Orbweaver
 Succinct Linear Functional Commitments from Lattices

Lattice Orbweaver spider by Jackie Parker

Ben Fisch, Zeyu Liu, and Psi Vesely

Yale University

Results

- Lattice arguments with $O(\log n \log \log n)$ complexity verifier*

Results

- Lattice arguments with $O(\log n \log \log n)$ complexity verifier* $\left(O\left(\log ^{1.58} n\right)\right.$ with Karatsuba)

Results

- Lattice arguments with $O(\log n \log \log n)$ complexity verifier* $\left(O\left(\log ^{1.58} n\right)\right.$ with Karatsuba)
- Constructions for both cyclotomic rings R_{q} and integers \mathbb{Z}_{q} of:
- Linear map functional commitments/ inner product argument
- Polynomial commitments
- SNARK for R1CS

Results

- Lattice arguments with $O(\log n \log \log n)$ complexity verifier* $\left(O\left(\log ^{1.58} n\right)\right.$ with Karatsuba)
- Constructions for both cyclotomic rings R_{q} and integers \mathbb{Z}_{q} of:
- Linear map functional commitments/ inner product argument
- Polynomial commitments
- SNARK for R1CS
- All extractable, preprocessing, mostly structure-preserving

Results

- Lattice arguments with $O(\log n \log \log n)$ complexity verifier* $\left(O\left(\log ^{1.58} n\right)\right.$ with Karatsuba)
- Constructions for both cyclotomic rings R_{q} and integers \mathbb{Z}_{q} of:
- Linear map functional commitments/ inner product argument
- Polynomial commitments
- SNARK for R1CS
- All extractable, preprocessing, mostly structure-preserving

Abstract linear map equation

$$
\left(\sum_{i=1}^{n} f_{i} \cdot Y^{-i}\right) \cdot\left(\sum_{i=1}^{n} x_{i} \cdot Y^{i}\right) \equiv\langle\mathbf{f}, \mathbf{x}\rangle+\sum_{\substack{i=-n+1, i \neq 0}}^{n-1} b_{i} \cdot Y^{i} \bmod q
$$

Form used in [Gro10,LRY16,AC20]

Evaluation verification equation

$$
\left(\sum_{i=1}^{n} f_{i} \cdot Y^{-i}\right) \cdot\left(\sum_{i=1}^{n} x_{i} \cdot Y^{i}\right) \equiv\langle\mathbf{f}, \mathbf{x}\rangle+\sum_{\substack{i=-n+1, i \neq 0}}^{n-1} b_{i} \cdot Y^{i} \bmod q
$$

Form used in [Gro10,LRY16,AC20], translated to lattice setting using techniques from [ACLMT22]

Evaluation verification equation

$$
\frac{\left(\sum_{i=1}^{n} f_{i} \cdot Y^{-i}\right)}{c_{\mathbf{f}}} \cdot \frac{\left(\sum_{i=1}^{n} x_{i} \cdot Y^{i}\right) \equiv\langle\mathbf{f}, \mathbf{x}\rangle+\sum_{i=-n+1,}^{i \neq 0}}{\sum_{\mathbf{x}}^{n-1}} b_{i} \cdot Y^{i} \bmod q
$$

Form used in [Gro10,LRY16,AC20], translated to lattice setting using techniques from [ACLMT22]

Ring Vandermonde SIS (R-V-SIS) commitment

$$
c:=\sum_{i=1}^{n} x_{i} \cdot v^{i} \bmod q, \text { where } v \stackrel{\$}{\leftarrow} R_{q} \text { is public }
$$

Ring Vandermonde SIS (R-V-SIS) commitment

$$
c:=\sum_{i=1}^{n} x_{i} \cdot v^{i} \bmod q, \text { where } v \stackrel{\$}{\leftarrow} R_{q} \text { is public }
$$

- Ajtai's R-SIS commitment, with a Vandermonde key

Ring Vandermonde SIS (R-V-SIS) commitment

$$
c:=\sum_{i=1}^{n} x_{i} \cdot v^{i} \bmod q, \text { where } v \stackrel{\$}{\leftarrow} R_{q} \text { is public }
$$

- Ajtai's R-SIS commitment, with a Vandermonde key
- Similar to assumption used in PASS Sign. If we pick vinstead from the primitive roots of unity binding reduces to Vandermonde R-SIS [HS15,LZA18,BSS22]

Evaluation verification equation

$$
\begin{aligned}
& \left(\frac{\mathbf{f}, \mathbf{x} \text { short }}{\left(\sum_{i=1}^{n} f_{i} \cdot Y^{-i}\right)} \cdot\left(\sum_{i=1}^{n} x_{i} \cdot Y^{i}\right) \equiv\langle\mathbf{f}, \mathbf{x}\rangle+\sum_{\substack{i=-n+1, i \neq 0}}^{n-1} b_{i} \cdot Y^{i} \bmod q\right. \\
& c_{\mathbf{x}} \\
& \text { (preprocessed) }
\end{aligned}
$$

Form used in [Gro10,LRY16,AC20], translated to lattice setting using techniques from [ACLMT22]

Evaluation verification equation

$$
\begin{aligned}
& \left(\frac{\mathbf{f}, \mathbf{x} \text { short }}{\left(\sum_{i=1}^{n} f_{i} \cdot Y^{-i}\right)} \cdot\left(\sum_{i=1}^{n} x_{i} \cdot Y^{i}\right)\right. \\
& c_{\mathbf{f}} \\
& c_{\mathbf{x}} \\
& \text { (preprocessed) }
\end{aligned}
$$

Form used in [Gro10,LRY16,AC20], translated to lattice setting using techniques from [ACLMT22]

Evaluation verification equation

$$
\begin{gathered}
\left(\begin{array}{c}
\mathbf{f}, \mathbf{x} \text { short } \\
\left(\sum_{i=1}^{n} f_{i} \cdot Y^{-i}\right) \\
c_{\mathbf{f}}
\end{array} \frac{\left(\sum_{i=1}^{n} x_{i} \cdot Y^{i}\right)}{c_{\mathbf{x}}} \equiv\langle\mathbf{f}, \mathbf{x}\rangle+\sum_{\substack{i=-n+1, i \neq 0}}^{n-1} b_{i} \cdot Y^{i} \bmod q\right. \\
\text { (preprocessed) }
\end{gathered}
$$

Form used in [Gro10,LRY16,AC20], translated to lattice setting using techniques from [ACLMT22]

Prover key

Generate short preimages \mathbf{u}_{i} for $i \in\{-n+1, \ldots, n-1\} \backslash\{0\}$ such that

$$
\left\langle\mathbf{a}, \mathbf{u}_{i}\right\rangle \equiv v^{i} \bmod q
$$

Using a trapdoor public SIS matrix a [MP12]

Computing the proof

- Given $\left\langle\mathbf{a}, \mathbf{u}_{i}\right\rangle \equiv v^{i} \bmod q$ except for $i=0$
- Where b_{i} is the sum of cross terms corresponding to the coefficient of v^{i} compute

$$
\pi:=\sum_{\substack{i=-n+1, i \neq 0}}^{n-1} b_{i} \cdot \mathbf{u}_{i} \bmod q
$$

Computing the proof

- Given $\left\langle\mathbf{a}, \mathbf{u}_{i}\right\rangle \equiv v^{i} \bmod q$ except for $i=0$
- Where b_{i} is the sum of cross terms corresponding to the coefficient of v^{i} compute

$$
\pi:=\sum_{\substack{i=-n+1, i \neq 0}}^{n-1} b_{i} \cdot \mathbf{u}_{i} \bmod q
$$

- Then

$$
\langle\mathbf{a}, \pi\rangle \equiv \sum_{\substack{i=-n+1 \\ i \neq 0}}^{n-1} b_{i} \cdot v_{i} \bmod q
$$

Computing the proof

- Given $\left\langle\mathbf{a}, \mathbf{u}_{i}\right\rangle \equiv v^{i} \bmod q$ except for $i=0$
- Where b_{i} is the sum of cross terms corresponding to the coefficient of v^{i} compute

$$
\pi:=\sum_{\substack{i=-n+1, i \neq 0}}^{n-1} b_{i} \cdot \mathbf{u}_{i} \bmod q
$$

- Then

$$
\langle\mathbf{a}, \pi\rangle \equiv \sum_{\substack{i=-n+1, i \neq 0}}^{n-1} b_{i} \cdot v_{i} \bmod q
$$

- \mathbf{f}, \mathbf{x} short $\Longrightarrow b_{i}$ short, u_{i} short $\Longrightarrow \pi$ short

Evaluation binding

$$
\frac{\left(\sum_{i=1}^{n} f_{i} \cdot v^{-i}\right) \cdot\left(\sum_{i=1}^{n} x_{i} \cdot v^{i}\right)}{c_{\mathbf{f}}} \cdot \frac{\left.\mathbf{f}_{\mathbf{x}} \mathbf{x} \mathbf{x}\right\rangle+\sum_{\substack{i=-n+1,}}^{\sum_{\substack{i \neq 0}}^{n-1} b_{i} \cdot v^{i} \bmod q}}{\langle\mathbf{a}, \pi\rangle \bmod q}
$$

Evaluation binding

$$
\left\langle\mathbf{a}, \pi-\pi^{\prime}\right\rangle \equiv y^{\prime}-y \bmod q
$$

Evaluation binding

$$
\left\langle\mathbf{a}, \pi-\pi^{\prime}\right\rangle \equiv y^{\prime}-y \bmod q
$$

- k-R-ISIS family of assumptions: can only generate short preimages for targets short linear span of the v^{i} or for random targets [ACLMT22]

Evaluation binding

$$
\left\langle\mathbf{a}, \pi-\pi^{\prime}\right\rangle \equiv y^{\prime}-y \bmod q
$$

- k-R-ISIS family of assumptions: can only generate short preimages for targets short linear span of the v^{i} or for random targets [ACLMT22]
- $y^{\prime}-y$ is short, while for $v \stackrel{\$}{\leftarrow} R_{q}$ all $v^{i} \bmod q$ will be long whp, as will the random targets

Multiple outputs

Can prove $\left\langle\mathbf{f}_{i}, \mathbf{x}\right\rangle=y_{i}$ for $i \in[t]$ with a single evaluation proof:

$$
\langle\mathbf{a}, \pi\rangle \equiv c \cdot \sum_{i=1}^{t} h_{i} \cdot \mathrm{ck}_{\mathbf{f}_{i}}-\sum_{i=1}^{t} h_{i} \cdot y_{i} \bmod q
$$

Multiple outputs

Can prove $\left\langle\mathbf{f}_{i}, \mathbf{x}\right\rangle=y_{i}$ for $i \in[t]$ with a single evaluation proof:

$$
\langle\mathbf{a}, \pi\rangle \equiv c \cdot \sum_{i=1}^{t} h_{i} \cdot \mathrm{ck}_{\mathbf{f}_{i}}-\sum_{i=1}^{t} h_{i} \cdot y_{i} \bmod q
$$

Key observation: straightline extractor uses separate knowledge proof to obtain \mathbf{x}. Don't have to extract the hypothetical π_{i}

$$
\pi=\sum_{i=1}^{t} h_{i} \cdot \pi_{i}
$$

Multiple outputs

Using extracted \mathbf{x} we get
$\langle\mathbf{a}, \pi\rangle \equiv \sum_{i=1}^{t} h_{i} \cdot\left(\left\langle\mathbf{f}_{i}, \mathbf{x}\right\rangle-y_{i}\right)-\sum_{i=1}^{t} h_{i} \cdot \sum_{\substack{j=-n+1, j \neq 0}}^{n-1} b_{i, j} \cdot Y^{i} \bmod q$

Multiple outputs

$$
\langle\mathbf{a}, \pi\rangle \equiv \frac{\sum_{i=1}^{t} h_{i} \cdot\left(\left\langle\mathbf{f}_{i}, \mathbf{x}\right\rangle-y_{i}\right)}{p\left(h_{1}, \ldots, h_{t}\right)}-\sum_{i=1}^{t} h_{i} \cdot \sum_{\substack{j=-n+1, j \neq 0}}^{n-1} b_{i, j} \cdot Y^{i} \bmod q
$$

- For $h_{1}, \ldots, h_{t} \leftarrow \mathscr{H}$ want $p\left(h_{1}, \ldots, h_{t}\right)=0$ only with negligible probability if p is not the zero polynomial

Multiple outputs

$$
\langle\mathbf{a}, \pi\rangle \equiv \frac{\sum_{i=1}^{t} h_{i} \cdot\left(\left\langle\mathbf{f}_{i}, \mathbf{x}\right\rangle-y_{i}\right)}{p\left(h_{1}, \ldots, h_{t}\right)}-\sum_{i=1}^{t} h_{i} \cdot \sum_{\substack{j=-n+1, j \neq 0}}^{n-1} b_{i, j} \cdot Y^{i} \bmod q
$$

- For $h_{1}, \ldots, h_{t} \leftarrow \mathscr{H}$ want $p\left(h_{1}, \ldots, h_{t}\right)=0$ only with negligible probability if p is not the zero polynomial
- Can pick exponential size "exceptional set" \mathscr{H} over R_{q} for large q [LS18] and invoke Generalized Alon-Füredi Theorem [BCPS18]

Multiple outputs

$$
\langle\mathbf{a}, \pi\rangle \equiv \frac{\sum_{i=1}^{t} h_{i} \cdot\left(\left\langle\mathbf{f}_{i}, \mathbf{x}\right\rangle-y_{i}\right)}{p\left(h_{1}, \ldots, h_{t}\right)}-\sum_{i=1}^{t} h_{i} \cdot \sum_{\substack{j=-n+1 \\ j \neq 0}}^{n-1} b_{i, j} \cdot Y^{i} \bmod q
$$

- For $h_{1}, \ldots, h_{t} \leftarrow \mathscr{H}$ want $p\left(h_{1}, \ldots, h_{t}\right)=0$ only with negligible probability if p is not the zero polynomial
- Can pick exponential size "exceptional set" \mathscr{H} over R_{q} for large q [LS18] and invoke Generalized Alon-Füredi Theorem [BCPS18]
- Better to perform ternary decomposition on \mathbf{f}, \mathbf{x} and batch verification

Proof and SRS sizes for $\mathbb{Z}_{2^{32}}$

$\log 2(\mathbf{x})$	18	22	26	30
$\|c\|(B)$	293	347	422	505
total proof size (KiB)	845	1,081	1,315	1,571
verifier key (MiB)	12	17	23	30
prover key (CiB)	0.3	6	111	2,070

- These are maximum proof sizes. When \mathbf{f} or \mathbf{x} are sparse or have entries much smaller than the norm bound this is reflected by the proof size.

Proof and SRS sizes for $\mathbb{Z}_{2^{32}}$

$\log 2(\mathbf{x})$	18	22	26	30
$\|c\|(B)$	293	347	422	505
total proof size (KiB)	845	1,081	1,315	1,571
verifier key (MiB)	12	17	23	30
prover key (CiB)	0.3	6	111	2,070

- These are maximum proof sizes. When \mathbf{f} or \mathbf{x} are sparse or have entries much smaller than the norm bound this is reflected by the proof size.
- Binding only version reduces proof size by $\sim 65 \%$, prover key size by $\sim 75 \%$

Proof and SRS sizes for $\mathbb{Z}_{2^{32}}$

$\log 2(\mathbf{x})$	18	22	26	30
$\|c\|(B)$	293	347	422	505
total proof size (KiB)	845	1,081	1,315	1,571
verifier key (MiB)	12	17	23	30
prover key (CiB)	0.3	6	111	2,070

- These are maximum proof sizes. When \mathbf{f} or \mathbf{x} are sparse or have entries much smaller than the norm bound this is reflected by the proof size.
- Binding only version reduces proof size by $\sim 65 \%$, prover key size by $\sim 75 \%$
- Smallest compressing proofs start around 165 KiB (binding) and 668 KiB (extractable) - recursion threshold

Valerio Cini ${ }^{1}$, Russell W. F. Lai ${ }^{2}$, Giulio Malavolta ${ }^{3}$
${ }^{1}$ AIT Austrian Institute of Technology, Austria
${ }^{2}$ Aalto University, Finland
${ }^{3}$ Max Planck Institute for Security and Privacy, Germany
CRYPTO, Santa Barbara, CA, U.S., 2023

Lattice-based Succinct Arguments

Approach	Publicly verifiable	Sublinear-verifier (preprocessing)	Linear-prover
PCP/IOP + linear-only enc. [BCIOP13; BISW17; BISW18; GMNO18]	X	\checkmark	\checkmark
Linearisation + folding [BLNS20; AL21; ACK21; BS22]	\checkmark	$\times \tilde{O}_{\lambda}(\mid$ stmt $\mid)$	\checkmark
Direct [ACLMT22]	\checkmark	\checkmark	$\times \tilde{O}_{\lambda}\left(\mid\right.$ stmt $\left.\left.\right\|^{2}\right)$

This work (and [BCS23])

Lattice-based Succinct Arguments

Approach	Publicly verifiable	Sublinear-verifier (preprocessing)	Linear-prover
PCP/IOP + linear-only enc. [BCIOP13; BISW17; BISW18; GMNO18]	X	\checkmark	\checkmark
Linearisation + folding [BLNS20; AL21; ACK21; BS22]	\checkmark	$\times \tilde{O}_{\lambda}(\mid$ stmt $\mid)$	\checkmark
Direct [ACLMT22]	\checkmark	\checkmark	$\times \tilde{O}_{\lambda}\left(\mid\right.$ stmt $\left.\left.\right\|^{2}\right)$

This work (and [BCS23])

Our Results

\dagger New assumption: Vanishing Short Integer Solution (vSIS)
\ddagger generalization of SIS

```
New tool: vSIS commitment for committing to polynomials with short coefficients
Very small (polylog(|stmt|)) commitment key
(Almost) additively and multiplicatively homomor phic
Admit \(\tilde{O}(\mid\) stmt \(\mid)\)-prover polylog \((\mid\) stmt \(\mid)\)-verifier arguments for commitment openings
```

New lattice-based succinct arguments for NP \Leftarrow Succinct arguments for vSIS commitment openings

Our Results

\dagger New assumption: Vanishing Short Integer Solution (vSIS)
\ddagger generalization of SIS
\dagger New tool: vSIS commitment for committing to polynomials with short coefficients
\ddagger Very small (polylog(|stmt|)) commitment key
\ddagger (Almost) additively and multiplicatively homomorphic
\ddagger Admit $\tilde{O}(\mid$ stmt $\mid)$-prover polylog $(\mid$ stmt $\mid)$-verifier arguments for commitment openings

Our Results

\dagger New assumption: Vanishing Short Integer Solution (vSIS)
\ddagger generalization of SIS
\dagger New tool: vSIS commitment for committing to polynomials with short coefficients
\ddagger Very small (polylog(|stmt|)) commitment key
\ddagger (Almost) additively and multiplicatively homomorphic
\ddagger Admit $\tilde{O}(\mid$ stmt $\mid)$-prover polylog $(\mid$ stmt $\mid)$-verifier arguments for commitment openings
\dagger New lattice-based succinct arguments for NP \Leftarrow Succinct arguments for vSIS commitment openings

Our Results

Instantiations	$\|\pi\|$	$\operatorname{Time}(\mathcal{P})$	$\operatorname{Time}(\mathcal{V})$	Setup	Assumptions
	$\tilde{O}_{\lambda}(1)$	$\tilde{O}_{\lambda}(\mid$ stmt $\mid)$	$\tilde{O}_{\lambda}(1)$	Transparent	vSIS (+ RO for NI)
Folding	$\tilde{O}_{\lambda}(1)$	$\tilde{O}_{\lambda}(\mid$ stmt $\mid)$	$\tilde{O}_{\lambda}(1)$	Trusted	vSIS + Knowledge-kRISIS

Roadmap

1. vSIS assumptions and commitments
2. Quadratic Relations using vSIS commitments
3. Succinct arguments for vSIS commitment openings

Short Integer Solution (SIS) Assumption

\dagger Parameters: \# rows n, \# columns m, modulus q.
\dagger Instance: A matrix $\mathbf{A} \in \mathcal{R}_{q}^{n \times m}$.
\dagger Problem: Find a short vector $\mathbf{u} \in \mathcal{R}^{m}$ such that
$\mathbf{A} \cdot \mathbf{u}=\mathbf{0} \bmod q$
and

$$
0<\|\mathbf{u}\| \approx 0
$$

\dagger Shorthand: If \mathbf{u} is a short non-zero vector satisfying $\mathbf{A} \cdot \mathbf{u}=\mathbf{v} \bmod q$, write

$$
\mathbf{u} \in \mathbf{A}^{-1}(\mathbf{v})
$$

Vanishing SIS as SIS Generalisations

SIS

Find short solution to linear equations

$$
\mathbf{A} \cdot \mathbf{u}=\mathbf{0} \bmod q \quad \text { and } \quad 0<\|\mathbf{u}\| \approx 0
$$

SIS (Alternative Interpretation)
Find linear function with short coefficients which vanishes at all given points

Vanishing SIS (vSIS)
Find polynomial (from some class) with short coefficients which vanishes at all given points

Vanishing SIS as SIS Generalisations

SIS

Find short solution to linear equations

$$
\mathbf{A} \cdot \mathbf{u}=\mathbf{0} \bmod q \quad \text { and } \quad 0<\|\mathbf{u}\| \approx 0
$$

SIS (Alternative Interpretation)
Find linear function with short coefficients which vanishes at all given points

Vanishing SIS (vSIS)
Find polynomial (from some class) with short coefficients which vanishes at all given points

Vanishing SIS as SIS Generalisations

SIS

Find short solution to linear equations

$$
\mathbf{A} \cdot \mathbf{u}=\mathbf{0} \bmod q \quad \text { and } \quad 0<\|\mathbf{u}\| \approx 0 .
$$

SIS (Alternative Interpretation)
Find linear function with short coefficients which vanishes at all given points

Vanishing SIS (vSIS)

Find polynomial (from some class) with short coefficients which vanishes at all given points

Vanishing Short Integer Solution (vSIS) Assumption

Example: Univariate

\dagger Problem: Find short degree m polynomial without constant term

$$
p(X)=p_{1} X+\ldots+p_{m} X^{m} \in \mathcal{R}[X]
$$

which vanishes at $v \in \mathcal{R}_{q}^{\times}$modulo q, i.e.

$$
p(v)=0 \bmod q \quad \text { and } \quad 0<\|p\| \approx 0
$$

In other words, find short vector $\mathbf{p} \in \mathcal{R}^{m}$ such that

$$
\left[\begin{array}{llll}
v & v^{2} & \ldots & v^{m}
\end{array}\right] \cdot \mathbf{p}=0 \bmod q \quad \text { and } \quad 0<\|\mathbf{p}\| \approx 0
$$

Simple vSIS Commitments (or Hash Functions)

\dagger Domain: Polynomials $p \in \mathcal{R}\left[X, X^{-1}\right]$ (of some class) with short coefficients.
\dagger Public parameters: Random unit $v \longleftarrow \$ \mathcal{R}_{q}^{\times}$.
Commitment of polynomial p:

$$
\operatorname{com}(p)=p(v) \bmod q
$$

Binding: If $p(v)=p^{\prime}(v) \bmod q$, then we break vSIS, i.e.

(Almost) additively and multiplicatively homomorphic (w.r.t. polynomial addition and multiplications):

Simple vSIS Commitments (or Hash Functions)

\dagger Domain: Polynomials $p \in \mathcal{R}\left[X, X^{-1}\right]$ (of some class) with short coefficients.
\dagger Public parameters: Random unit $v \longleftarrow \mathcal{R}_{q}^{\times}$.
\dagger Commitment of polynomial p :

$$
\operatorname{com}(p)=p(v) \bmod q
$$

Binding: If $p(v)=p^{\prime}(v) \bmod q$, then we break vSIS, i.e.

(Almost) additively and multiplicatively homomorphic (w.r.t. polynomial addition and multiplications):

Simple vSIS Commitments (or Hash Functions)

\dagger Domain: Polynomials $p \in \mathcal{R}\left[X, X^{-1}\right]$ (of some class) with short coefficients.
\dagger Public parameters: Random unit $v \longleftarrow \$ \mathcal{R}_{q}^{\times}$.
\dagger Commitment of polynomial p :

$$
\operatorname{com}(p)=p(v) \bmod q
$$

\dagger Binding: If $p(v)=p^{\prime}(v) \bmod q$, then we break vSIS, i.e.

$$
\left(p-p^{\prime}\right)(v)=0 \bmod q \quad\left\|p-p^{\prime}\right\| \leq\|p\|+\left\|p^{\prime}\right\| \approx 0
$$

(Almost) additively and multiplicatively homomorphic (w.r.t. polynomial addition and multiplications):

Simple vSIS Commitments (or Hash Functions)

\dagger Domain: Polynomials $p \in \mathcal{R}\left[X, X^{-1}\right]$ (of some class) with short coefficients.
\dagger Public parameters: Random unit $v \longleftarrow \$ \mathcal{R}_{q}^{\times}$.
\dagger Commitment of polynomial p :

$$
\operatorname{com}(p)=p(v) \bmod q
$$

\dagger Binding: If $p(v)=p^{\prime}(v) \bmod q$, then we break vSIS, i.e.

$$
\left(p-p^{\prime}\right)(v)=0 \bmod q \quad\left\|p-p^{\prime}\right\| \leq\|p\|+\left\|p^{\prime}\right\| \approx 0
$$

\dagger (Almost) additively and multiplicatively homomorphic (w.r.t. polynomial addition and multiplications):

$$
\begin{aligned}
p(v)+p^{\prime}(v) & =\left(p+p^{\prime}\right)(v) \bmod q \\
p(v) \cdot p^{\prime}(v) & =\left(p \cdot p^{\prime}\right)(v) \bmod q
\end{aligned}
$$

$$
\left\|p+p^{\prime}\right\| \leq\|p\|+\left\|p^{\prime}\right\| \approx 0
$$

$$
\left\|p \cdot p^{\prime}\right\| \lesssim\|p\| \cdot\left\|p^{\prime}\right\| \approx 0
$$

Encoding Vectors as (Laurent) Polynomials

$$
\begin{array}{rr}
\mathbf{a}:=\left(a_{1}, \ldots, a_{m}\right) \in \mathcal{R}^{m} & \bar{p}_{\mathbf{a}}(X):=p_{\mathbf{a}}\left(X^{-1}\right):=a_{1} X^{-1}+a_{2} X^{-2}+\ldots+a_{m} X^{-m} \\
\mathbf{b}:=\left(b_{1}, \ldots, b_{m}\right) \in \mathcal{R}^{m} & p_{\mathbf{b}}(X):=b_{1} X+b_{2} X^{2}+\ldots+b_{m} X^{m}
\end{array}
$$

Note that

$$
\bar{p}_{\mathrm{a}}(X) \cdot p_{\mathrm{b}}(X)=\hat{p}_{\mathbf{a} * \mathrm{~b}}(X) \Longrightarrow \hat{p}_{\mathbf{a} * \mathbf{b}} \text { has } O(m) \text { terms (lots of collisions!) }
$$

where

$\mathbf{a} * \mathbf{b}:=\left(\sum_{j-i=k} a_{i} \cdot b_{j}\right)_{k=}^{m}$
"convolution", and
constant term is given by $\langle\mathrm{a}, \mathrm{b}\rangle$

Encoding Vectors as (Laurent) Polynomials

$$
\begin{array}{rr}
\mathbf{a}:=\left(a_{1}, \ldots, a_{m}\right) \in \mathcal{R}^{m} & \bar{p}_{\mathbf{a}}(X):=p_{\mathbf{a}}\left(X^{-1}\right):=a_{1} X^{-1}+a_{2} X^{-2}+\ldots+a_{m} X^{-m} \\
\mathbf{b}:=\left(b_{1}, \ldots, b_{m}\right) \in \mathcal{R}^{m} & p_{\mathbf{b}}(X):=b_{1} X+b_{2} X^{2}+\ldots+b_{m} X^{m}
\end{array}
$$

Note that

$$
\bar{p}_{\mathbf{a}}(X) \cdot p_{\mathbf{b}}(X)=\hat{p}_{\mathbf{a} * \mathbf{b}}(X) \Longrightarrow \hat{p}_{\mathbf{a} * \mathbf{b}} \text { has } O(m) \text { terms (lots of collisions!) }
$$

where
$\dagger \mathbf{a} * \mathbf{b}:=\left(\sum_{j-i=k} a_{i} \cdot b_{j}\right)_{k=-m}^{m}$ "convolution", and
\dagger constant term is given by $\langle\mathbf{a}, \mathbf{b}\rangle$.

Key Example

Want to prove that \mathbf{x} is binary (i.e. $x_{i} \cdot\left(1-x_{i}\right)=0$ for all $\left.i\right)$.
$\dagger \mathbf{x}$ is committed in vSIS commitment as $c_{\mathbf{x}}:=p_{\mathbf{x}}(v)$.
$\dagger \mathbf{x}$ is committed also in dual vSIS commitment as $\bar{c}_{\mathbf{x}}:=\bar{p}_{\mathbf{x}}(v)$,
$\dagger \mathbf{1}$ is committed in dual vSIS commitment as $\bar{c}_{1}:=\bar{p}_{1}(v)$.

Observe that

Key Example

Want to prove that \mathbf{x} is binary (i.e. $x_{i} \cdot\left(1-x_{i}\right)=0$ for all $\left.i\right)$.
$\dagger \mathbf{x}$ is committed in vSIS commitment as $c_{\mathbf{x}}:=p_{\mathbf{x}}(v)$.
$\dagger \mathbf{x}$ is committed also in dual vSIS commitment as $\bar{c}_{\mathbf{x}}:=\bar{p}_{\mathbf{x}}(v)$,
$\dagger \mathbf{1}$ is committed in dual vSIS commitment as $\bar{c}_{1}:=\bar{p}_{1}(v)$.
Observe that

$$
\underbrace{\underbrace{\sum_{i} x_{i} \cdot v^{i}}_{c_{\mathbf{x}}} \cdot(\underbrace{\sum_{j} x_{j} \cdot v^{-j}}_{\bar{c}_{\mathbf{x}}}-\underbrace{\sum_{j} 1 \cdot v^{-j}}_{\bar{c}_{1}})}_{\hat{p}_{\mathbf{x} *(1-\mathbf{x})}(v)}=\underbrace{\sum_{i} x_{i} \cdot\left(x_{i}-1\right)}_{\langle\mathbf{x}, \mathbf{x}-\mathbf{1}\rangle} \text { + mixed terms }
$$

Key Example

Want to prove that \mathbf{x} is binary (i.e. $x_{i} \cdot\left(1-x_{i}\right)=0$ for all $\left.i\right)$.
$\dagger \mathbf{x}$ is committed in vSIS commitment as $c_{\mathbf{x}}:=p_{\mathbf{x}}(v)$.
$\dagger \mathbf{x}$ is committed also in dual vSIS commitment as $\bar{c}_{\mathbf{x}}:=\bar{p}_{\mathbf{x}}(v)$,
$\dagger \mathbf{1}$ is committed in dual vSIS commitment as $\bar{c}_{1}:=\bar{p}_{1}(v)$.
Observe that

$$
\underbrace{\underbrace{\sum_{i} x_{i} \cdot v^{i}}_{c_{\mathbf{x}}} \cdot(\underbrace{\sum_{j} x_{j} \cdot v^{-j}}_{\bar{c}_{\mathbf{x}}}-\underbrace{\sum_{j} 1 \cdot v^{-j}}_{\bar{c}_{1}})}_{\hat{p}_{\mathbf{x} *(1-\mathbf{x})}(v)}=\underbrace{\sum_{i} x_{i} \cdot\left(x_{i}-1\right)}_{\langle\mathbf{x}, \mathbf{x}-\mathbf{1}\rangle} \text { + mixed terms }
$$

Key Example

Want to prove that \mathbf{x} is binary (i.e. $x_{i} \cdot\left(1-x_{i}\right)=0$ for all $\left.i\right)$.
$\dagger \mathbf{x}$ is committed in vSIS commitment as $c_{\mathbf{x}}:=p_{\mathbf{x}}(v)$.
$\dagger \mathbf{h} \circ \mathbf{x}$ is committed also in dual vSIS commitment as $\bar{c}_{\text {hox }}:=\bar{p}_{\text {hox }}(v)$,
$\dagger \mathbf{h}$ is committed in dual vSIS commitment as $\bar{c}_{\mathrm{h}}:=\bar{p}_{\mathrm{h}}(v)$.
Observe that

$$
\underbrace{\sum_{\hat{\mathrm{h}}_{\mathbf{x} * \mathrm{ho}}(\mathbf{x}-\mathbf{1})}^{\sum_{i} x_{i} \cdot v^{i}} \cdot(\underbrace{\sum_{j} h_{j} \cdot x_{j} \cdot v^{-j}}-\underbrace{\sum_{j} h_{j} \cdot v^{-j}}_{\hat{\sigma}_{\mathbf{h}}})}_{\hat{c}_{\mathbf{x}}}=\underbrace{\sum_{i} h_{i} \cdot x_{i} \cdot\left(x_{i}-1\right)}_{\langle\mathbf{h}, \mathbf{x} 0(\mathbf{x}-\mathbf{1})\rangle} \text {. mixed terms }
$$

To prove that a vSIS commitment is committing to a (Laurent) polynomial without constant term:

$$
\left[\begin{array}{cccc}
v & v^{2} & \ldots & v^{m} \\
v^{-1} & v^{-2} & \ldots & v^{-m}
\end{array}\right] \cdot \mathbf{x}=\left[\begin{array}{c}
c_{\mathbf{x}} \\
\bar{c}_{\mathbf{x}}
\end{array}\right] \bmod q \wedge\|\mathbf{x}\| \approx 0
$$

and

$$
\left[\begin{array}{llllll}
v^{-m} & \ldots & v^{-1} & v^{1} & \ldots & v^{m}
\end{array}\right] \cdot \mathbf{w}=\underbrace{c_{\mathbf{x}} \cdot\left(\bar{c}_{\mathbf{x}}-\bar{c}_{1}\right)}_{\hat{c}} \bmod q \wedge\|\mathbf{w}\| \approx 0
$$

1. using knowledge-kRISIS [ACLMT22], or
2. using folding arguments "Bulletproofs" [BLNS20]

To prove that a vSIS commitment is committing to a (Laurent) polynomial without constant term:

$$
\left[\begin{array}{cccc}
v & v^{2} & \ldots & v^{m} \\
v^{-1} & v^{-2} & \ldots & v^{-m}
\end{array}\right] \cdot \mathbf{x}=\left[\begin{array}{c}
c_{\mathbf{x}} \\
\bar{c}_{\mathbf{x}}
\end{array}\right] \bmod q \wedge\|\mathbf{x}\| \approx 0
$$

and

$$
\left[\begin{array}{llllll}
v^{-m} & \ldots & v^{-1} & v^{1} & \ldots & v^{m}
\end{array}\right] \cdot \mathbf{w}=\underbrace{c_{\mathbf{x}} \cdot\left(\bar{c}_{\mathbf{x}}-\bar{c}_{1}\right)}_{\hat{c}} \bmod q \wedge\|\mathbf{w}\| \approx 0
$$

1. using knowledge-kRISIS [ACLMT22], or
2. using folding arguments "Bulletproofs" [BLNS20]

Knowledge-kRISIS Assumption(s) [ACLMT22] (a Member of)

\dagger Parameters:
\ddagger SIS parameters (n, m, q),
\ddagger submodule rank $t<n$, and
$\ddagger t$-tuples of Laurent monomials \mathcal{G}.

Assumption: If a PPT (quantum) algorithm \mathcal{A}, which on input

$\left(\mathbf{A}, \mathbf{T}, v,\left(\mathbf{u}_{\mathrm{g}}\right)_{\mathbf{g} \in \mathcal{G}}\right)$
where
$\mathbf{A} \in \mathcal{R}_{q}^{n \times m}$,

$v \in \mathcal{R}_{q}^{\times}$
and
$\mathbf{u}_{g} \in \mathbf{A}^{-1}(\mathbf{T} \cdot \mathbf{g}(v))$,
can find (\mathbf{u}, c) where

then it must "know" short linear combination \mathbf{x} such that

Knowledge-kRISIS Assumption(s) [ACLMT22] (a Member of)

\dagger Parameters:
\ddagger SIS parameters (n, m, q),
\ddagger submodule rank $t<n$, and
$\ddagger t$-tuples of Laurent monomials \mathcal{G}.
\dagger Assumption: If a PPT (quantum) algorithm \mathcal{A}, which on input

$$
\left(\mathbf{A}, \mathbf{T}, v,\left(\mathbf{u}_{\mathbf{g}}\right)_{\mathbf{g} \in \mathcal{G}}\right)
$$

where $\quad \mathbf{A} \in \mathcal{R}_{q}^{n \times m}, \quad \mathbf{T} \in\left(\mathcal{R}_{q}^{\times}\right)^{n \times t}, \quad v \in \mathcal{R}_{q}^{\times}, \quad$ and $\quad \mathbf{u}_{g} \in \mathbf{A}^{-1}(\mathbf{T} \cdot \mathbf{g}(v))$,
can find (\mathbf{u}, \mathbf{c}) where

$$
\mathbf{u} \in \mathbf{A}^{-1}(\mathbf{T} \cdot \mathbf{c})
$$

then it must "know" short linear combination \mathbf{x} such that

$$
\mathbf{c}=\sum_{g \in \mathcal{G}} \mathbf{g}(v) \cdot x_{g} \bmod q
$$

Using Knowledge-kRISIS

Want to prove \hat{c} and $\mathbf{w} \in \mathcal{R}^{2 m+1}$ satisfies:

$$
w_{0}=0 \quad \hat{c}=\hat{p}_{\mathbf{w}}(v) \quad\|\mathbf{w}\| \approx 0
$$

Public parameters: kRISIS instance $\left(\mathbf{A}, \mathbf{t}, v,\left(\mathbf{u}_{i}\right)_{i \in \pm[m]}\right)$ where

Prover: Output $\mathbf{u}=\sum_{i \in \pm[m]} \mathbf{u}_{i} \cdot w_{i}$.
Verifier: Check that $\mathbf{A} \cdot \mathbf{u}=\mathbf{t} \cdot \hat{\mathbf{c}} \bmod \mathrm{c}$ and $\|\mathbf{u}\| \approx 0$.
Knowledge-soundness follows immediately from the knowledge-kRISIS assumption.
Prover runs in $\tilde{O}_{\lambda}(m)$ time.
Verifier runs in $\tilde{O}_{\lambda}(1)$ time.

Using Knowledge-kRISIS

Want to prove \hat{c} and $\mathbf{w} \in \mathcal{R}^{2 m+1}$ satisfies:

$$
w_{0}=0 \quad \hat{c}=\hat{p}_{\mathbf{w}}(v) \quad\|\mathbf{w}\| \approx 0
$$

\dagger Public parameters: kRISIS instance $\left(\mathbf{A}, \mathbf{t}, v,\left(\mathbf{u}_{i}\right)_{i \in \pm[m]}\right)$ where

$$
\mathbf{u}_{i} \in \mathbf{A}^{-1}\left(\mathbf{t} \cdot v^{i}\right) .
$$

\dagger Prover: Output $\mathbf{u}=\sum_{i \in \pm[m]} \mathbf{u}_{i} \cdot w_{i}$.
\dagger Verifier: Check that $\mathbf{A} \cdot \mathbf{u}=\mathbf{t} \cdot \hat{c} \bmod q$ and $\|\mathbf{u}\| \approx 0$.
Knowledge-soundness follows immediately from the knowledge-kRISIS assumption.
Prover runs in $\tilde{O}_{\lambda}(m)$ time.
Verifier runs in $\tilde{O}_{\lambda}(1)$ time

Using Knowledge-kRISIS

Want to prove \hat{c} and $\mathbf{w} \in \mathcal{R}^{2 m+1}$ satisfies:

$$
w_{0}=0 \quad \hat{c}=\hat{p}_{\mathbf{w}}(v) \quad\|\mathbf{w}\| \approx 0
$$

\dagger Public parameters: kRISIS instance $\left(\mathbf{A}, \mathbf{t}, v,\left(\mathbf{u}_{i}\right)_{i \in \pm[m]}\right)$ where

$$
\mathbf{u}_{i} \in \mathbf{A}^{-1}\left(\mathbf{t} \cdot v^{i}\right) .
$$

\dagger Prover: Output $\mathbf{u}=\sum_{i \in \pm[m]} \mathbf{u}_{i} \cdot w_{i}$.
\dagger Verifier: Check that $\mathbf{A} \cdot \mathbf{u}=\mathbf{t} \cdot \hat{c} \bmod q$ and $\|\mathbf{u}\| \approx 0$.
\dagger Knowledge-soundness follows immediately from the knowledge-kRISIS assumption.
\dagger Prover runs in $\tilde{O}_{\lambda}(m)$ time.
\dagger Verifier runs in $\tilde{O}_{\lambda}(1)$ time.

Lattice-based Bulletproofs

Goal: Prove SIS relation with $O(\log m)$ communication:

$$
\mathbf{x} \in \mathcal{R}^{m}: \mathbf{M} \cdot \mathbf{x}=\mathbf{y} \bmod q \wedge\|\mathbf{x}\| \approx 0
$$

where $m=2^{\ell}, \mathbf{M}=\left[\mathbf{M}_{1} \mid \mathbf{M}_{2}\right], \mathbf{x}=\left[\begin{array}{l}\mathbf{x}_{1} \\ \mathbf{x}_{2}\end{array}\right]$.

Lattice-based Bulletproofs

Goal: Prove SIS relation with $O(\log m)$ communication:

$$
\mathbf{x} \in \mathcal{R}^{m}: \mathbf{M} \cdot \mathbf{x}=\mathbf{y} \bmod q \wedge\|\mathbf{x}\| \approx 0
$$

where $m=2^{\ell}, \mathbf{M}=\left[\mathbf{M}_{1} \mid \mathbf{M}_{2}\right], \mathbf{x}=\left[\begin{array}{l}\mathbf{x}_{1} \\ \mathbf{x}_{2}\end{array}\right]$.

$$
\begin{aligned}
& \text { Prover } \mathcal{P}((\mathbf{M}, \mathbf{y}), \mathbf{x}) \\
& \text { Verifier } \mathcal{V}(\mathbf{M}, \mathbf{y}) \\
& \mathbf{y}_{12}:=\mathbf{M}_{1} \cdot \mathbf{x}_{2} \\
& c \leftarrow \mathcal{C} \\
& \mathbf{y}_{21}:=\mathbf{M}_{\mathbf{2}} \cdot \mathbf{x}_{1} \\
& \xrightarrow{\mathbf{y}_{12}, \mathbf{y}_{21}} \\
& \hat{\mathbf{M}}_{c}:=\mathbf{M}_{1}+c \cdot \mathbf{M}_{2} \\
& \hat{\mathbf{x}}_{c}:=c \cdot \mathbf{x}_{1}+\mathbf{x}_{2} \\
& \text { c } \\
& \hat{\mathbf{y}}_{c}:=\mathbf{y}_{12}+\mathbf{y} \cdot c+\mathbf{y}_{21} \cdot c^{2} \bmod q \\
& \hat{\mathbf{x}}_{c} \\
& \text { return }\left\{\begin{array}{l}
\hat{\mathbf{M}}_{c} \cdot \hat{\mathbf{x}}_{c}=\hat{\mathbf{y}}_{c} \\
\left\|\hat{\mathbf{x}}_{c}\right\| \approx 0
\end{array}\right. \\
& \text { Just another SIS relation but with only } m / 2 \text { columns } \Longrightarrow \text { Recursion }
\end{aligned}
$$

Lattice-based Bulletproofs

After ℓ-fold recursive composition:

$$
\text { Prover } \mathcal{P}((\mathbf{M}, \mathbf{y}), \mathbf{x})
$$

$$
\text { Verifier } \mathcal{V}(\mathbf{M}, \mathbf{y})
$$

$\xrightarrow{\mathbf{y}_{12}^{(1)}, \mathbf{y}_{21}^{(1)}}$

$\xrightarrow{\mathbf{y}_{12}^{(\ell)}, \mathbf{y}_{21}^{(\ell)}}$

$$
\left(\hat{\mathbf{M}}_{c_{1}, \ldots, c_{\ell}}, \hat{\mathbf{y}}_{c_{1}, \ldots, c_{\ell}}\right):=\ldots
$$

$$
\text { return }\left\{\begin{array}{l}
\hat{\mathbf{M}}_{c_{1}, \ldots, c_{\ell}} \cdot \hat{\mathbf{x}}_{c_{1}, \ldots, c_{\ell}}=\hat{\mathbf{y}}_{c_{1}, \ldots, c_{\mu}} \\
\left\|\hat{\mathbf{x}}_{c_{1}, \ldots, c_{\ell}}\right\| \approx 0
\end{array}\right.
$$

Lattice-based Bulletproofs

After ℓ-fold recursive composition:

$$
\begin{aligned}
& \underline{\text { Prover } \mathcal{P}((\mathbf{M}, \mathbf{y}), \mathbf{x}) \quad \underline{\text { Verifier } \mathcal{V}(\mathbf{M}, \mathbf{y})}} \\
& \left(\hat{\mathbf{M}}_{c_{1}}, \hat{\mathbf{y}}_{c_{1}}\right):=\ldots \\
& \left(\hat{\mathbf{M}}_{c_{1}, \ldots, c_{\ell}}, \hat{\mathbf{y}}_{c_{1}}, \ldots, c_{\ell}\right):=\ldots \\
& \text { return }\left\{\begin{array}{l}
\hat{\mathbf{M}}_{c_{1}, \ldots, c_{\ell}} \cdot \hat{\mathbf{x}}_{c_{1}, \ldots, c_{\ell}}=\hat{\mathbf{y}}_{c_{1}, \ldots, c_{\mu}} \\
\left\|\hat{\mathbf{x}}_{c_{1}, \ldots, c_{\ell}}\right\| \approx 0
\end{array}\right.
\end{aligned}
$$

Main verifier bottleneck: Computing $\hat{\mathbf{M}}_{\mathcal{C}_{1}, \ldots, c_{\ell}}$. In general, this requires $\Omega_{\lambda}(m)$ time.

Structured Folding for vSIS

Core Idea

For \mathbf{M} corresponding to vSIS instance, computing $\hat{\mathbf{M}}_{c_{1}, \ldots, c_{\ell}}$ takes $\tilde{O}_{\lambda}(\log m)=\tilde{O}_{\lambda}(1)$ time .

Example for $\ell=3$

Structured Folding for vSIS

Core Idea

For \mathbf{M} corresponding to vSIS instance, computing $\hat{\mathbf{M}}_{c_{1}, \ldots, c_{\ell}}$ takes $\tilde{O}_{\lambda}(\log m)=\tilde{O}_{\lambda}(1)$ time.

Example for $\ell=3$

$$
\left.\begin{array}{rl}
\mathbf{M} & =\left(\begin{array}{llllll}
v & v^{2} & v^{3} & v^{4} & v^{5} & v^{6}
\end{array} v^{7}\right. \\
v^{8}
\end{array}\right) .
$$

Conclusion

\dagger Vanishing Short Integer Solution (vSIS) assumption and commitments
\dagger Succinct arguments for vSIS commitment openings
\dagger Used to construct succinct arguments for NP
\ddagger Lattice-based
\ddagger Quasi-linear-time prover
\ddagger Public and Polylogarithmic-time verifier (after preprocessing)
\ddagger Transparent setup (RO instantiation)

Valerio Cini

AIT Austrian Institute of Technology

