
Correlated Pseudorandomness from the Hardness of
Quasi-Abelian Decoding

Maxime Bombar1 Geoffroy Couteau 2 Alain Couvreur1

Clément Ducros3

1INRIA, Institut Polytechnique de Paris

2CNRS, IRIF, Université de Paris

3Université de Paris, IRIF, INRIA

24 August, 2023

MPC

Correlated Randomness.

Random Correlations

A trusted dealer gives additional correlations to the players. Some examples, for
α the input of Alice and β the input of Bob.

• Oblivious Transfer α = (a0, a1), β = (b, ab)

• Oblivious Linear Evaluation α = (u, v), β = (∆, w = ∆ · u+ v).
Can be rewritten as: α = (u, J∆ · uK0), β = (∆, J∆ · uK1)

Correlated Randomness.

Random Correlations

A trusted dealer gives additional correlations to the players. Some examples, for
α the input of Alice and β the input of Bob.

• Oblivious Transfer α = (a0, a1), β = (b, ab)

• Oblivious Linear Evaluation α = (u, v), β = (∆, w = ∆ · u+ v).
Can be rewritten as: α = (u, J∆ · uK0), β = (∆, J∆ · uK1)

Pseudorandom Correlation Generator

Pseudorandom Correlation
Generator

A PCG is a functionality
that shares short correlated
seeds with the parties, and
that the parties can locally
extend into long strings of
the target correlation.

MPC with Silent Preprocessing

State of the art on silent PCG

Underlying assumption Correlation Programmability Correlations per second Field size?

Syndrome Decoding for Expand and Accumulate Code [BCG+22]
Expand and Convolute Codes[RRT23]

OT x 107 q = 2

Syndrome Decoding for Silver Codes [CRR21] (broken by [RRT23]) OT x 107 q = 2

Ring Syndrome Decoding [BCG+20] OLE o 105 q very large

Quasi Abelian Syndrome Decoding OLE o estimated 105 every ≥ 3

Table: State of the art on silent PCG, for the OT and OLE correlations

Programmability [BCG+19]

A PCG is said to be programmable when
you can fix a part of the correlation pro-
duced by different seeds.
It is a crucial property to obtain MPC
from 2PC, to obtain malicious security
from semi-honest security.

Alice ”programs”

• an instance of OLE with Bob
α = (u, J∆B · uK) β = (∆B , J∆B · uK)

• and another with Charlie :
α = (u, J∆C · uK) β = (∆C , J∆C · uK)

Note that it is the same u.

State of the art on silent PCG

Underlying assumption Correlation Programmability Correlations per second Field size?

Syndrome Decoding for Expand and Accumulate Code [BCG+22]
Expand and Convolute Codes[RRT23]

OT x 107 q = 2

Syndrome Decoding for Silver Codes [CRR21] (broken by [RRT23]) OT x 107 q = 2

Ring Syndrome Decoding [BCG+20] OLE o 105 q very large

Quasi Abelian Syndrome Decoding OLE o estimated 105 every ≥ 3

Table: State of the art on silent PCG, for the OT and OLE correlations

Programmability [BCG+19]

A PCG is said to be programmable when
you can fix a part of the correlation pro-
duced by different seeds.
It is a crucial property to obtain MPC
from 2PC, to obtain malicious security
from semi-honest security.

Alice ”programs”

• an instance of OLE with Bob
α = (u, J∆B · uK) β = (∆B , J∆B · uK)

• and another with Charlie :
α = (u, J∆C · uK) β = (∆C , J∆C · uK)

Note that it is the same u.

A first solution [BCG+20]

Solution for producing n instances of OLE [BCG+20]

• Choose a polynomial P that splits into n = deg(P) linear factors

• Build a PCG for a single OLE over R = Fq[X]/(P (X))

• Use the Chinese Remainder Theorem to convert this unique OLE, into n OLE
correlation over Fq.

• Security relies on the ring Ring Syndrome Decoding assumption.

Some limitations of the construction:

• If we want to produce n correlations, we should have |Fq| > n. Hence the
construction works only over large fields.

• Conditions on P? The choice of P matters for security: how to choose it?

Our Contribution

Introduction of Quasi-Abelian Syndrome Decoding.

• Broad family of possible instantiations

• Rich structure that allows stronger security foundations

We identify some group algebras R such that:

• They support fast operations.

• They are isomorphic to a product of n copies of Fq for q > 2.

• They have a canonical notion of sparsity.

Group Algebras and Quasi-Abelian Codes

We define a Group Algebra, for a finite abelian

group G of formal sums Fq[G] :=
{∑

g∈G agg | ag ∈ Fq

}
.

Some examples:

• Let G = {1} be the trivial group with one element. Then the group
algebra Fq[G] is isomorphic to the finite field Fq

• Let G = Z/nZ be the cyclic group with n elements. When q is coprime to
n, Fq[G] ≃ Fq[X]/(Xn − 1). This can be generalize :

Fq[Z/d1Z× · · · × Z/drZ] ≃ Fq[X1, · · · , Xr]/(X
d1
1 − 1, · · · , Xdr

r − 1).

Group Algebras and Quasi-Abelian Codes

Given a matrix

Γ =

γ1,1 . . . γ1,ℓ
...

. . .
...

γk,1 . . . γk,ℓ

 ∈ (Fq[G])k×ℓ,

a Quasi-Abelian-G group code defined by Γ is

C = {mΓ |m = (m1, . . . ,mk) ∈ (Fq[G])k},

Quasi-Abelian Codes examples

Some examples

• if G = {1} then any linear code is a quasi-G code.

• if G = Z/nZ, and q is coprime to n. If we assume that k = 1 and l = 2
then a quasi-Z/nZ code of index 2 is defined over Fq by a double-circulant
generator matrix:

a0 a1 . . . an−1
an−1 a0 . . . an−2
...

...
a1 an−1 . . . a0

b0 b1 . . . bn−1
bn−1 b0 . . . bn−2
...

...
b1 bn−1 . . . b0

 .

This exactly a standard quasi-cyclic code with block length n.

The QA-SD assumption

Definition ((Decisional) QA-SD problem)

Given a target weight t, the goal of this decisional QA-SD problem is to distinguish,
with a non-negligible advantage, between the distributions

D0 : (a, s) where a, s←r Fq[G]
D1 : (a,ae1 + e2) where a←r Fq[G] and ei ←r ∆t(Fq[G]).

where ∆t(Fq[G]) denotes a distribution over Fq[G] such that E[wt(e)] = t when
e←r ∆t .

The QA-SD assumption

Definition ((Decisional) QA-SD problem)

Given a target weight t, the goal of this decisional QA-SD problem is to distinguish,
with a non-negligible advantage, between the distributions

D0 : (a, s) where a, s←r Fq[G]
D1 : (a,ae1 + e2) where a←r Fq[G] and ei ←r ∆t(Fq[G]).

where ∆t(Fq[G]) denotes a distribution over Fq[G] such that E[wt(e)] = t when
e←r ∆t .

Linear attacks paradigm [BCG+20]

Bias of a distribution

Given a distribution D over Fn
2 , a

vector v ∈ Fn
2 :

biasv(D) =

∣∣∣∣∣12 − Pr
u

$←D
[v⊤ · u = 1]

∣∣∣∣∣
The bias of D, denoted bias(D), is
the maximum bias of D with respect
to any nonzero vector v.

• Send H to the adversary

• The adversary returns a test vector v computed from H with unbounded time.

• Is v⊤ · u = v⊤ ·H · e biased ?

Linear attacks paradigm [BCG+20]

Bias of a distribution

Given a distribution D over Fn
2 , a

vector v ∈ Fn
2 :

biasv(D) =

∣∣∣∣∣12 − Pr
u

$←D
[v⊤ · u = 1]

∣∣∣∣∣
The bias of D, denoted bias(D), is
the maximum bias of D with respect
to any nonzero vector v.

• Send H to the adversary

• The adversary returns a test vector v computed from H with unbounded time.

• Is v⊤ · u = v⊤ ·H · e biased ?

Resistance against linear attacks

Attacks Linear?

Gaussian elimination

Statistical decoding

Information set decoding

BKW

Algebraic attack

Table: Linearity of classical attacks

Security analysis of the QA-SD assumption

Analysis of the bias.

• Resistance against linear attacks can be shown by analyzing the minimum
distance of the code generated by the rows of H.

Security analysis of the QA-SD assumption

Analysis of the bias.

• Resistance against linear attacks can be shown by analyzing the minimum
distance of the code generated by the rows of H.

Security analysis of the QA-SD assumption

H =

a0,0 . . . a0,n−1

a0,n−1 . . . a0,n−2
...

...
a0,1 . . . a0,0

. . .

bℓ−1,0 . . . bℓ−1,n−1
bℓ−1,n−1 . . . bℓ−1,n−2

...
...

bℓ−1,1 . . . bℓ−1,0

 .

Theorem (Fan and Lin,2015)

Let G be a finite abelian group, and let (Cℓ)ℓ be a sequence of random quasi-G codes
of length ℓ ∈ N and rate r ∈ (0, 1). Let δ ∈ (0, 1− 1

q). Then,

lim
ℓ→∞

Pr

(
dmin(Cℓ)

|G|
> δℓ

)
=

{
1 if r < 1− hq(δ);
0 if r > 1− hq(δ);

and the convergence is exponentially fast.

Security Analysis of the QA-SD assumption

Figure: Case of Fan and Lin

Figure: What we would like

• Open problem: Can we prove the same result whem we fix the number of blocks
but their size grows?

Security Analysis of the QA-SD assumption

Figure: Case of Fan and Lin

Figure: What we would like

• Open problem: Can we prove the same result whem we fix the number of blocks
but their size grows?

Concrete Instance

Group algebra using G =
∏n

i=1 Z/(q − 1)Z, q ≥ 3.

Fq[G] ≃ Fq[X1, · · · , Xn]/(X
q−1
1 − 1, · · · , Xq−1

n − 1) ≃
T∏
i=1

Fq.

• Let e00, e
1
0, e

0
1, e

1
1 be sparse elements of Fq[G] and

a ∈ Fq[G]. Alice and Bob compute locally u and ∆ :

u = a · e00 + e10, ; ∆ = a · e01 + e11

Because of the QA-SD assumption u,∆ appears to be
random.

• Then
u ·∆ = a2 · e00 · e01 + a · (e00 · e11 + e10 · e01) + e10 · e11.
• The product of two sparse elements remains sparse →
Can be succinctly distributed using FSS.

Function Secret Sharing
(FSS)[BGI15]

For functions that are
mainly zero, one can
succinctly share the
function f into

f = f1 + f2

Enables to split sparse
multiplication of the
form e0 · e1.

Concrete Instance

Group algebra using G =
∏n

i=1 Z/(q − 1)Z, q ≥ 3.

Fq[G] ≃ Fq[X1, · · · , Xn]/(X
q−1
1 − 1, · · · , Xq−1

n − 1) ≃
T∏
i=1

Fq.

• Let e00, e
1
0, e

0
1, e

1
1 be sparse elements of Fq[G] and

a ∈ Fq[G]. Alice and Bob compute locally u and ∆ :

u = a · e00 + e10, ; ∆ = a · e01 + e11

Because of the QA-SD assumption u,∆ appears to be
random.

• Then
u ·∆ = a2 · e00 · e01 + a · (e00 · e11 + e10 · e01) + e10 · e11.

• The product of two sparse elements remains sparse →
Can be succinctly distributed using FSS.

Function Secret Sharing
(FSS)[BGI15]

For functions that are
mainly zero, one can
succinctly share the
function f into

f = f1 + f2

Enables to split sparse
multiplication of the
form e0 · e1.

Concrete Instance

Group algebra using G =
∏n

i=1 Z/(q − 1)Z, q ≥ 3.

Fq[G] ≃ Fq[X1, · · · , Xn]/(X
q−1
1 − 1, · · · , Xq−1

n − 1) ≃
T∏
i=1

Fq.

• Let e00, e
1
0, e

0
1, e

1
1 be sparse elements of Fq[G] and

a ∈ Fq[G]. Alice and Bob compute locally u and ∆ :

u = a · e00 + e10, ; ∆ = a · e01 + e11

Because of the QA-SD assumption u,∆ appears to be
random.

• Then
u ·∆ = a2 · e00 · e01 + a · (e00 · e11 + e10 · e01) + e10 · e11.

• The product of two sparse elements remains sparse →
Can be succinctly distributed using FSS.

Function Secret Sharing
(FSS)[BGI15]

For functions that are
mainly zero, one can
succinctly share the
function f into

f = f1 + f2

Enables to split sparse
multiplication of the
form e0 · e1.

Concrete Instance

Group algebra using G =
∏n

i=1 Z/(q − 1)Z, q ≥ 3.

Fq[G] ≃ Fq[X1, · · · , Xn]/(X
q−1
1 − 1, · · · , Xq−1

n − 1) ≃
T∏
i=1

Fq.

• Let e00, e
1
0, e

0
1, e

1
1 be sparse elements of Fq[G] and

a ∈ Fq[G]. Alice and Bob compute locally u and ∆ :

u = a · e00 + e10, ; ∆ = a · e01 + e11

Because of the QA-SD assumption u,∆ appears to be
random.

• Then
u ·∆ = a2 · e00 · e01 + a · (e00 · e11 + e10 · e01) + e10 · e11.
• The product of two sparse elements remains sparse →
Can be succinctly distributed using FSS.

Function Secret Sharing
(FSS)[BGI15]

For functions that are
mainly zero, one can
succinctly share the
function f into

f = f1 + f2

Enables to split sparse
multiplication of the
form e0 · e1.

Final results

General remarks

• Operations over the group algebra can be accelerated using generalized FFT.

• Our construction works for any q ≥ 3. When q = 2, Fn
2 = F2 × · · · × F2 has only

one invertible element, and is therefore a group algebra only in the case n = 1.

• Main applications in MPC
▶ We achieve the first efficient N -party silent secure computation protocols for

computing general arithmetic circuit over Fq for any q > 2.
▶ Secure N -party computation of a batch of T arithmetic circuits over Fq, q > 2.
▶ It extends also to authenticated correlated randomness.

Open problems and perspectives

• Optimize the generalized FFT.

• Extend Fan and Lin to a fixed number
of blocks.

• Find a solution for q = 2.

Final results

General remarks

• Operations over the group algebra can be accelerated using generalized FFT.

• Our construction works for any q ≥ 3. When q = 2, Fn
2 = F2 × · · · × F2 has only

one invertible element, and is therefore a group algebra only in the case n = 1.

• Main applications in MPC
▶ We achieve the first efficient N -party silent secure computation protocols for

computing general arithmetic circuit over Fq for any q > 2.
▶ Secure N -party computation of a batch of T arithmetic circuits over Fq, q > 2.
▶ It extends also to authenticated correlated randomness.

Open problems and perspectives

• Optimize the generalized FFT.

• Extend Fan and Lin to a fixed number
of blocks.

• Find a solution for q = 2.

Thank you!

