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Abstract linear map equation

(
n

∑
i=1

fi ⋅ Y−i) ⋅ (
n

∑
i=1

xi ⋅ Yi) ≡ ⟨f, x⟩ +
n−1

∑
i = − n + 1,

i ≠ 0

bi ⋅ Yi mod q

Form used in [Gro10,LRY16,AC20]
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Ring Vandermonde SIS (R-V-SIS) commitment

 ,  where  is public 

• Ajtai’s R-SIS commitment, with a Vandermonde key


• Similar to assumption used in PASS Sign. If we pick v instead from the 
primitive roots of unity binding reduces to Vandermonde R-SIS 
[HS15,LZA18,BSS22]

c :=
n

∑
i=1

xi ⋅ vi mod q v $ Rq
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Form used in [Gro10,LRY16,AC20], translated to lattice setting using techniques 
from [ACLMT22]

 shortf, x

cx⋅cf

(preprocessed)

≡ y +  ⟨a, π⟩ mod q

 shortπ
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Prover key
Generate short preimages  for  such that





Using a trapdoor public SIS matrix  [MP12]

ui i ∈ {−n + 1,…, n − 1}∖{0}

⟨a, ui⟩ ≡ vi mod q

a



Computing the proof

• Given  except for 


• Where  is the sum of cross terms corresponding to the coefficient of  
compute 
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π :=
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bi ⋅ ui mod q
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Computing the proof
• Given  except for 


• Where  is the sum of cross terms corresponding to the coefficient of  compute 





• Then





•  short   short,  short  short

⟨a, ui⟩ ≡ vi mod q i = 0

bi vi

π :=
n−1

∑
i = − n + 1,

i ≠ 0

bi ⋅ ui mod q

⟨a, π⟩ ≡
n−1

∑
i = − n + 1,

i ≠ 0

bi ⋅ vi mod q

f, x ⟹ bi ui ⟹ π



Evaluation binding
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Evaluation binding

(
n

∑
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• k-R-ISIS family of assumptions: can only generate short preimages for 
targets short linear span of the  or for random targets [ACLMT22]vi
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Evaluation binding

• k-R-ISIS family of assumptions: can only generate short preimages for 
targets short linear span of the  or for random targets [ACLMT22]


•  is short, while for  all  will be long whp, as will the 
random targets

vi

y′￼− y v $ Rq vi mod q

⟨a, π − π′￼⟩ ≡ y′￼− y mod q



Multiple outputs

Can prove  for  with a single evaluation 
proof:


⟨fi, x⟩ = yi i ∈ [t]

⟨a, π⟩ ≡ c ⋅
t

∑
i=1

hi ⋅ 𝖼𝗄fi −
t

∑
i=1

hi ⋅ yi mod q



Multiple outputs
Can prove  for  with a single evaluation proof:





Key observation: straightline extractor uses separate knowledge proof to 
obtain . Don’t have to extract the hypothetical 


⟨fi, x⟩ = yi i ∈ [t]

⟨a, π⟩ ≡ c ⋅
t

∑
i=1

hi ⋅ 𝖼𝗄fi −
t

∑
i=1

hi ⋅ yi mod q

x πi

π =
t

∑
i=1

hi ⋅ πi



Multiple outputs

Using extracted  we get
x

⟨a, π⟩ ≡
t

∑
i=1

hi ⋅ (⟨fi, x⟩ − yi) −
t

∑
i=1

hi ⋅
n−1

∑
j = − n + 1,

j ≠ 0

bi,j ⋅ Yi mod q



Multiple outputs




                    


• For  want  only with 
negligible probability if  is not the zero polynomial

⟨a, π⟩ ≡
t

∑
i=1

hi ⋅ (⟨fi, x⟩ − yi) −
t

∑
i=1

hi ⋅
n−1

∑
j = − n + 1,

j ≠ 0

bi,j ⋅ Yi mod q

p(h1, …, ht)

h1, …, ht ← ℋ p(h1, …, ht) = 0
p
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• For  want  only with negligible 
probability if  is not the zero polynomial


• Can pick exponential size “exceptional set”  over  for large  
[LS18] and invoke Generalized Alon-Füredi Theorem [BCPS18]

⟨a, π⟩ ≡
t

∑
i=1

hi ⋅ (⟨fi, x⟩ − yi) −
t

∑
i=1
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n−1
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ℋ Rq q



Multiple outputs




                                


• For  want  only with negligible probability if  
is not the zero polynomial


• Can pick exponential size “exceptional set”  over  for large  [LS18] and 
invoke Generalized Alon-Füredi Theorem [BCPS18]


• Better to perform ternary decomposition on  and batch verification

⟨a, π⟩ ≡
t

∑
i=1

hi ⋅ (⟨fi, x⟩ − yi) −
t

∑
i=1

hi ⋅
n−1

∑
j = − n + 1,

j ≠ 0

bi,j ⋅ Yi mod q

p(h1, …, ht)

h1, …, ht ← ℋ p(h1, …, ht) = 0 p

ℋ Rq q

f, x



Proof and SRS sizes for ℤ232

log2(x) 18 22 26 30

|c| (B) 293 347 422 505

total proof size (KiB) 845 1,081 1,315 1,571

verifier key (MiB) 12 17 23 30

prover key (GiB) 0.3 6 111 2,070

• These are maximum proof sizes. When  or  are sparse or have entries much 
smaller than the norm bound this is reflected by the proof size.
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Proof and SRS sizes for ℤ232

log2(x) 18 22 26 30

|c| (B) 293 347 422 505

total proof size (KiB) 845 1,081 1,315 1,571

verifier key (MiB) 12 17 23 30

prover key (GiB) 0.3 6 111 2,070

• These are maximum proof sizes. When  or  are sparse or have entries much 
smaller than the norm bound this is reflected by the proof size.


• Binding only version reduces proof size by ~65%, prover key size by ~75%


• Smallest compressing proofs start around 165 KiB (binding) and 668 KiB 
(extractable) — recursion threshold

f x
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Introduction

Lattice-based Succinct Arguments

Approach Publicly verifiable Sublinear-verifier
(preprocessing)

Linear-prover

PCP/IOP + linear-only enc.
[BCIOP13; BISW17; BISW18;
GMNO18]

✘ ✓ ✓

Linearisation + folding
[BLNS20; AL21; ACK21;
BS22]

✓ ✘ Õλ(|stmt|) ✓

Direct [ACLMT22]
✓ ✓ ✘ Õλ(|stmt|2)

This work (and [BCS23]) ✓ ✓ ✓
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Introduction

Our Results

† New assumption: Vanishing Short Integer Solution (vSIS)
‡ generalization of SIS

† New tool: vSIS commitment for committing to polynomials with short coefficients
‡ Very small (polylog(|stmt|)) commitment key
‡ (Almost) additively and multiplicatively homomorphic
‡ Admit Õ(|stmt|)-prover polylog(|stmt|)-verifier arguments for commitment openings

† New lattice-based succinct arguments for NP⇐ Succinct arguments for vSIS commitment openings
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Introduction

Our Results

Instantiations |π| Time(P) Time(V) Setup Assumptions

Folding Õλ(1) Õλ(|stmt|) Õλ(1) Transparent vSIS (+ RO for NI)

Knowledge assumption Õλ(1) Õλ(|stmt|) Õλ(1) Trusted vSIS + Knowledge-kRISIS

Lattice-based Succinct Arguments from Vanishing Polynomials Valerio Cini 3 / 18



Introduction

Roadmap

1. vSIS assumptions and commitments

2. Quadratic Relations using vSIS commitments

3. Succinct arguments for vSIS commitment openings
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1. Preliminaries

Short Integer Solution (SIS) Assumption

† Parameters: # rows n, # columns m, modulus q.
† Instance: A matrix A ∈ Rn×m

q .
† Problem: Find a short vector u ∈ Rm such that

A · u = 0 mod q and 0 < ∥u∥ ≈ 0.

† Shorthand: If u is a short non-zero vector satisfying A · u = v mod q, write

u ∈ A−1(v).

Lattice-based Succinct Arguments from Vanishing Polynomials Valerio Cini 5 / 18



2. Vanishing SIS Assumptions and Commitments

Vanishing SIS as SIS Generalisations

SIS

Find short solution to linear equations

A · u = 0 mod q and 0 < ∥u∥ ≈ 0.

SIS (Alternative Interpretation)

Find linear function with short coefficients which vanishes at all given points

Vanishing SIS (vSIS)

Find polynomial (from some class) with short coefficients which vanishes at all given points
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2. Vanishing SIS Assumptions and Commitments

Vanishing Short Integer Solution (vSIS) Assumption

Example: Univariate

† Problem: Find short degree m polynomial without constant term

p(X) = p1X + . . .+ pmX m ∈ R[X ]

which vanishes at v ∈ R×
q modulo q, i.e.

p(v) = 0 mod q and 0 < ∥p∥ ≈ 0.

In other words, find short vector p ∈ Rm such that[
v v2 . . . vm

]
· p = 0 mod q and 0 < ∥p∥ ≈ 0.

Lattice-based Succinct Arguments from Vanishing Polynomials Valerio Cini 7 / 18



2. Vanishing SIS Assumptions and Commitments

Simple vSIS Commitments (or Hash Functions)

† Domain: Polynomials p ∈ R[X , X−1] (of some class) with short coefficients.
† Public parameters: Random unit v ←$R×

q .
† Commitment of polynomial p:

com(p) = p(v) mod q.

† Binding: If p(v) = p′(v) mod q, then we break vSIS, i.e.

(p − p′)(v) = 0 mod q
∥∥p − p′

∥∥ ≤ ∥p∥+ ∥∥p′
∥∥ ≈ 0.

† (Almost) additively and multiplicatively homomorphic (w.r.t. polynomial addition and multiplications):

p(v) + p′(v) = (p + p′)(v) mod q
∥∥p + p′

∥∥ ≤ ∥p∥+ ∥∥p′
∥∥ ≈ 0

p(v) · p′(v) = (p · p′)(v) mod q
∥∥p · p′

∥∥ ⪅ ∥p∥ ·
∥∥p′

∥∥ ≈ 0.
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2. Vanishing SIS Assumptions and Commitments

Encoding Vectors as (Laurent) Polynomials

a := (a1, . . . , am) ∈ Rm p̄a(X) := pa(X
−1) := a1X−1 + a2X−2 + . . .+ amX−m

b := (b1, . . . , bm) ∈ Rm pb(X) := b1X + b2X 2 + . . .+ bmX m

Note that
p̄a(X) · pb(X) = p̂a∗b(X) =⇒ p̂a∗b has O(m) terms (lots of collisions!)

where

† a ∗ b :=
(∑

j−i=k ai · bj

)m

k=−m
“convolution”, and

† constant term is given by ⟨a, b⟩.
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2. Vanishing SIS Assumptions and Commitments

Key Example

Want to prove that x is binary (i.e. xi · (1− xi) = 0 for all i).

† x is committed in vSIS commitment as cx := px(v).
† x is committed also in dual vSIS commitment as c̄x := p̄x(v),
† 1 is committed in dual vSIS commitment as c̄1 := p̄1(v).

Observe that

∑
i

xi · v i

︸ ︷︷ ︸
cx

·


∑

j

xj · v−j

︸ ︷︷ ︸
c̄x

−
∑

j

1 · v−j

︸ ︷︷ ︸
c̄1


︸ ︷︷ ︸

p̂x∗(1−x)(v)

=
∑

i

xi · (xi − 1)︸ ︷︷ ︸
⟨x,x−1⟩

+ mixed terms

Lattice-based Succinct Arguments from Vanishing Polynomials Valerio Cini 10 / 18
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† 1 is committed in dual vSIS commitment as c̄1 := p̄1(v).

Observe that

∑
i

xi · v i

︸ ︷︷ ︸
cx

·


∑

j

xj · v−j

︸ ︷︷ ︸
c̄x

−
∑

j

1 · v−j

︸ ︷︷ ︸
c̄1


︸ ︷︷ ︸

p̂x∗(1−x)(v)

=
∑

i

xi · (xi − 1)︸ ︷︷ ︸
⟨x,x−1⟩

+ mixed terms
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2. Vanishing SIS Assumptions and Commitments

Key Example

Want to prove that x is binary (i.e. xi · (1− xi) = 0 for all i).

† x is committed in vSIS commitment as cx := px(v).
† h ◦ x is committed also in dual vSIS commitment as c̄h◦x := p̄h◦x(v),
† h is committed in dual vSIS commitment as c̄h := p̄h(v).

Observe that

∑
i

xi · v i

︸ ︷︷ ︸
cx

·


∑

j

hj · xj · v−j

︸ ︷︷ ︸
c̄h◦x

−
∑

j

hj · v−j

︸ ︷︷ ︸
c̄h


︸ ︷︷ ︸

p̂x∗h◦(x−1)(v)

=
∑

i

hi · xi · (xi − 1)︸ ︷︷ ︸
⟨h,x◦(x−1)⟩

+ mixed terms
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3. Succinct Arguments for vSIS Commitment Openings

To prove that a vSIS commitment is committing to a (Laurent) polynomial without constant term:

[
v v2 . . . vm

v−1 v−2 . . . v−m

]
· x =

[
cx
c̄x

]
mod q ∧ ∥x∥ ≈ 0,

and [
v−m . . . v−1 v1 . . . vm

]
· w = cx · (c̄x − c̄1)︸ ︷︷ ︸

ĉ

modq ∧ ∥w∥ ≈ 0,

1. using knowledge-kRISIS [ACLMT22], or

2. using folding arguments “Bulletproofs” [BLNS20]
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3. Succinct Arguments for vSIS Commitment Openings

Knowledge-kRISIS Assumption(s) [ACLMT22] (a Member of)
† Parameters:

‡ SIS parameters (n,m, q),
‡ submodule rank t < n, and
‡ t-tuples of Laurent monomials G.

† Assumption: If a PPT (quantum) algorithmA, which on input

(A, T, v , (ug)g∈G)

where A ∈ Rn×m
q , T ∈ (R×

q )
n×t , v ∈ R×

q , and ug ∈ A−1(T · g(v)),

can find (u, c) where
u ∈ A−1(T · c),

then it must “know” short linear combination x such that

c =
∑
g∈G

g(v) · xg mod q.
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3. Succinct Arguments for vSIS Commitment Openings

Using Knowledge-kRISIS

Want to prove ĉ and w ∈ R2m+1 satisfies:

w0 = 0 ĉ = p̂w(v) ∥w∥ ≈ 0.

† Public parameters: kRISIS instance (A, t, v , (ui)i∈±[m]) where

ui ∈ A−1(t · v i).

† Prover: Output u =
∑

i∈±[m] ui · wi .

† Verifier: Check that A · u = t · ĉ mod q and ∥u∥ ≈ 0.
† Knowledge-soundness follows immediately from the knowledge-kRISIS assumption.
† Prover runs in Õλ(m) time.

† Verifier runs in Õλ(1) time.
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† Knowledge-soundness follows immediately from the knowledge-kRISIS assumption.
† Prover runs in Õλ(m) time.
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† Knowledge-soundness follows immediately from the knowledge-kRISIS assumption.
† Prover runs in Õλ(m) time.
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3. Succinct Arguments for vSIS Commitment Openings

Lattice-based Bulletproofs
Goal: Prove SIS relation with O(logm) communication:

x ∈ Rm : M · x = y mod q ∧ ∥x∥ ≈ 0

where m = 2ℓ, M = [M1 | M2], x =

[
x1

x2

]
.

Prover P((M, y), x) Verifier V(M, y)

y12 := M1 · x2 c ←$ C

y21 := M2 · x1
y12, y21 M̂c := M1 + c · M2

x̂c := c · x1 + x2
c ŷc := y12 + y · c + y21 · c2 mod q

x̂c return

{
M̂c · x̂c = ŷc

∥x̂c∥ ≈ 0︸ ︷︷ ︸
Just another SIS relation but with only m/2 columns =⇒ Recursion
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3. Succinct Arguments for vSIS Commitment Openings

Lattice-based Bulletproofs
After ℓ-fold recursive composition:

Prover P((M, y), x) Verifier V(M, y)

y(1)12 , y(1)21

c1 (M̂c1 , ŷc1) := . . .

...
...

y(ℓ)12 , y(ℓ)21

cµ (M̂c1,...,cℓ , ŷc1,...,cℓ) := . . .

x̂c1,...,cℓ return

{
M̂c1,...,cℓ · x̂c1,...,cℓ = ŷc1,...,cµ

∥x̂c1,...,cℓ∥ ≈ 0

Main verifier bottleneck: Computing M̂c1,...,cℓ . In general, this requires Ωλ(m) time.
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3. Succinct Arguments for vSIS Commitment Openings

Structured Folding for vSIS
Core Idea

For M corresponding to vSIS instance, computing M̂c1,...,cℓ takes Õλ(logm) = Õλ(1) time.

Example for ℓ = 3

M =
(
v v2 v3 v4 v5 v6 v7 v8

)
M̂c1 =

(
v v2 v3 v4

)
+
(
v5 v6 v7 v8

)
· c1

=
(
v v2 v3 v4

)
· (1 + v4 · c1)

M̂c1,c2 =
(
v v2

)
· (1 + v4 · c1) · (1 + v2 · c2)

M̂c1,c2,c3 = v · (1 + v4 · c1) · (1 + v2 · c2) · (1 + v · c3)

= v ·
3∏

i=1

(1 + v23−i · ci)
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Conclusion

Conclusion

† Vanishing Short Integer Solution (vSIS) assumption and commitments
† Succinct arguments for vSIS commitment openings
† Used to construct succinct arguments for NP

‡ Lattice-based
‡ Quasi-linear-time prover
‡ Public and Polylogarithmic-time verifier (after preprocessing)
‡ Transparent setup (RO instantiation)

Valerio Cini
AIT Austrian Institute of Technology
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