Does the Dual-Sieve Attack on LWVE even Work?

Leo Ducas ${ }^{12}$, Ludo N. Pulles

22 August 2023
1 Goyptology Group, CWl Amsterdam, ${ }^{2}$ Mathematical Institute, Leiden University

CWI

Hard problem in lattice-based crypto

The security of lattice-based cryptoschemes, like Kyber and Dilithium, depends on the hardness of the Bounded Distance Decoding (BDD) problem.

Hard problem in lattice-based crypto

The security of lattice-based cryptoschemes, like Kyber and Dilithium, depends on the hardness of the Bounded Distance Decoding (BDD) problem.

BDD: Given a "noisy" lattice vector, recover the lattice vector.

Lattice attacks against BDD

There are two types of lattice attacks against BDD:

```
Primal attack

\section*{Dual attack}
```

Embed \Lambda and t into a lattice, where the Construct a function that distinguishes
shortest vector is shorter than expected.
shortest vector is shorter than expected.
Solve unique-SV/P inctance by lattice
Solve unique-SV/P inctance by lattice
reduction

```
reduction
```

Construct a function that distinguishes
between BDD targets and uniform targets,
Using this distinguisher guess and
determine part of the secret.

Lattice attacks against BDD

There are two types of lattice attacks against BDD:

Primal attack

I. Embed Λ and \mathbf{t} into a lattice, where the shortest vector is shorter than expected.
II. Solve unique-SVP instance by lattice reduction.

Shortest vector problem (SVP)

Dual attack

Construct a function that distinguishes between BDD targets and uniform targets,

Ilsing this distinguisher, guess and
determine part of the secret

Lattice attacks against BDD

There are two types of lattice attacks against BDD:

Primal attack

I. Embed Λ and \mathbf{t} into a lattice, where the shortest vector is shorter than expected.
II. Solve unique-SVP instance by lattice reduction.

Shortest vector problem (SVP)

Dual attack

I. Construct a function that distinguishes between BDD targets and uniform targets,
II. Using this distinguisher, guess and determine part of the secret.

Lattice attacks against BDD

There are two types of lattice attacks against BDD:

Primal attack

I. Embed Λ and \mathbf{t} into a lattice, where the shortest vector is shorter than expected.
II. Solve unique-SVP instance by lattice reduction.

Dual attack

I. Construct a function that distinguishes between BDD targets and uniform targets,
II. Using this distinguisher, guess and determine part of the secret.

Theoretically and experimentally well-studied.

Lattice attacks against BDD

There are two types of lattice attacks against BDD:

Primal attack

I. Embed Λ and \mathbf{t} into a lattice, where the shortest vector is shorter than expected.
II. Solve unique-SVP instance by lattice reduction.

Theoretically and experimentally well-studied.

Dual attack

I. Construct a function that distinguishes between BDD targets and uniform targets,
II. Using this distinguisher, guess and determine part of the secret.

Received little experimental attention so far.

Recent improvements to the dual attack

Beginning of the dual attack

$\left[A R^{\prime} 05\right]^{1}$: use short dual vectors for distinguishing.

Recent developments

> [ADPS'16] ${ }^{2}$: A lattice sieve yields many short dual vectors.
> [GJ'21]3: Speed up evaluating distinguisher with a Fast Fourier Transform (FFT).
> [MAT'22] ${ }^{4}$: Improves dual attack with modulus switching technique. specific to LWE problem.

```
1'Aharonov & Regev. "Lattice problems in NP \cap coNP". JACM '05.
2Alkim, Ducas, Pöppelmann & Schwabe. "Post-quantum Key Exchange - A New Hope". USENIX '16
*3Guo & Johansson. "Faster Dual Lattice Attacks for Solving LWE with Applications to CRYSTALS". AC'21
4}MATZOV. "Report on the Security of LWE: Improved Dual Lattice Attack". Zenodo #6493704
```


Recent improvements to the dual attack

Beginning of the dual attack

$\left[A R^{\prime} 05\right]^{1}$: use short dual vectors for distinguishing.

Recent developments

- [ADPS'16]²: A lattice sieve yields many short dual vectors.*
[GJ'21]³: Speed up evaluating distinguisher with a Fast Fourier Transform (FFT).
[MAT'22] ${ }^{4}$: Improves dual attack with modulus switching technique.
specific to LWE problem

```
1'Aharonov & Regev. "Lattice problems in NP \cap coNP". JACM '05.
2Alkim, Ducas, Pöppelmann & Schwabe. "Post-quantum Key Exchange - A New Hope". USENIX '16.
*3Guo & Johansson. "Faster Dual Lattice Attacks for Solving LWE with Applications to CRYSTALS". AC'21
4}MATZOV. "Report on the Security of LWE: Improved Dual Lattice Attack". Zenodo #6493704
```


Recent improvements to the dual attack

Beginning of the dual attack

$\left[A R^{\prime} 05\right]^{1}$: use short dual vectors for distinguishing.

Recent developments

- [ADPS'16]²: A lattice sieve yields many short dual vectors.*
- [GJ'21] ${ }^{3}$: Speed up evaluating distinguisher with a Fast Fourier Transform (FFT).*
[MAT'22] ${ }^{4}$: Improves dual attack with modulus switching technique specific to LWE problem.

[^0]
Recent improvements to the dual attack

Beginning of the dual attack

$\left[A R^{\prime} 05\right]^{1}$: use short dual vectors for distinguishing.

Recent developments

- [ADPS'16]²: A lattice sieve yields many short dual vectors.*
- [GJ'21] ${ }^{3}$: Speed up evaluating distinguisher with a Fast Fourier Transform (FFT).*
- [MAT'22] ${ }^{4}$: Improves dual attack with modulus switching technique.*
": specific to LWE problem.

[^1]
Recent improvements to the dual attack

Beginning of the dual attack

$\left[A R^{\prime} 05\right]^{1}$: use short dual vectors for distinguishing.

Recent developments

- [ADPS'16]²: A lattice sieve yields many short dual vectors.*
- [GJ'21] ${ }^{3}$: Speed up evaluating distinguisher with a Fast Fourier Transform (FFT).*
- [MAT'22] ${ }^{4}$: Improves dual attack with modulus switching technique.*
*: specific to LWE problem.

[^2]
Our contributions

Generalization of FFT trick to BDD

- Provides geometric insight!
- Allows further improvements.

A heuristic used in earlier works leads to two contradictions
The distinguisher does not work as well as predicted.

Experimental confirmation

nerived eryptanalysis overestimates the success probability of attacks

Our contributions

Generalization of FFT trick to BDD

- Provides geometric insight!
- Allows further improvements.

A heuristic used in earlier works leads to two contradictions

The distinguisher does not work as well as predicted.

Experimental confirmation

Derived cryptanalysis overestinates the success probability of attacks

Our contributions

Generalization of FFT trick to BDD

- Provides geometric insight!
- Allows further improvements.

A heuristic used in earlier works leads to two contradictions

The distinguisher does not work as well as predicted.

Experimental confirmation

Derived cryptanalysis overestimates the success probability of attacks.

Generalization of FFT trick to

 BDD
Generalization of FFT trick to BDD

α-BDD search problem

Given: lattice Λ and target $\mathbf{t} \in \mathbb{R}^{n}$, such that $\mathbf{t}=\mathbf{v}+\mathbf{e}$ with $\mathbf{v} \in \Lambda$ and $\|\mathbf{e}\| \approx \alpha \lambda_{1}$,
Problem: recover \mathbf{v}.
(λ_{1} is length of shortest vector)

Generalization of FFT trick to BDD

α-BDD search problem

Given: lattice Λ and target $\mathbf{t} \in \mathbb{R}^{n}$, such that $\mathbf{t}=\mathbf{v}+\mathbf{e}$ with $\mathbf{v} \in \Lambda$ and $\|\mathbf{e}\| \approx \alpha \lambda_{1}$,
Problem: recover \mathbf{v}.
(λ_{1} is length of shortest vector)

Dual lattice

Dual lattice

The dual lattice Λ^{\vee} consists of all points \mathbf{w} such that $\langle\mathbf{w}, \Lambda\rangle \subseteq \mathbb{Z}$.

A dual vector \mathbf{w} corresponds to the character $\chi_{\mathbf{w}}$:

Dual lattice

Dual lattice

The dual lattice Λ^{\vee} consists of all points \mathbf{w} such that $\langle\mathbf{w}, \Lambda\rangle \subseteq \mathbb{Z}$.
A dual vector \mathbf{w} corresponds to the character $\chi_{\mathbf{w}}$:

Distinguish based on score

Consider the score function:

$$
f_{\mathbf{w}}(\mathbf{t})=\cos (2 \pi\langle\mathbf{w}, \mathbf{t}\rangle)
$$

\mathbf{t} close to Λ and \mathbf{w} short \Longrightarrow score ≈ 1,

t uniform from torus \mathbb{R}^{n} / Λ expected score is 0 .

Distinguish based on score

Consider the score function:

$$
\begin{gathered}
f_{\mathbf{w}}(\mathbf{t})=\cos (2 \pi\langle\mathbf{w}, \mathbf{t}\rangle) \\
-\mathbf{t} \in \Lambda \Longrightarrow \text { score }=1
\end{gathered}
$$

$$
-1
$$

$+1 \quad$ score
t uniform from torus \mathbb{R}^{n} / Λ

Distinguish based on score

Consider the score function:
\Longrightarrow expected score is 0 .

$$
f_{\mathbf{w}}(\mathbf{t})=\cos (2 \pi\langle\mathbf{w}, \mathbf{t}\rangle)
$$

$-\mathrm{t} \in \Lambda \Longrightarrow$ score $=1$,

- \mathbf{t} close to Λ and \mathbf{w} short \Longrightarrow score ≈ 1,

- t uniform from torus \mathbb{R}^{n} / Λ

Distinguish based on score

Consider the score function:

$$
f_{\mathbf{w}}(\mathbf{t})=\cos (2 \pi\langle\mathbf{w}, \mathbf{t}\rangle)
$$

$-\mathrm{t} \in \Lambda \Longrightarrow$ score $=1$,

- \mathbf{t} close to Λ and \mathbf{w} short \Longrightarrow score ≈ 1,
- \mathbf{t} uniform from torus \mathbb{R}^{n} / Λ

\Longrightarrow expected score is 0 .

Distinguish based on score

Consider the score function:

$$
f_{\mathbf{w}}(\mathbf{t})=\cos (2 \pi\langle\mathbf{w}, \mathbf{t}\rangle),
$$

$-\mathrm{t} \in \Lambda \Longrightarrow$ score $=1$,

- \mathbf{t} close to Λ and \mathbf{w} short \Longrightarrow score ≈ 1,
- \mathbf{t} uniform from torus \mathbb{R}^{n} / Λ
\Longrightarrow expected score is 0 .
! If score $\approx 1, \mathbf{t}$ can be uniform!

Dual-Sieve distinguisher

To improve the distinguisher, we use all $(4 / 3)^{n / 2}$ short dual vectors from a lattice sieve:

$$
f_{\mathcal{W}}(\mathbf{t})=\sum_{\mathbf{w} \in \mathcal{W}} f_{\mathbf{w}}(\mathbf{t})=\sum_{\mathbf{w} \in \mathcal{W}} \cos (2 \pi\langle\mathbf{w}, \mathbf{t}\rangle) .
$$

Independence Heuristic used in [GJ'21], [MAT'22] and more

Dual-Sieve distinguisher

To improve the distinguisher, we use all $(4 / 3)^{n / 2}$ short dual vectors from a lattice sieve:

$$
f_{\mathcal{W}}(\mathbf{t})=\sum_{\mathbf{w} \in \mathcal{W}} f_{\mathbf{w}}(\mathbf{t})=\sum_{\mathbf{w} \in \mathcal{W}} \cos (2 \pi\langle\mathbf{w}, \mathbf{t}\rangle) .
$$

Independence Heuristic used in [GJ'21], [MAT'22] and more

Given a set of dual vectors \mathcal{W} from a sieve, the scores $\cos (2 \pi\langle\mathbf{w}, \mathbf{t}\rangle)$ are mutually independent.

Dual-Sieve distinguisher

Independence Heuristic used in [GJ'21], [MAT'22] and more

Given a set of dual vectors \mathcal{W} from a sieve, the scores $\cos (2 \pi\langle\mathbf{w}, \mathbf{t}\rangle)$ are mutually independent.

\mathbf{t} uniform $\bmod \Lambda \stackrel{\text { w.h.p. }}{\Longrightarrow} f_{\mathcal{W}}(\mathbf{t}) \approx 0$,
\mathbf{t} BDD target $\xrightarrow{\text { w.h.p. }} f_{\mathcal{W}}(\mathbf{t})$ large.

Dual-Sieve distinguisher

Independence Heuristic used in [GJ'21], [MAT'22] and more

Given a set of dual vectors \mathcal{W} from a sieve, the scores $\cos (2 \pi\langle\mathbf{w}, \mathbf{t}\rangle)$ are mutually independent.

\mathbf{t} uniform $\bmod \Lambda \stackrel{\text { w.h.p. }}{\Longrightarrow} f_{\mathcal{W}}(\mathbf{t}) \approx 0$,
\mathbf{t} BDD target $\xrightarrow{\text { w.h.p. }} f_{\mathcal{W}}(\mathbf{t})$ large.

Search-BDD \Longrightarrow Decision-BDD

- Take a sparsified sublattice $\Lambda^{\prime} \subset \Lambda$,

Use the distinguisher fow for Λ^{\prime},
For $\mathbf{t}=\mathbf{v}+\mathbf{e}$ and a guess $\mathbf{g} \in \Lambda$

distinguisher marks $\mathbf{t}-\mathbf{g}$ as BDD.

Search-BDD \Longrightarrow Decision-BDD

- Take a sparsified sublattice $\Lambda^{\prime} \subset \Lambda$,
- Use the distinguisher $f_{\mathcal{W}}$ for Λ^{\prime}, For $\mathrm{t}=\mathrm{v}+\mathrm{e}$ and a guess $\mathrm{g} \in \Lambda$

t close to $\mathbf{g}+\Lambda^{\prime}$
\mathbf{t} - \mathbf{g} close to Λ^{\prime}
distinguisher marks $t-g$ as BDD.

Search-BDD \Longrightarrow Decision-BDD

- Take a sparsified sublattice $\Lambda^{\prime} \subset \Lambda$,
- Use the distinguisher $f_{\mathcal{W}}$ for Λ^{\prime},
- For $\mathbf{t}=\mathbf{v}+\mathbf{e}$ and a guess $\mathbf{g} \in \Lambda$,

$$
\begin{aligned}
\mathbf{v} \in \mathbf{g}+\Lambda^{\prime} & \Longleftrightarrow \mathbf{t} \text { close to } \mathbf{g}+\Lambda^{\prime} \\
& \Longleftrightarrow \mathbf{t}-\mathbf{g} \text { close to } \Lambda^{\prime} \\
& \Longleftrightarrow{ }^{\text {w.h.p }} \text { distinguisher marks } \mathbf{t}-\mathbf{g} \text { as BDD. }
\end{aligned}
$$

Dual-Sieve attack

DualAttack (Λ, t) :

1. Pick a sublattice $\Lambda^{\prime} \subset \Lambda$,

Run a lattice sieve on $\left(\Lambda^{\prime}\right)^{\vee}$ to acquire dual vectors \mathcal{W},

Write Λ as union of Λ^{\prime}-cosets:

Pick $\Lambda^{\prime}+\mathbf{g}$ that maximizes $f_{\mathcal{W}}(\mathbf{t}-\mathbf{g})$.

We recovered part of the secret: g
The new BDD instance is easier

Dual-Sieve attack

DualAttack (Λ, t) :

1. Pick a sublattice $\Lambda^{\prime} \subset \Lambda$,
2. Run a lattice sieve on $\left(\Lambda^{\prime}\right)^{\vee}$ to acquire dual vectors \mathcal{W},

Write Λ as union of Λ^{\prime}-cosets:

Pick $\Lambda^{\prime}+\mathbf{g}$ that maximizes $f_{\mathcal{W}}(\mathbf{t}-\mathbf{g})$.

We recovered part of the secret: g.
The new BDD instance is easier.

Dual-Sieve attack

DualAttack (\wedge, \mathbf{t}) :

1. Pick a sublattice $\Lambda^{\prime} \subset \Lambda$,
2. Run a lattice sieve on $\left(\Lambda^{\prime}\right)^{\vee}$ to acquire dual vectors \mathcal{W},
3. Write Λ as union of Λ^{\prime}-cosets:

$$
\Lambda=\bigcup_{\mathbf{g}}\left(\Lambda^{\prime}+\mathbf{g}\right) \quad(\mathbf{g} \in \Lambda)
$$

Pick $\Lambda^{\prime}+g$ that maximizes $f_{\mathcal{W}}(\mathrm{t}-\mathrm{g})$.

We recovered part of the secret: \mathbf{g}

[^3]
Dual-Sieve attack

DualAttack (Λ, \mathbf{t}) :

1. Pick a sublattice $\Lambda^{\prime} \subset \Lambda$,
2. Run a lattice sieve on $\left(\Lambda^{\prime}\right)^{\vee}$ to acquire dual vectors \mathcal{W},
3. Write Λ as union of Λ^{\prime}-cosets:

$$
\Lambda=\bigcup_{\mathbf{g}}\left(\Lambda^{\prime}+\mathbf{g}\right) \quad(\mathbf{g} \in \Lambda)
$$

4. Pick $\Lambda^{\prime}+\mathbf{g}$ that maximizes $f_{\mathcal{W}}(\mathbf{t}-\mathbf{g})$.

- We recovered part of the secret: \mathbf{g}
- The new BDD instance is easier.

Dual-Sieve attack

DualAttack (Λ, t) :

1. Pick a sublattice $\Lambda^{\prime} \subset \Lambda$,
2. Run a lattice sieve on $\left(\Lambda^{\prime}\right)^{\vee}$ to acquire dual vectors \mathcal{W},
3. Write Λ as union of Λ^{\prime}-cosets:

$$
\Lambda=\bigcup_{\mathbf{g}}\left(\Lambda^{\prime}+\mathbf{g}\right) \quad(\mathbf{g} \in \Lambda)
$$

4. Pick $\Lambda^{\prime}+\mathbf{g}$ that maximizes $f_{\mathcal{W}}(\mathbf{t}-\mathbf{g})$.

- We recovered part of the secret: \mathbf{g}.
- The new BDD instance is easier.

General Dual-Sieve-FFT attack

Naïvely, computing $f_{\mathcal{W}}(\mathbf{t}-\mathbf{g})$, takes time $|\mathcal{W}|$ per guess.

Fast Fourier Transform

Computes scores for T many guesses in amortized time

Benefits of geometric insights

```
Attack works for any lattice \(\Lambda\) and sparsification \(\Lambda^{\prime}\), not only \(q\)-ary lattices
```

Flexibility in sparsification \Longrightarrow better attack.

General Dual-Sieve-FFT attack

Naïvely, computing $f_{\mathcal{W}}(\mathbf{t}-\mathbf{g})$, takes time $|\mathcal{W}|$ per guess.

Fast Fourier Transform

Computes scores for T many guesses in amortized time $\log _{2}(T)$ per guess!

Benefits of geometric insights

```
Attack works for any lattice \Lambda and sparsification \', not only q-ary lattices
```

- Flexibility in sparsification \Longrightarrow better attack

General Dual-Sieve-FFT attack

Naïvely, computing $f_{\mathcal{W}}(\mathbf{t}-\mathbf{g})$, takes time $|\mathcal{W}|$ per guess.

Fast Fourier Transform

Computes scores for T many guesses in amortized time $\log _{2}(T)$ per guess!

Benefits of geometric insights

- Attack works for any lattice Λ and sparsification Λ^{\prime}, not only q-ary lattices. Flexibility in sparsification \Longrightarrow better attack.

General Dual-Sieve-FFT attack

Naïvely, computing $f_{\mathcal{W}}(\mathbf{t}-\mathbf{g})$, takes time $|\mathcal{W}|$ per guess.

Fast Fourier Transform

Computes scores for T many guesses in amortized time $\log _{2}(T)$ per guess!

Benefits of geometric insights

- Attack works for any lattice Λ and sparsification Λ^{\prime}, not only q-ary lattices.
- Flexibility in sparsification \Longrightarrow better attack.

Independence Heuristic

leads to two contradictions

\#1: Distinguishing the indistinguishable (1/2)

[LW'21] ${ }^{5}$: Distinguishing a single target under Independence Heuristic

For any $\alpha>0$, take $\beta>1$ satisfying

$$
\frac{\beta^{2}}{\ln (\beta)}=\frac{e^{2}}{\alpha^{2}} .
$$

Given the shortest β^{n} dual vectors, $f_{\mathcal{W}}(\mathbf{t})$ distinguishes between a uniform and a α-BDD target 6 with success probability 99\%.

${ }^{5}$ Laarhoven and Walter. "Dual lattice attacks for closest vector problems (with preprocessing)". CT-RSA 2021.
${ }^{6}$ Recall: $\mathbf{t}=\mathbf{v}+\mathbf{e}$ such that $\mathbf{v} \in \Lambda$ and $\|\mathbf{e}\| \approx \alpha \lambda_{1}$.

\#1: Distinguishing the indistinguishable (1/2)

[LW'21] ${ }^{5}$: Distinguishing a single target under Independence Heuristic

For any $\alpha>0$, take $\beta>1$ satisfying

$$
\frac{\beta^{2}}{\ln (\beta)}=\frac{e^{2}}{\alpha^{2}} .
$$

Given the shortest β^{n} dual vectors, $f_{\mathcal{W}}(\mathbf{t})$ distinguishes between a uniform and a α-BDD target 6 with success probability 99\%.

${ }^{5}$ Laarhoven and Walter. "Dual lattice attacks for closest vector problems (with preprocessing)". CT-RSA 2021.
${ }^{6}$ Recall: $\mathbf{t}=\mathbf{v}+\mathbf{e}$ such that $\mathbf{v} \in \Lambda$ and $\|\mathbf{e}\| \approx \alpha \lambda_{1}$.

\#1: Distinguishing the indistinguishable (1/2)

[LW'21] ${ }^{5}$: Distinguishing a single
Can we still distinguish when $\alpha>1$? target under Independence Heuristic

For any $\alpha>0$, take $\beta>1$ satisfying

$$
\frac{\beta^{2}}{\ln (\beta)}=\frac{e^{2}}{\alpha^{2}} .
$$

Given the shortest β^{n} dual vectors, $f_{\mathcal{W}}(\mathbf{t})$ distinguishes between a uniform and a α-BDD target 6 with success probability 99\%.

SO YOUHE TEIINAME

[^4]
\#1: Distinguishing the indistinguishable (2/2)

Indistinguishability Theorem ("Smoothing bound")

[DDRT'22] ${ }^{7}$: In a random lattice, errors uniform from the ball of radius $\alpha \lambda_{1}$ become statistically indistinguishable from uniform errors in \mathbb{R}^{n} / Λ when $\alpha>1$.

In particular, no adversary (having unbounded runtime) can ever succeed distinguishing with nobability more than

[^5]
\#1: Distinguishing the indistinguishable (2/2)

Indistinguishability Theorem ("Smoothing bound")

[DDRT'22] ${ }^{7}$: In a random lattice, errors uniform from the ball of radius $\alpha \lambda_{1}$ become statistically indistinguishable from uniform errors in \mathbb{R}^{n} / Λ when $\alpha>1$.

In particular, no adversary (having unbounded runtime) can ever succeed distinguishing with probability more than $\frac{1}{2}+\alpha^{-n / 2}$.

[^6]
\#2: Candidates Closer than the Solution (1/3)

Distinguishing α-BDD among many uniforms

Given: T random uniform targets and a single α-BDD target, shuffled.

Return: the BDD target.


```
Recall from Dual-Sieve attack ([GJ'21], [MAT'22] & more)
    Pick }\mp@subsup{\Lambda}{}{\prime}+\mathbf{g}\mathrm{ that maximizes }\mp@subsup{f}{\mathcal{W}}{\prime}(\mathbf{t}-\mathbf{g}
```

Limit on T
What is biggest T for which Dual-Sieve attack works with 99\% probability?

\#2: Candidates Closer than the Solution (1/3)

Distinguishing α-BDD among many uniforms

Given: T random uniform targets and a single α-BDD target, shuffled.

Return: the BDD target.

Recall from Dual-Sieve attack ([GJ'21], [MAT'22] \& more):
4. Pick $\Lambda^{\prime}+\mathbf{g}$ that maximizes $f_{\mathcal{W}}(\mathbf{t}-\mathbf{g})$.

Limit on T

\#2: Candidates Closer than the Solution (1/3)

Distinguishing α-BDD among many uniforms

Given: T random uniform targets and a single α-BDD target, shuffled.

Return: the BDD target.

Recall from Dual-Sieve attack ([GJ'21], [MAT'22] \& more):
4. Pick $\Lambda^{\prime}+\mathbf{g}$ that maximizes $f_{\mathcal{W}}(\mathbf{t}-\mathbf{g})$.

Limit on T
Question: What is biggest T for which Dual-Sieve attack works with 99% probability?

\#2: Candidates Closer than the Solution (2/3)

Distinguishing failures

Failure \Longrightarrow a) α-BDD target has low score, or
b) any of the T uniform targets has high score.

Claim [GJ'21], [MAT'22]
under Independence Heurist

For $\alpha<0.89$:
Dual-Sieve attack works for $T=\frac{1}{p}=e^{e^{C_{n}}}$?!

\#2: Candidates Closer than the Solution (2/3)

Distinguishing failures

Failure \Longrightarrow a) α-BDD target has low score, or
b) any of the T uniform targets has high score.

Claim [GJ'21], [MAT'22]
 under Independence Heuristic:

Classic tail bound: $p \leq e^{-E_{\alpha}^{2} /|\mathcal{W}|}$.

For $\alpha<0.89$:

\Longrightarrow Dual-Sieve attack works for $T=\frac{1}{p}=e^{e^{c_{n}}} ?!$

\#2: Candidates Closer than the Solution (2/3)

Distinguishing failures

Failure \Longrightarrow a) α-BDD target has low score, or
b) any of the T uniform targets has high score.

Claim [GJ'21], [MAT'22]
 under Independence Heuristic:

Classic tail bound: $p \leq e^{-E_{\alpha}^{2} /|\mathcal{W}|}$.

For $\alpha<0.89: \quad E_{\alpha}^{2} /|\mathcal{W}| \sim e^{C_{n}}$, as $n \rightarrow \infty$.

\#2: Candidates Closer than the Solution (2/3)

Distinguishing failures

Failure \Longrightarrow a) α-BDD target has low score, or
b) any of the T uniform targets has high score.

Claim [GJ'21], [MAT'22]
 under Independence Heuristic:

Classic tail bound: $p \leq e^{-E_{\alpha}^{2} /|\mathcal{W}|}$.

For $\alpha<0.89: \quad E_{\alpha}^{2} /|\mathcal{W}| \sim e^{C_{n}}$, as $n \rightarrow \infty$.
\Longrightarrow Dual-Sieve attack works for $T=\frac{1}{p}=e^{e^{C_{n}}} ?!$

\#2: Candidates Closer than the Solution (2/3)

Distinguishing failures

Failure \Longrightarrow a) α-BDD target has low score, or
b) any of the T uniform targets has high score.

Claim [GJ'21], [MAT'22]
 under Independence Heuristic:

Classic tail bound: $p \leq e^{-E_{\alpha}^{2} /|\mathcal{W}|}$.

MOTHER OF GOD...

For $\alpha<0.89: \quad E_{\alpha}^{2} /|\mathcal{W}| \sim e^{C_{n}}$, as $n \rightarrow \infty$.
\Longrightarrow Dual-Sieve attack works for $T=\frac{1}{p}=e^{e^{C_{n}}} ?!$

\#2: Candidates Closer than the Solution (3/3)

Closeness Lemma

Given a random lattice Λ and $r<\frac{1}{2}$,
a uniform target

$$
\mathbf{t} \stackrel{\$}{\leftarrow} \mathbb{R}^{n} / \Lambda
$$

is at most $r \lambda_{1}$ away from a lattice point with probability r^{n}.

Geometric contradiction

Given $T \gg \alpha^{-n}$ uniform targets, there is one of them closer to Λ than the α-BDD target

\#2: Candidates Closer than the Solution (3/3)

Closeness Lemma

Given a random lattice Λ and $r<\frac{1}{2}$, a uniform target

$$
\mathbf{t} \stackrel{\$}{\leftarrow} \mathbb{R}^{n} / \Lambda
$$

is at most $r \lambda_{1}$ away from a lattice point with probability r^{n}.

Geometric contradiction

- Given $T \gg \alpha^{-n}$ uniform targets, there is one of them closer to Λ than the α-BDD target.

This target has a higher score than the α-BDD target!

\#2: Candidates Closer than the Solution (3/3)

Closeness Lemma

Given a random lattice Λ and $r<\frac{1}{2}$, a uniform target

$$
\mathbf{t} \stackrel{\$}{\leftarrow} \mathbb{R}^{n} / \Lambda
$$

is at most $r \lambda_{1}$ away from a lattice point with probability r^{n}.

Geometric contradiction

- Given $T \gg \alpha^{-n}$ uniform targets, there is one of them closer to Λ than the α-BDD target.
- This target has a higher score than the α-BDD target!

z

What could be the cause?

Independence Heuristic:
"The scores $(\cos (2 \pi\langle w, t\rangle))$ wew are independent."

What could be the cause?

Independence Heuristic:

"The scores $(\cos (2 \pi\langle\mathbf{w}, \mathbf{t}\rangle))_{\mathbf{w} \in \mathcal{W}}$ are independent."

What could be the cause?

Inde, endence : 1euristic:

"The scores $\left(\cos \left(2 \pi^{\prime}, \quad-\quad-1\right)\right)_{w \in \mathcal{W}}$ are independent."

Experimental confirmation

Scores from uniform targets

Score distribution of uniform targets in dimension 60

Score distribution of uniform targets in dimension 80

Independence Heuristic
success probability of a ttack

Scores from uniform targets

Score distribution of uniform targets in dimension 60

Score distribution of uniform targets in dimension 80

Independence Heuristic overestimates success probability of attack.

Scores from uniform targets

Score distribution of uniform targets in dimension 60

Score distribution of uniform targets in dimension 80

Scores from uniform targets

Score distribution of uniform targets in dimension 60

Score distribution of uniform targets in dimension 80

Scores from BDD targets

Even prediction of BDD scores is off

- Variance is much higher than predicted.
- Median is lower than predicted.

Again, Independence Heuristic
success probability of attack

Scores from BDD targets

Even prediction of BDD scores is off

- Variance is much higher than predicted.
- Median is lower than predicted.

Again, Independence Heuristic overestimates success probability of attack.

Aftermath

What is the impact?

Dual-Sieve analyses are invalidated

- Success probability of the Dual-Sieve attack is significantly overestimated.

Hardness of BDD with respect to the Dual-Sieve attack is currently unknown.

What is the impact?

Dual-Sieve analyses are invalidated

- Success probability of the Dual-Sieve attack is significantly overestimated.
- Hardness of BDD with respect to the Dual-Sieve attack is currently unknown.

What is next?

Ongoing research

- Describing the score distribution of BDD targets using Bessel functions.
- New prediction for uniform targets that predicts "waterfall-floor phenomenon"

```
A heuristic has to be stress-tested on small
``` instances before being used in cryptographic attacks!

Score distribution of \(0.7-\mathrm{BDD}\) targets

\section*{What is next?}

\section*{Ongoing research}
- Describing the score distribution of BDD targets using Bessel functions.
- New prediction for uniform targets that predicts "waterfall-floor phenomenon".

A heuristic has to be stress-tested on small instances before being used in cryptographic attacks!

Score distribution of targets drawn uniformly from \(\mathbb{R}^{n} / \Lambda\)

\section*{What is next?}

\section*{Ongoing research}
- Describing the score distribution of BDD targets using Bessel functions.
- New prediction for uniform targets that predicts "waterfall-floor phenomenon".

A heuristic has to be stress-tested on small instances before being used in cryptographic attacks!

Score distribution of targets drawn uniformly from \(\mathbb{R}^{n} / \Lambda\)

\section*{Thank you!}

\section*{Questions?}
ePrint: https://ia.cr/2023/302
code \& data: https://github.com/ludopulles/DoesDualSieveWork```

[^0]: ${ }^{1}$ Aharonov \& Regev. "Lattice problems in NP \cap coNP". JACM '05.
 ${ }^{2}$ Alkim, Ducas, Pöppelmann \& Schwabe. "Post-quantum Key Exchange - A New Hope". USENIX '16.
 ${ }^{3}$ Guo \& Johansson. "Faster Dual Lattice Attacks for Solving LWE with Applications to CRYSTALS". AC'21.
 ${ }^{4}$ MATZOV. "Report on the Security of LWE: Improved Dual Lattice Attack". Zenodo \#6493704

[^1]: ${ }^{1}$ Aharonov \& Regev. "Lattice problems in NP \cap coNP". JACM '05.
 ${ }^{2}$ Alkim, Ducas, Pöppelmann \& Schwabe. "Post-quantum Key Exchange - A New Hope". USENIX '16.
 ${ }^{3}$ Guo \& Johansson. "Faster Dual Lattice Attacks for Solving LWE with Applications to CRYSTALS". AC'21.
 ${ }^{4}$ MATZOV. "Report on the Security of LWE: Improved Dual Lattice Attack". Zenodo \#6493704

[^2]: ${ }^{1}$ Aharonov \& Regev. "Lattice problems in NP \cap coNP". JACM '05.
 ${ }^{2}$ Alkim, Ducas, Pöppelmann \& Schwabe. "Post-quantum Key Exchange - A New Hope". USENIX '16.
 ${ }^{3}$ Guo \& Johansson. "Faster Dual Lattice Attacks for Solving LWE with Applications to CRYSTALS". AC'21.
 ${ }^{4}$ MATZOV. "Report on the Security of LWE: Improved Dual Lattice Attack". Zenodo \#6493704

[^3]: - The new RDD instance is easier

[^4]: ${ }^{5}$ Laarhoven and Walter. "Dual lattice attacks for closest vector problems (with preprocessing)". CT-RSA 2021.
 ${ }^{6}$ Recall: $\mathbf{t}=\mathbf{v}+\mathbf{e}$ such that $\mathbf{v} \in \Lambda$ and $\|\mathbf{e}\| \approx \alpha \lambda_{1}$.

[^5]: ${ }^{7}$ Debris-Alazard, Ducas, Resch \& Tillich. "Smoothing codes and lattices: Systematic Study and New Bounds".

[^6]: ${ }^{7}$ Debris-Alazard, Ducas, Resch \& Tillich. "Smoothing codes and lattices: Systematic Study and New Bounds".

