
Ben Fisch, Zeyu Liu, and Psi Vesely

 Yale University

Orbweaver
Succinct Linear Functional
Commitments from Lattices

Lattice Orbweaver spider by Jackie Parker

Results

• Lattice arguments with complexity verifier*O(log n log log n)

Results

• Lattice arguments with complexity verifier* (
with Karatsuba)

O(log n log log n) O(log1.58 n)

Results

• Lattice arguments with complexity verifier* (
with Karatsuba)

• Constructions for both cyclotomic rings and integers of:

• Linear map functional commitments/ inner product argument

• Polynomial commitments

• SNARK for R1CS

O(log n log log n) O(log1.58 n)

Rq ℤq

Results

• Lattice arguments with complexity verifier* (
with Karatsuba)

• Constructions for both cyclotomic rings and integers of:

• Linear map functional commitments/ inner product argument

• Polynomial commitments

• SNARK for R1CS

• All extractable, preprocessing, mostly structure-preserving

O(log n log log n) O(log1.58 n)

Rq ℤq

Results

• Lattice arguments with complexity verifier* (
with Karatsuba)

• Constructions for both cyclotomic rings and integers of:

• Linear map functional commitments/ inner product argument

• Polynomial commitments

• SNARK for R1CS

• All extractable, preprocessing, mostly structure-preserving

O(log n log log n) O(log1.58 n)

Rq ℤq

Abstract linear map equation

(
n

∑
i=1

fi ⋅ Y−i) ⋅ (
n

∑
i=1

xi ⋅ Yi) ≡ ⟨f, x⟩ +
n−1

∑
i = − n + 1,

i ≠ 0

bi ⋅ Yi mod q

Form used in [Gro10,LRY16,AC20]

Evaluation verification equation

Form used in [Gro10,LRY16,AC20], translated to lattice setting using techniques
from [ACLMT22]

 shortf, x

(
n

∑
i=1

fi ⋅ Y−i) ⋅ (
n

∑
i=1

xi ⋅ Yi) ≡ ⟨f, x⟩ +
n−1

∑
i = − n + 1,

i ≠ 0

bi ⋅ Yi mod q

Evaluation verification equation

Form used in [Gro10,LRY16,AC20], translated to lattice setting using techniques
from [ACLMT22]

 shortf, x

cx⋅cf

(
n

∑
i=1

fi ⋅ Y−i) ⋅ (
n

∑
i=1

xi ⋅ Yi) ≡ ⟨f, x⟩ +
n−1

∑
i = − n + 1,

i ≠ 0

bi ⋅ Yi mod q

Ring Vandermonde SIS (R-V-SIS) commitment

 , where is publicc :=
n

∑
i=1

xi ⋅ vi mod q v $ Rq

Ring Vandermonde SIS (R-V-SIS) commitment

 , where is public

• Ajtai’s R-SIS commitment, with a Vandermonde key

c :=
n

∑
i=1

xi ⋅ vi mod q v $ Rq

Ring Vandermonde SIS (R-V-SIS) commitment

 , where is public

• Ajtai’s R-SIS commitment, with a Vandermonde key

• Similar to assumption used in PASS Sign. If we pick v instead from the
primitive roots of unity binding reduces to Vandermonde R-SIS
[HS15,LZA18,BSS22]

c :=
n

∑
i=1

xi ⋅ vi mod q v $ Rq

Evaluation verification equation

Form used in [Gro10,LRY16,AC20], translated to lattice setting using techniques
from [ACLMT22]

 shortf, x

cx⋅cf

(preprocessed)

(
n

∑
i=1

fi ⋅ Y−i) ⋅ (
n

∑
i=1

xi ⋅ Yi) ≡ ⟨f, x⟩ +
n−1

∑
i = − n + 1,

i ≠ 0

bi ⋅ Yi mod q

Evaluation verification equation

Form used in [Gro10,LRY16,AC20], translated to lattice setting using techniques
from [ACLMT22]

 shortf, x

cx⋅cf

(preprocessed)

≡ y

(
n

∑
i=1

fi ⋅ Y−i) ⋅ (
n

∑
i=1

xi ⋅ Yi) ≡ ⟨f, x⟩ +
n−1

∑
i = − n + 1,

i ≠ 0

bi ⋅ Yi mod q

Evaluation verification equation

Form used in [Gro10,LRY16,AC20], translated to lattice setting using techniques
from [ACLMT22]

 shortf, x

cx⋅cf

(preprocessed)

≡ y + ⟨a, π⟩ mod q

 shortπ

(
n

∑
i=1

fi ⋅ Y−i) ⋅ (
n

∑
i=1

xi ⋅ Yi) ≡ ⟨f, x⟩ +
n−1

∑
i = − n + 1,

i ≠ 0

bi ⋅ Yi mod q

Prover key
Generate short preimages for such that

Using a trapdoor public SIS matrix [MP12]

ui i ∈ {−n + 1,…, n − 1}∖{0}

⟨a, ui⟩ ≡ vi mod q

a

Computing the proof

• Given except for

• Where is the sum of cross terms corresponding to the coefficient of
compute

⟨a, ui⟩ ≡ vi mod q i = 0

bi vi

π :=
n−1

∑
i = − n + 1,

i ≠ 0

bi ⋅ ui mod q

Computing the proof
• Given except for

• Where is the sum of cross terms corresponding to the coefficient of compute

• Then

⟨a, ui⟩ ≡ vi mod q i = 0

bi vi

π :=
n−1

∑
i = − n + 1,

i ≠ 0

bi ⋅ ui mod q

⟨a, π⟩ ≡
n−1

∑
i = − n + 1,

i ≠ 0

bi ⋅ vi mod q

Computing the proof
• Given except for

• Where is the sum of cross terms corresponding to the coefficient of compute

• Then

• short short, short short

⟨a, ui⟩ ≡ vi mod q i = 0

bi vi

π :=
n−1

∑
i = − n + 1,

i ≠ 0

bi ⋅ ui mod q

⟨a, π⟩ ≡
n−1

∑
i = − n + 1,

i ≠ 0

bi ⋅ vi mod q

f, x ⟹ bi ui ⟹ π

Evaluation binding

(
n

∑
i=1

fi ⋅ v−i) ⋅ (
n

∑
i=1

xi ⋅ vi) ≡ ⟨f, x⟩ +
n−1

∑
i = − n + 1,

i ≠ 0

bi ⋅ vi mod q

cx⋅cf ≡ y + ⟨a, π⟩ mod q

Evaluation binding

(
n

∑
i=1

fi ⋅ v−i) ⋅ (
n

∑
i=1

xi ⋅ vi) ≡ ⟨f, x⟩ +
n−1

∑
i = − n + 1,

i ≠ 0

bi ⋅ vi mod q

cx⋅cf ≡ y + ⟨a, π⟩ mod q

⟨a, π − π′￼⟩ ≡ y′￼− y mod q

Evaluation binding

• k-R-ISIS family of assumptions: can only generate short preimages for
targets short linear span of the or for random targets [ACLMT22]vi

⟨a, π − π′￼⟩ ≡ y′￼− y mod q

Evaluation binding

• k-R-ISIS family of assumptions: can only generate short preimages for
targets short linear span of the or for random targets [ACLMT22]

• is short, while for all will be long whp, as will the
random targets

vi

y′￼− y v $ Rq vi mod q

⟨a, π − π′￼⟩ ≡ y′￼− y mod q

Multiple outputs

Can prove for with a single evaluation
proof:

⟨fi, x⟩ = yi i ∈ [t]

⟨a, π⟩ ≡ c ⋅
t

∑
i=1

hi ⋅ 𝖼𝗄fi −
t

∑
i=1

hi ⋅ yi mod q

Multiple outputs
Can prove for with a single evaluation proof:

Key observation: straightline extractor uses separate knowledge proof to
obtain . Don’t have to extract the hypothetical

⟨fi, x⟩ = yi i ∈ [t]

⟨a, π⟩ ≡ c ⋅
t

∑
i=1

hi ⋅ 𝖼𝗄fi −
t

∑
i=1

hi ⋅ yi mod q

x πi

π =
t

∑
i=1

hi ⋅ πi

Multiple outputs

Using extracted we get
x

⟨a, π⟩ ≡
t

∑
i=1

hi ⋅ (⟨fi, x⟩ − yi) −
t

∑
i=1

hi ⋅
n−1

∑
j = − n + 1,

j ≠ 0

bi,j ⋅ Yi mod q

Multiple outputs

• For want only with
negligible probability if is not the zero polynomial

⟨a, π⟩ ≡
t

∑
i=1

hi ⋅ (⟨fi, x⟩ − yi) −
t

∑
i=1

hi ⋅
n−1

∑
j = − n + 1,

j ≠ 0

bi,j ⋅ Yi mod q

p(h1, …, ht)

h1, …, ht ← ℋ p(h1, …, ht) = 0
p

Multiple outputs

• For want only with negligible
probability if is not the zero polynomial

• Can pick exponential size “exceptional set” over for large
[LS18] and invoke Generalized Alon-Füredi Theorem [BCPS18]

⟨a, π⟩ ≡
t

∑
i=1

hi ⋅ (⟨fi, x⟩ − yi) −
t

∑
i=1

hi ⋅
n−1

∑
j = − n + 1,

j ≠ 0

bi,j ⋅ Yi mod q

p(h1, …, ht)

h1, …, ht ← ℋ p(h1, …, ht) = 0
p

ℋ Rq q

Multiple outputs

• For want only with negligible probability if
is not the zero polynomial

• Can pick exponential size “exceptional set” over for large [LS18] and
invoke Generalized Alon-Füredi Theorem [BCPS18]

• Better to perform ternary decomposition on and batch verification

⟨a, π⟩ ≡
t

∑
i=1

hi ⋅ (⟨fi, x⟩ − yi) −
t

∑
i=1

hi ⋅
n−1

∑
j = − n + 1,

j ≠ 0

bi,j ⋅ Yi mod q

p(h1, …, ht)

h1, …, ht ← ℋ p(h1, …, ht) = 0 p

ℋ Rq q

f, x

Proof and SRS sizes for ℤ232

log2(x) 18 22 26 30

|c| (B) 293 347 422 505

total proof size (KiB) 845 1,081 1,315 1,571

verifier key (MiB) 12 17 23 30

prover key (GiB) 0.3 6 111 2,070

• These are maximum proof sizes. When or are sparse or have entries much
smaller than the norm bound this is reflected by the proof size.

f x

Proof and SRS sizes for ℤ232

log2(x) 18 22 26 30

|c| (B) 293 347 422 505

total proof size (KiB) 845 1,081 1,315 1,571

verifier key (MiB) 12 17 23 30

prover key (GiB) 0.3 6 111 2,070

• These are maximum proof sizes. When or are sparse or have entries much
smaller than the norm bound this is reflected by the proof size.

• Binding only version reduces proof size by ~65%, prover key size by ~75%

f x

Proof and SRS sizes for ℤ232

log2(x) 18 22 26 30

|c| (B) 293 347 422 505

total proof size (KiB) 845 1,081 1,315 1,571

verifier key (MiB) 12 17 23 30

prover key (GiB) 0.3 6 111 2,070

• These are maximum proof sizes. When or are sparse or have entries much
smaller than the norm bound this is reflected by the proof size.

• Binding only version reduces proof size by ~65%, prover key size by ~75%

• Smallest compressing proofs start around 165 KiB (binding) and 668 KiB
(extractable) — recursion threshold

f x

Lattice-based Succinct Arguments from Vanishing Polynomials

Valerio Cini1, Russell W. F. Lai2, Giulio Malavolta3

1AIT Austrian Institute of Technology, Austria
2Aalto University, Finland
3Max Planck Institute for Security and Privacy, Germany

CRYPTO, Santa Barbara, CA, U.S., 2023

Introduction

Lattice-based Succinct Arguments

Approach Publicly verifiable Sublinear-verifier
(preprocessing)

Linear-prover

PCP/IOP + linear-only enc.
[BCIOP13; BISW17; BISW18;
GMNO18]

✘ ✓ ✓

Linearisation + folding
[BLNS20; AL21; ACK21;
BS22]

✓ ✘ Õλ(|stmt|) ✓

Direct [ACLMT22]
✓ ✓ ✘ Õλ(|stmt|2)

This work (and [BCS23]) ✓ ✓ ✓

Lattice-based Succinct Arguments from Vanishing Polynomials Valerio Cini 1 / 18

Introduction

Lattice-based Succinct Arguments

Approach Publicly verifiable Sublinear-verifier
(preprocessing)

Linear-prover

PCP/IOP + linear-only enc.
[BCIOP13; BISW17; BISW18;
GMNO18]

✘ ✓ ✓

Linearisation + folding
[BLNS20; AL21; ACK21;
BS22]

✓ ✘ Õλ(|stmt|) ✓

Direct [ACLMT22]
✓ ✓ ✘ Õλ(|stmt|2)

This work (and [BCS23]) ✓ ✓ ✓

Lattice-based Succinct Arguments from Vanishing Polynomials Valerio Cini 1 / 18

Introduction

Our Results

† New assumption: Vanishing Short Integer Solution (vSIS)
‡ generalization of SIS

† New tool: vSIS commitment for committing to polynomials with short coefficients
‡ Very small (polylog(|stmt|)) commitment key
‡ (Almost) additively and multiplicatively homomorphic
‡ Admit Õ(|stmt|)-prover polylog(|stmt|)-verifier arguments for commitment openings

† New lattice-based succinct arguments for NP⇐ Succinct arguments for vSIS commitment openings

Lattice-based Succinct Arguments from Vanishing Polynomials Valerio Cini 2 / 18

Introduction

Our Results

† New assumption: Vanishing Short Integer Solution (vSIS)
‡ generalization of SIS

† New tool: vSIS commitment for committing to polynomials with short coefficients
‡ Very small (polylog(|stmt|)) commitment key
‡ (Almost) additively and multiplicatively homomorphic
‡ Admit Õ(|stmt|)-prover polylog(|stmt|)-verifier arguments for commitment openings

† New lattice-based succinct arguments for NP⇐ Succinct arguments for vSIS commitment openings

Lattice-based Succinct Arguments from Vanishing Polynomials Valerio Cini 2 / 18

Introduction

Our Results

† New assumption: Vanishing Short Integer Solution (vSIS)
‡ generalization of SIS

† New tool: vSIS commitment for committing to polynomials with short coefficients
‡ Very small (polylog(|stmt|)) commitment key
‡ (Almost) additively and multiplicatively homomorphic
‡ Admit Õ(|stmt|)-prover polylog(|stmt|)-verifier arguments for commitment openings

† New lattice-based succinct arguments for NP⇐ Succinct arguments for vSIS commitment openings

Lattice-based Succinct Arguments from Vanishing Polynomials Valerio Cini 2 / 18

Introduction

Our Results

Instantiations |π| Time(P) Time(V) Setup Assumptions

Folding Õλ(1) Õλ(|stmt|) Õλ(1) Transparent vSIS (+ RO for NI)

Knowledge assumption Õλ(1) Õλ(|stmt|) Õλ(1) Trusted vSIS + Knowledge-kRISIS

Lattice-based Succinct Arguments from Vanishing Polynomials Valerio Cini 3 / 18

Introduction

Roadmap

1. vSIS assumptions and commitments

2. Quadratic Relations using vSIS commitments

3. Succinct arguments for vSIS commitment openings

Lattice-based Succinct Arguments from Vanishing Polynomials Valerio Cini 4 / 18

1. Preliminaries

Short Integer Solution (SIS) Assumption

† Parameters: # rows n, # columns m, modulus q.
† Instance: A matrix A ∈ Rn×m

q .
† Problem: Find a short vector u ∈ Rm such that

A · u = 0 mod q and 0 < ∥u∥ ≈ 0.

† Shorthand: If u is a short non-zero vector satisfying A · u = v mod q, write

u ∈ A−1(v).

Lattice-based Succinct Arguments from Vanishing Polynomials Valerio Cini 5 / 18

2. Vanishing SIS Assumptions and Commitments

Vanishing SIS as SIS Generalisations

SIS

Find short solution to linear equations

A · u = 0 mod q and 0 < ∥u∥ ≈ 0.

SIS (Alternative Interpretation)

Find linear function with short coefficients which vanishes at all given points

Vanishing SIS (vSIS)

Find polynomial (from some class) with short coefficients which vanishes at all given points

Lattice-based Succinct Arguments from Vanishing Polynomials Valerio Cini 6 / 18

2. Vanishing SIS Assumptions and Commitments

Vanishing SIS as SIS Generalisations

SIS

Find short solution to linear equations

A · u = 0 mod q and 0 < ∥u∥ ≈ 0.

SIS (Alternative Interpretation)

Find linear function with short coefficients which vanishes at all given points

Vanishing SIS (vSIS)

Find polynomial (from some class) with short coefficients which vanishes at all given points

Lattice-based Succinct Arguments from Vanishing Polynomials Valerio Cini 6 / 18

2. Vanishing SIS Assumptions and Commitments

Vanishing SIS as SIS Generalisations

SIS

Find short solution to linear equations

A · u = 0 mod q and 0 < ∥u∥ ≈ 0.

SIS (Alternative Interpretation)

Find linear function with short coefficients which vanishes at all given points

Vanishing SIS (vSIS)

Find polynomial (from some class) with short coefficients which vanishes at all given points

Lattice-based Succinct Arguments from Vanishing Polynomials Valerio Cini 6 / 18

2. Vanishing SIS Assumptions and Commitments

Vanishing Short Integer Solution (vSIS) Assumption

Example: Univariate

† Problem: Find short degree m polynomial without constant term

p(X) = p1X + . . .+ pmX m ∈ R[X]

which vanishes at v ∈ R×
q modulo q, i.e.

p(v) = 0 mod q and 0 < ∥p∥ ≈ 0.

In other words, find short vector p ∈ Rm such that[
v v2 . . . vm

]
· p = 0 mod q and 0 < ∥p∥ ≈ 0.

Lattice-based Succinct Arguments from Vanishing Polynomials Valerio Cini 7 / 18

2. Vanishing SIS Assumptions and Commitments

Simple vSIS Commitments (or Hash Functions)

† Domain: Polynomials p ∈ R[X , X−1] (of some class) with short coefficients.
† Public parameters: Random unit v ←$R×

q .
† Commitment of polynomial p:

com(p) = p(v) mod q.

† Binding: If p(v) = p′(v) mod q, then we break vSIS, i.e.

(p − p′)(v) = 0 mod q
∥∥p − p′

∥∥ ≤ ∥p∥+ ∥∥p′
∥∥ ≈ 0.

† (Almost) additively and multiplicatively homomorphic (w.r.t. polynomial addition and multiplications):

p(v) + p′(v) = (p + p′)(v) mod q
∥∥p + p′

∥∥ ≤ ∥p∥+ ∥∥p′
∥∥ ≈ 0

p(v) · p′(v) = (p · p′)(v) mod q
∥∥p · p′

∥∥ ⪅ ∥p∥ ·
∥∥p′

∥∥ ≈ 0.

Lattice-based Succinct Arguments from Vanishing Polynomials Valerio Cini 8 / 18

2. Vanishing SIS Assumptions and Commitments

Simple vSIS Commitments (or Hash Functions)

† Domain: Polynomials p ∈ R[X , X−1] (of some class) with short coefficients.
† Public parameters: Random unit v ←$R×

q .
† Commitment of polynomial p:

com(p) = p(v) mod q.

† Binding: If p(v) = p′(v) mod q, then we break vSIS, i.e.

(p − p′)(v) = 0 mod q
∥∥p − p′

∥∥ ≤ ∥p∥+ ∥∥p′
∥∥ ≈ 0.

† (Almost) additively and multiplicatively homomorphic (w.r.t. polynomial addition and multiplications):

p(v) + p′(v) = (p + p′)(v) mod q
∥∥p + p′

∥∥ ≤ ∥p∥+ ∥∥p′
∥∥ ≈ 0

p(v) · p′(v) = (p · p′)(v) mod q
∥∥p · p′

∥∥ ⪅ ∥p∥ ·
∥∥p′

∥∥ ≈ 0.

Lattice-based Succinct Arguments from Vanishing Polynomials Valerio Cini 8 / 18

2. Vanishing SIS Assumptions and Commitments

Simple vSIS Commitments (or Hash Functions)

† Domain: Polynomials p ∈ R[X , X−1] (of some class) with short coefficients.
† Public parameters: Random unit v ←$R×

q .
† Commitment of polynomial p:

com(p) = p(v) mod q.

† Binding: If p(v) = p′(v) mod q, then we break vSIS, i.e.

(p − p′)(v) = 0 mod q
∥∥p − p′

∥∥ ≤ ∥p∥+ ∥∥p′
∥∥ ≈ 0.

† (Almost) additively and multiplicatively homomorphic (w.r.t. polynomial addition and multiplications):

p(v) + p′(v) = (p + p′)(v) mod q
∥∥p + p′

∥∥ ≤ ∥p∥+ ∥∥p′
∥∥ ≈ 0

p(v) · p′(v) = (p · p′)(v) mod q
∥∥p · p′

∥∥ ⪅ ∥p∥ ·
∥∥p′

∥∥ ≈ 0.

Lattice-based Succinct Arguments from Vanishing Polynomials Valerio Cini 8 / 18

2. Vanishing SIS Assumptions and Commitments

Simple vSIS Commitments (or Hash Functions)

† Domain: Polynomials p ∈ R[X , X−1] (of some class) with short coefficients.
† Public parameters: Random unit v ←$R×

q .
† Commitment of polynomial p:

com(p) = p(v) mod q.

† Binding: If p(v) = p′(v) mod q, then we break vSIS, i.e.

(p − p′)(v) = 0 mod q
∥∥p − p′

∥∥ ≤ ∥p∥+ ∥∥p′
∥∥ ≈ 0.

† (Almost) additively and multiplicatively homomorphic (w.r.t. polynomial addition and multiplications):

p(v) + p′(v) = (p + p′)(v) mod q
∥∥p + p′

∥∥ ≤ ∥p∥+ ∥∥p′
∥∥ ≈ 0

p(v) · p′(v) = (p · p′)(v) mod q
∥∥p · p′

∥∥ ⪅ ∥p∥ ·
∥∥p′

∥∥ ≈ 0.

Lattice-based Succinct Arguments from Vanishing Polynomials Valerio Cini 8 / 18

2. Vanishing SIS Assumptions and Commitments

Encoding Vectors as (Laurent) Polynomials

a := (a1, . . . , am) ∈ Rm p̄a(X) := pa(X
−1) := a1X−1 + a2X−2 + . . .+ amX−m

b := (b1, . . . , bm) ∈ Rm pb(X) := b1X + b2X 2 + . . .+ bmX m

Note that
p̄a(X) · pb(X) = p̂a∗b(X) =⇒ p̂a∗b has O(m) terms (lots of collisions!)

where

† a ∗ b :=
(∑

j−i=k ai · bj

)m

k=−m
“convolution”, and

† constant term is given by ⟨a, b⟩.

Lattice-based Succinct Arguments from Vanishing Polynomials Valerio Cini 9 / 18

2. Vanishing SIS Assumptions and Commitments

Encoding Vectors as (Laurent) Polynomials

a := (a1, . . . , am) ∈ Rm p̄a(X) := pa(X
−1) := a1X−1 + a2X−2 + . . .+ amX−m

b := (b1, . . . , bm) ∈ Rm pb(X) := b1X + b2X 2 + . . .+ bmX m

Note that
p̄a(X) · pb(X) = p̂a∗b(X) =⇒ p̂a∗b has O(m) terms (lots of collisions!)

where

† a ∗ b :=
(∑

j−i=k ai · bj

)m

k=−m
“convolution”, and

† constant term is given by ⟨a, b⟩.

Lattice-based Succinct Arguments from Vanishing Polynomials Valerio Cini 9 / 18

2. Vanishing SIS Assumptions and Commitments

Key Example

Want to prove that x is binary (i.e. xi · (1− xi) = 0 for all i).

† x is committed in vSIS commitment as cx := px(v).
† x is committed also in dual vSIS commitment as c̄x := p̄x(v),
† 1 is committed in dual vSIS commitment as c̄1 := p̄1(v).

Observe that

∑
i

xi · v i

︸ ︷︷ ︸
cx

·


∑

j

xj · v−j

︸ ︷︷ ︸
c̄x

−
∑

j

1 · v−j

︸ ︷︷ ︸
c̄1


︸ ︷︷ ︸

p̂x∗(1−x)(v)

=
∑

i

xi · (xi − 1)︸ ︷︷ ︸
⟨x,x−1⟩

+ mixed terms

Lattice-based Succinct Arguments from Vanishing Polynomials Valerio Cini 10 / 18

2. Vanishing SIS Assumptions and Commitments

Key Example

Want to prove that x is binary (i.e. xi · (1− xi) = 0 for all i).

† x is committed in vSIS commitment as cx := px(v).
† x is committed also in dual vSIS commitment as c̄x := p̄x(v),
† 1 is committed in dual vSIS commitment as c̄1 := p̄1(v).

Observe that

∑
i

xi · v i

︸ ︷︷ ︸
cx

·


∑

j

xj · v−j

︸ ︷︷ ︸
c̄x

−
∑

j

1 · v−j

︸ ︷︷ ︸
c̄1


︸ ︷︷ ︸

p̂x∗(1−x)(v)

=
∑

i

xi · (xi − 1)︸ ︷︷ ︸
⟨x,x−1⟩

+ mixed terms

Lattice-based Succinct Arguments from Vanishing Polynomials Valerio Cini 10 / 18

2. Vanishing SIS Assumptions and Commitments

Key Example

Want to prove that x is binary (i.e. xi · (1− xi) = 0 for all i).

† x is committed in vSIS commitment as cx := px(v).
† x is committed also in dual vSIS commitment as c̄x := p̄x(v),
† 1 is committed in dual vSIS commitment as c̄1 := p̄1(v).

Observe that

∑
i

xi · v i

︸ ︷︷ ︸
cx

·


∑

j

xj · v−j

︸ ︷︷ ︸
c̄x

−
∑

j

1 · v−j

︸ ︷︷ ︸
c̄1


︸ ︷︷ ︸

p̂x∗(1−x)(v)

=
∑

i

xi · (xi − 1)︸ ︷︷ ︸
⟨x,x−1⟩

+ mixed terms

Lattice-based Succinct Arguments from Vanishing Polynomials Valerio Cini 10 / 18

2. Vanishing SIS Assumptions and Commitments

Key Example

Want to prove that x is binary (i.e. xi · (1− xi) = 0 for all i).

† x is committed in vSIS commitment as cx := px(v).
† h ◦ x is committed also in dual vSIS commitment as c̄h◦x := p̄h◦x(v),
† h is committed in dual vSIS commitment as c̄h := p̄h(v).

Observe that

∑
i

xi · v i

︸ ︷︷ ︸
cx

·


∑

j

hj · xj · v−j

︸ ︷︷ ︸
c̄h◦x

−
∑

j

hj · v−j

︸ ︷︷ ︸
c̄h


︸ ︷︷ ︸

p̂x∗h◦(x−1)(v)

=
∑

i

hi · xi · (xi − 1)︸ ︷︷ ︸
⟨h,x◦(x−1)⟩

+ mixed terms

Lattice-based Succinct Arguments from Vanishing Polynomials Valerio Cini 11 / 18

3. Succinct Arguments for vSIS Commitment Openings

To prove that a vSIS commitment is committing to a (Laurent) polynomial without constant term:

[
v v2 . . . vm

v−1 v−2 . . . v−m

]
· x =

[
cx
c̄x

]
mod q ∧ ∥x∥ ≈ 0,

and [
v−m . . . v−1 v1 . . . vm

]
· w = cx · (c̄x − c̄1)︸ ︷︷ ︸

ĉ

modq ∧ ∥w∥ ≈ 0,

1. using knowledge-kRISIS [ACLMT22], or

2. using folding arguments “Bulletproofs” [BLNS20]

Lattice-based Succinct Arguments from Vanishing Polynomials Valerio Cini 12 / 18

3. Succinct Arguments for vSIS Commitment Openings

To prove that a vSIS commitment is committing to a (Laurent) polynomial without constant term:

[
v v2 . . . vm

v−1 v−2 . . . v−m

]
· x =

[
cx
c̄x

]
mod q ∧ ∥x∥ ≈ 0,

and [
v−m . . . v−1 v1 . . . vm

]
· w = cx · (c̄x − c̄1)︸ ︷︷ ︸

ĉ

modq ∧ ∥w∥ ≈ 0,

1. using knowledge-kRISIS [ACLMT22], or

2. using folding arguments “Bulletproofs” [BLNS20]

Lattice-based Succinct Arguments from Vanishing Polynomials Valerio Cini 12 / 18

3. Succinct Arguments for vSIS Commitment Openings

Knowledge-kRISIS Assumption(s) [ACLMT22] (a Member of)
† Parameters:

‡ SIS parameters (n,m, q),
‡ submodule rank t < n, and
‡ t-tuples of Laurent monomials G.

† Assumption: If a PPT (quantum) algorithmA, which on input

(A, T, v , (ug)g∈G)

where A ∈ Rn×m
q , T ∈ (R×

q)
n×t , v ∈ R×

q , and ug ∈ A−1(T · g(v)),

can find (u, c) where
u ∈ A−1(T · c),

then it must “know” short linear combination x such that

c =
∑
g∈G

g(v) · xg mod q.

Lattice-based Succinct Arguments from Vanishing Polynomials Valerio Cini 13 / 18

3. Succinct Arguments for vSIS Commitment Openings

Knowledge-kRISIS Assumption(s) [ACLMT22] (a Member of)
† Parameters:

‡ SIS parameters (n,m, q),
‡ submodule rank t < n, and
‡ t-tuples of Laurent monomials G.

† Assumption: If a PPT (quantum) algorithmA, which on input

(A, T, v , (ug)g∈G)

where A ∈ Rn×m
q , T ∈ (R×

q)
n×t , v ∈ R×

q , and ug ∈ A−1(T · g(v)),

can find (u, c) where
u ∈ A−1(T · c),

then it must “know” short linear combination x such that

c =
∑
g∈G

g(v) · xg mod q.

Lattice-based Succinct Arguments from Vanishing Polynomials Valerio Cini 13 / 18

3. Succinct Arguments for vSIS Commitment Openings

Using Knowledge-kRISIS

Want to prove ĉ and w ∈ R2m+1 satisfies:

w0 = 0 ĉ = p̂w(v) ∥w∥ ≈ 0.

† Public parameters: kRISIS instance (A, t, v , (ui)i∈±[m]) where

ui ∈ A−1(t · v i).

† Prover: Output u =
∑

i∈±[m] ui · wi .

† Verifier: Check that A · u = t · ĉ mod q and ∥u∥ ≈ 0.
† Knowledge-soundness follows immediately from the knowledge-kRISIS assumption.
† Prover runs in Õλ(m) time.

† Verifier runs in Õλ(1) time.

Lattice-based Succinct Arguments from Vanishing Polynomials Valerio Cini 14 / 18

3. Succinct Arguments for vSIS Commitment Openings

Using Knowledge-kRISIS

Want to prove ĉ and w ∈ R2m+1 satisfies:

w0 = 0 ĉ = p̂w(v) ∥w∥ ≈ 0.

† Public parameters: kRISIS instance (A, t, v , (ui)i∈±[m]) where

ui ∈ A−1(t · v i).

† Prover: Output u =
∑

i∈±[m] ui · wi .

† Verifier: Check that A · u = t · ĉ mod q and ∥u∥ ≈ 0.
† Knowledge-soundness follows immediately from the knowledge-kRISIS assumption.
† Prover runs in Õλ(m) time.

† Verifier runs in Õλ(1) time.

Lattice-based Succinct Arguments from Vanishing Polynomials Valerio Cini 14 / 18

3. Succinct Arguments for vSIS Commitment Openings

Using Knowledge-kRISIS

Want to prove ĉ and w ∈ R2m+1 satisfies:

w0 = 0 ĉ = p̂w(v) ∥w∥ ≈ 0.

† Public parameters: kRISIS instance (A, t, v , (ui)i∈±[m]) where

ui ∈ A−1(t · v i).

† Prover: Output u =
∑

i∈±[m] ui · wi .

† Verifier: Check that A · u = t · ĉ mod q and ∥u∥ ≈ 0.
† Knowledge-soundness follows immediately from the knowledge-kRISIS assumption.
† Prover runs in Õλ(m) time.

† Verifier runs in Õλ(1) time.

Lattice-based Succinct Arguments from Vanishing Polynomials Valerio Cini 14 / 18

3. Succinct Arguments for vSIS Commitment Openings

Lattice-based Bulletproofs
Goal: Prove SIS relation with O(logm) communication:

x ∈ Rm : M · x = y mod q ∧ ∥x∥ ≈ 0

where m = 2ℓ, M = [M1 | M2], x =

[
x1

x2

]
.

Prover P((M, y), x) Verifier V(M, y)

y12 := M1 · x2 c ←$ C

y21 := M2 · x1
y12, y21 M̂c := M1 + c · M2

x̂c := c · x1 + x2
c ŷc := y12 + y · c + y21 · c2 mod q

x̂c return

{
M̂c · x̂c = ŷc

∥x̂c∥ ≈ 0︸ ︷︷ ︸
Just another SIS relation but with only m/2 columns =⇒ Recursion

Lattice-based Succinct Arguments from Vanishing Polynomials Valerio Cini 15 / 18

3. Succinct Arguments for vSIS Commitment Openings

Lattice-based Bulletproofs
Goal: Prove SIS relation with O(logm) communication:

x ∈ Rm : M · x = y mod q ∧ ∥x∥ ≈ 0

where m = 2ℓ, M = [M1 | M2], x =

[
x1

x2

]
.

Prover P((M, y), x) Verifier V(M, y)

y12 := M1 · x2 c ←$ C

y21 := M2 · x1
y12, y21 M̂c := M1 + c · M2

x̂c := c · x1 + x2
c ŷc := y12 + y · c + y21 · c2 mod q

x̂c return

{
M̂c · x̂c = ŷc

∥x̂c∥ ≈ 0︸ ︷︷ ︸
Just another SIS relation but with only m/2 columns =⇒ Recursion

Lattice-based Succinct Arguments from Vanishing Polynomials Valerio Cini 15 / 18

3. Succinct Arguments for vSIS Commitment Openings

Lattice-based Bulletproofs
After ℓ-fold recursive composition:

Prover P((M, y), x) Verifier V(M, y)

y(1)12 , y(1)21

c1 (M̂c1 , ŷc1) := . . .

...
...

y(ℓ)12 , y(ℓ)21

cµ (M̂c1,...,cℓ , ŷc1,...,cℓ) := . . .

x̂c1,...,cℓ return

{
M̂c1,...,cℓ · x̂c1,...,cℓ = ŷc1,...,cµ

∥x̂c1,...,cℓ∥ ≈ 0

Main verifier bottleneck: Computing M̂c1,...,cℓ . In general, this requires Ωλ(m) time.
Lattice-based Succinct Arguments from Vanishing Polynomials Valerio Cini 16 / 18

3. Succinct Arguments for vSIS Commitment Openings

Lattice-based Bulletproofs
After ℓ-fold recursive composition:

Prover P((M, y), x) Verifier V(M, y)

y(1)12 , y(1)21

c1 (M̂c1 , ŷc1) := . . .

...
...

y(ℓ)12 , y(ℓ)21

cµ (M̂c1,...,cℓ , ŷc1,...,cℓ) := . . .

x̂c1,...,cℓ return

{
M̂c1,...,cℓ · x̂c1,...,cℓ = ŷc1,...,cµ

∥x̂c1,...,cℓ∥ ≈ 0

Main verifier bottleneck: Computing M̂c1,...,cℓ . In general, this requires Ωλ(m) time.
Lattice-based Succinct Arguments from Vanishing Polynomials Valerio Cini 16 / 18

3. Succinct Arguments for vSIS Commitment Openings

Structured Folding for vSIS
Core Idea

For M corresponding to vSIS instance, computing M̂c1,...,cℓ takes Õλ(logm) = Õλ(1) time.

Example for ℓ = 3

M =
(
v v2 v3 v4 v5 v6 v7 v8

)
M̂c1 =

(
v v2 v3 v4

)
+
(
v5 v6 v7 v8

)
· c1

=
(
v v2 v3 v4

)
· (1 + v4 · c1)

M̂c1,c2 =
(
v v2

)
· (1 + v4 · c1) · (1 + v2 · c2)

M̂c1,c2,c3 = v · (1 + v4 · c1) · (1 + v2 · c2) · (1 + v · c3)

= v ·
3∏

i=1

(1 + v23−i · ci)

Lattice-based Succinct Arguments from Vanishing Polynomials Valerio Cini 17 / 18

3. Succinct Arguments for vSIS Commitment Openings

Structured Folding for vSIS
Core Idea

For M corresponding to vSIS instance, computing M̂c1,...,cℓ takes Õλ(logm) = Õλ(1) time.

Example for ℓ = 3

M =
(
v v2 v3 v4 v5 v6 v7 v8

)
M̂c1 =

(
v v2 v3 v4

)
+
(
v5 v6 v7 v8

)
· c1

=
(
v v2 v3 v4

)
· (1 + v4 · c1)

M̂c1,c2 =
(
v v2

)
· (1 + v4 · c1) · (1 + v2 · c2)

M̂c1,c2,c3 = v · (1 + v4 · c1) · (1 + v2 · c2) · (1 + v · c3)

= v ·
3∏

i=1

(1 + v23−i · ci)

Lattice-based Succinct Arguments from Vanishing Polynomials Valerio Cini 17 / 18

Conclusion

Conclusion

† Vanishing Short Integer Solution (vSIS) assumption and commitments
† Succinct arguments for vSIS commitment openings
† Used to construct succinct arguments for NP

‡ Lattice-based
‡ Quasi-linear-time prover
‡ Public and Polylogarithmic-time verifier (after preprocessing)
‡ Transparent setup (RO instantiation)

Valerio Cini
AIT Austrian Institute of Technology

Lattice-based Succinct Arguments from Vanishing Polynomials Valerio Cini 18 / 18

	orbweaver.pdf
	main.pdf
	Introduction
	1. Preliminaries
	2. Vanishing SIS Assumptions and Commitments
	3. Succinct Arguments for vSIS Commitment Openings
	Conclusion

