:
▶ Analysis based on cardinality of leakage function

→ link s to quality of measurement apparatus
▶ Multivariate analysis
▶ Improved cryptanalysis to break LWPR
▶ Integration in PQ crypto
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Questions

Questions?
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Supplementary

Supplementary material
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Parallelism Requirement Intuition: LWPR case

K(1,1) K(1,2) . . . K(1,n+1)

K(2,1) K(2,2) . . . K(2,n+1)

K(3,1) K(3,2) . . . K(3,n+1)

K(4,1) K(4,2) . . . K(4,n+1)



× A

r11

r12
...

r1n

1




=

k∗11

k∗12

k∗13

k∗14




L(k ∗11 )

▶ Serial recombination of k∗

▶ one 31-bit words k∗
i per cycle.

▶ A obtains independent L(k∗i )
▶ she can filter worst-case leakage

e.g., HW(k∗
i ) = 0 → k∗

i = 0
(with prob. 1/p)

▶ (n + 1) w.c. observations → Ki

recovery

▶ Parallelism limits the risk
([DMMS21])
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Parallelism Requirement Intuition: LWPR case

K(1,1) K(1,2) . . . K(1,n+1)

K(2,1) K(2,2) . . . K(2,n+1)

K(3,1) K(3,2) . . . K(3,n+1)

K(4,1) K(4,2) . . . K(4,n+1)



× A

r31

r32
...

r3n

1




=

k∗31

k∗32

k∗33

k∗34




L(k ∗31 )

▶ Serial recombination of k∗

▶ one 31-bit words k∗
i per cycle.

▶ A obtains independent L(k∗i )
▶ she can filter worst-case leakage

e.g., HW(k∗
i ) = 0 → k∗

i = 0
(with prob. 1/p)

▶ (n + 1) w.c. observations → Ki

recovery

▶ Parallelism limits the risk
([DMMS21])
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