Does the Dual-Sieve Attack on LWE even Work?

Léo Ducas^{1,2}, **Ludo N. Pulles¹** 22 August 2023

Cryptology Group, CWI, Amsterdam, ²Mathematical Institute, Leiden University

The security of lattice-based cryptoschemes, like KYBER and DILITHIUM, depends on the hardness of the *Bounded Distance Decoding* (BDD) problem.

The security of lattice-based cryptoschemes, like KYBER and DILITHIUM, depends on the hardness of the *Bounded Distance Decoding* (BDD) problem.

BDD: Given a "noisy" lattice vector, recover the lattice vector.

Primal attack

- I. Embed Λ and t into a lattice, where the shortest vector is shorter than expected.
- II. Solve unique-SVP instance by lattice reduction.

Dual attack

- I. Construct a function that distinguishes between BDD targets and uniform targets,
- II. Using this distinguisher, guess and determine part of the secret.

Primal attack

- I. Embed Λ and **t** into a lattice, where the shortest vector is shorter than expected.
- II. Solve unique-SVP instance by lattice reduction.

Dual attack

- 1. Construct a function that distinguishes between BDD targets and uniform targets,
- II. Using this distinguisher, guess and determine part of the secret.

Shortest vector problem (SVP)

Primal attack

- I. Embed Λ and **t** into a lattice, where the shortest vector is shorter than expected.
- II. Solve unique-SVP instance by lattice reduction.

Dual attack

- Construct a function that distinguishes between BDD targets and uniform targets,
- II. Using this distinguisher, guess and determine part of the secret.

Shortest vector problem (SVP)

Primal attack

- I. Embed Λ and **t** into a lattice, where the shortest vector is shorter than expected.
- II. Solve unique-SVP instance by lattice reduction.

Theoretically and experimentally well-studied.

Dual attack

- I. Construct a function that distinguishes between BDD targets and uniform targets,
- II. Using this distinguisher, guess and determine part of the secret.

Primal attack

- I. Embed Λ and **t** into a lattice, where the shortest vector is shorter than expected.
- II. Solve unique-SVP instance by lattice reduction.

Theoretically and experimentally well-studied.

Dual attack

- Construct a function that distinguishes between BDD targets and uniform targets,
- II. Using this distinguisher, guess and determine part of the secret.

Received little experimental attention so far.

[AR'05]¹: use short dual vectors for distinguishing.

Recent developments

- [ADPS'16]²: A lattice sieve yields many short dual vectors.*
- [GJ'21]³: Speed up evaluating distinguisher with a Fast Fourier Transform (FFT).*

[MAT'22]⁴: Improves dual attack with modulus switching technique.⁵
 *: specific to LWE problem.

¹Aharonov & Regev. "Lattice problems in NP \cap coNP". JACM '05.

²Alkim, Ducas, Pöppelmann & Schwabe. "Post-quantum Key Exchange – A New Hope". USENIX '16.
 ³Guo & Johansson. "Faster Dual Lattice Attacks for Solving LWE with Applications to CRYSTALS". AC'21.
 ⁴MATZOV. "Report on the Security of LWE: Improved Dual Lattice Attack". Zenodo #6493704

[AR'05]¹: use short dual vectors for distinguishing.

Recent developments

- [ADPS'16]²: A lattice sieve yields many short dual vectors.*
- [GJ'21]³: Speed up evaluating distinguisher with a Fast Fourier Transform (FFT).*

[MAT'22]⁴: Improves dual attack with modulus switching technique."
 *: specific to LWE problem.

²Alkim, Ducas, Pöppelmann & Schwabe. "Post-quantum Key Exchange – A New Hope". USENIX '16.
 ³Guo & Johansson. "Faster Dual Lattice Attacks for Solving LWE with Applications to CRYSTALS". AC'21.
 ⁴MATZOV. "Report on the Security of LWE: Improved Dual Lattice Attack". Zenodo #6493704

¹Aharonov & Regev. "Lattice problems in NP \cap coNP". JACM '05.

[AR'05]¹: use short dual vectors for distinguishing.

Recent developments

- [ADPS'16]²: A lattice sieve yields many short dual vectors.*
- [GJ'21]³: Speed up evaluating distinguisher with a Fast Fourier Transform (FFT).*

[MAT'22]⁴: Improves dual attack with modulus switching technique.'
 *: specific to LWE problem.

¹Aharonov & Regev. "Lattice problems in NP \cap coNP". JACM '05.

 ²Alkim, Ducas, Pöppelmann & Schwabe. "Post-quantum Key Exchange – A New Hope". USENIX '16.
 ³Guo & Johansson. "Faster Dual Lattice Attacks for Solving LWE with Applications to CRYSTALS". AC'21.
 ⁴MATZOV. "Report on the Security of LWE: Improved Dual Lattice Attack". Zenodo #6493704

[AR'05]¹: use short dual vectors for distinguishing.

Recent developments

- [ADPS'16]²: A lattice sieve yields many short dual vectors.*
- [GJ'21]³: Speed up evaluating distinguisher with a Fast Fourier Transform (FFT).*
- [MAT'22]⁴: Improves dual attack with modulus switching technique.*
 *: specific to LWE problem.

¹Aharonov & Regev. "Lattice problems in NP \cap coNP". JACM '05.

 ²Alkim, Ducas, Pöppelmann & Schwabe. "Post-quantum Key Exchange – A New Hope". USENIX '16.
 ³Guo & Johansson. "Faster Dual Lattice Attacks for Solving LWE with Applications to CRYSTALS". AC'21.
 ⁴MATZOV. "Report on the Security of LWE: Improved Dual Lattice Attack". Zenodo #6493704

[AR'05]¹: use short dual vectors for distinguishing.

Recent developments

- [ADPS'16]²: A lattice sieve yields many short dual vectors.*
- [GJ'21]³: Speed up evaluating distinguisher with a Fast Fourier Transform (FFT).*
- [MAT'22]⁴: Improves dual attack with modulus switching technique.*
- *: specific to LWE problem.

¹Aharonov & Regev. "Lattice problems in NP \cap coNP". JACM '05.

 ²Alkim, Ducas, Pöppelmann & Schwabe. "Post-quantum Key Exchange – A New Hope". USENIX '16.
 ³Guo & Johansson. "Faster Dual Lattice Attacks for Solving LWE with Applications to CRYSTALS". AC'21.
 ⁴MATZOV. "Report on the Security of LWE: Improved Dual Lattice Attack". Zenodo #6493704

- Provides geometric insight!
- Allows further improvements.

A heuristic used in earlier works leads to two contradictions

The distinguisher does not work as well as predicted.

Experimental confirmation

Derived cryptanalysis overestimates the success probability of attacks.

- Provides geometric insight!
- Allows further improvements.

A heuristic used in earlier works leads to two contradictions

The distinguisher does not work as well as predicted.

Experimental confirmation

Derived cryptanalysis overestimates the success probability of attacks.

- Provides geometric insight!
- Allows further improvements.

A heuristic used in earlier works leads to two contradictions

The distinguisher does not work as well as predicted.

Experimental confirmation

Derived cryptanalysis overestimates the success probability of attacks.

α -BDD search problem

Given: lattice Λ and target $\mathbf{t} \in \mathbb{R}^n$, such that $\mathbf{t} = \mathbf{v} + \mathbf{e}$ with $\mathbf{v} \in \Lambda$ and $\|\mathbf{e}\| \approx \alpha \lambda_1$,

Problem: recover \mathbf{v} .

 $(\lambda_1 \text{ is length of shortest vector})$

α -BDD search problem

Given: lattice Λ and target $\mathbf{t} \in \mathbb{R}^n$, such that $\mathbf{t} = \mathbf{v} + \mathbf{e}$ with $\mathbf{v} \in \Lambda$ and $\|\mathbf{e}\| \approx \alpha \lambda_1$,

Problem: recover v.

 $(\lambda_1 \text{ is length of shortest vector})$

Dual lattice

The dual lattice Λ^{\vee} consists of all points **w** such that $\langle \mathbf{w}, \Lambda \rangle \subseteq \mathbb{Z}$.

A dual vector **w** corresponds to the *character* χ_w :

Dual lattice

The dual lattice Λ^{\vee} consists of all points **w** such that $\langle \mathbf{w}, \Lambda \rangle \subseteq \mathbb{Z}$.

A dual vector **w** corresponds to the *character* χ_{w} :

Consider the score function:

 $f_{\mathsf{w}}(\mathsf{t}) = \cos\left(2\pi \left\langle \mathsf{w}, \mathsf{t} \right\rangle\right),$

- $\mathbf{t} \in \Lambda \Longrightarrow$ score = 1,
- **t** close to Λ and **w** short \Longrightarrow score \approx 1,
- **t** uniform from torus \mathbb{R}^n / Λ
 - \implies expected score is 0.

 $\cancel{1}$ If score pprox 1, ${f t}$ can be uniform!

Consider the score function:

 $f_{\mathsf{w}}(\mathsf{t}) = \cos\left(2\pi \langle \mathsf{w}, \mathsf{t} \rangle\right),\,$

- $\mathbf{t} \in \Lambda \Longrightarrow$ score = 1,
- **t** close to Λ and **w** short \Longrightarrow score ≈ 1 ,
- **t** uniform from torus \mathbb{R}^n/Λ
 - \implies expected score is 0.

 \bigwedge If score pprox 1, ${f t}$ can be uniform!

Consider the score function:

 $f_{\mathsf{w}}(\mathsf{t}) = \cos\left(2\pi \langle \mathsf{w}, \mathsf{t} \rangle\right),\,$

- $\mathbf{t} \in \Lambda \Longrightarrow$ score = 1,
- t close to A and w short \Longrightarrow score \approx 1,
- $\begin{array}{rcl} & \mathbf{t} \text{ uniform from torus } \mathbb{R}^n / \Lambda \\ & \Longrightarrow \text{ expected score is 0.} \end{array}$

 $\cancel{1}$ If score pprox 1, ${f t}$ can be uniform!

Consider the score function:

 $f_{\mathsf{w}}(\mathsf{t}) = \cos\left(2\pi \left< \mathsf{w}, \mathsf{t} \right>\right),$

- $\mathbf{t} \in \Lambda \Longrightarrow$ score = 1,
- t close to A and w short \Longrightarrow score \approx 1,
- t uniform from torus \mathbb{R}^n/Λ
 - \implies expected score is 0.

 $\underline{\bigwedge}$ If score pprox 1, ${f t}$ can be uniform!

Consider the score function:

 $f_{\mathsf{w}}(\mathsf{t}) = \cos\left(2\pi \left< \mathsf{w}, \mathsf{t} \right>\right),$

- $\mathbf{t} \in \Lambda \Longrightarrow$ score = 1,
- t close to A and w short \Longrightarrow score \approx 1,
- ${\bf t}$ uniform from torus ${\mathbb R}^n/\Lambda$
 - \implies expected score is 0.

 \triangle If score pprox 1, **t** can be uniform!

Dual-Sieve distinguisher

To improve the distinguisher, we use all $(4/3)^{n/2}$ short dual vectors from a lattice sieve:

$$f_{\mathcal{W}}(\mathbf{t}) = \sum_{\mathbf{w} \in \mathcal{W}} f_{\mathbf{w}}(\mathbf{t}) = \sum_{\mathbf{w} \in \mathcal{W}} \cos\left(2\pi \left\langle \mathbf{w}, \mathbf{t} \right\rangle\right).$$

Independence Heuristic used in [GJ'21], [MAT'22] and more

To improve the distinguisher, we use all $(4/3)^{n/2}$ short dual vectors from a lattice sieve:

$$f_{\mathcal{W}}(\mathbf{t}) = \sum_{\mathbf{w} \in \mathcal{W}} f_{\mathbf{w}}(\mathbf{t}) = \sum_{\mathbf{w} \in \mathcal{W}} \cos\left(2\pi \left\langle \mathbf{w}, \mathbf{t} \right\rangle\right).$$

Independence Heuristic used in [GJ'21], [MAT'22] and more

Dual-Sieve distinguisher

Independence Heuristic used in [GJ'21], [MAT'22] and more

Dual-Sieve distinguisher

Independence Heuristic used in [GJ'21], [MAT'22] and more

- Take a sparsified sublattice $\Lambda'\subset\Lambda,$
- Use the distinguisher $f_{\mathcal{W}}$ for Λ' ,
- For $\mathbf{t} = \mathbf{v} + \mathbf{e}$ and a guess $\mathbf{g} \in \Lambda$,

$$\mathbf{v} \in \mathbf{g} + \Lambda' \iff \mathbf{t}$$
 close to $\mathbf{g} + \Lambda'$
 $\iff \mathbf{t} - \mathbf{g}$ close to Λ'
 $\xleftarrow{w.h.p}$ distinguisher marks $\mathbf{t} - \mathbf{g}$ as BDD

- Take a sparsified sublattice $\Lambda'\subset\Lambda,$
- Use the distinguisher $f_{\mathcal{W}}$ for Λ' ,
- For $\mathbf{t} = \mathbf{v} + \mathbf{e}$ and a guess $\mathbf{g} \in \Lambda$,

$$\mathbf{v} \in \mathbf{g} + \Lambda' \iff \mathbf{t}$$
 close to $\mathbf{g} + \Lambda'$
 $\iff \mathbf{t} - \mathbf{g}$ close to Λ'
 $\xleftarrow{w.h.p}$ distinguisher marks $\mathbf{t} - \mathbf{g}$ as BDD

- Take a sparsified sublattice $\Lambda'\subset\Lambda,$
- Use the distinguisher $f_{\mathcal{W}}$ for Λ' ,
- For $\boldsymbol{t}=\boldsymbol{v}+\boldsymbol{e}$ and a guess $\boldsymbol{g}\in\Lambda,$

$$\begin{array}{ll} \mathbf{v} \in \mathbf{g} + \Lambda' & \Longleftrightarrow & \mathbf{t} \text{ close to } \mathbf{g} + \Lambda' \\ & \longleftrightarrow & \mathbf{t} - \mathbf{g} \text{ close to } \Lambda' \\ & \xleftarrow{\text{w.h.p}} & \text{distinguisher marks } \mathbf{t} - \mathbf{g} \text{ as BDD.} \end{array}$$

Dual-Sieve attack

$\operatorname{DualAttack}(\Lambda, \mathbf{t})$:

- 1. Pick a sublattice $\Lambda'\subset\Lambda,$
- Run a lattice sieve on (Λ')[∨] to acquire dual vectors W,
- 3. Write Λ as union of Λ' -cosets:

 $\Lambda = igcup_{\mathbf{g}} (\Lambda' + \mathbf{g}) \quad (\mathbf{g} \in \Lambda),$

- 4. Pick $\Lambda' + \mathbf{g}$ that maximizes $f_{\mathcal{W}}(\mathbf{t} \mathbf{g})$.
 - We recovered part of the secret: g.
- The new BDD instance is easier.

Dual-Sieve attack

$\mathrm{DualAttack}(\Lambda, \mathbf{t})$:

- 1. Pick a sublattice $\Lambda' \subset \Lambda$,
- Run a lattice sieve on (Λ')[∨] to acquire dual vectors W,
- 3. Write Λ as union of Λ' -cosets:

 $\Lambda = \bigcup_{\mathbf{g}} \left(\Lambda' + \mathbf{g} \right) \quad (\mathbf{g} \in \Lambda),$

- 4. Pick $\Lambda' + \mathbf{g}$ that maximizes $f_{\mathcal{W}}(\mathbf{t} \mathbf{g})$.
 - We recovered part of the secret: g.
- The new BDD instance is easier.

Dual-Sieve attack

$\mathrm{DualAttack}(\Lambda, \mathbf{t})$:

- 1. Pick a sublattice $\Lambda' \subset \Lambda$,
- Run a lattice sieve on (Λ')[∨] to acquire dual vectors W,
- 3. Write Λ as union of Λ' -cosets:

 $\Lambda = igcup_{\mathbf{g}} (\Lambda' + \mathbf{g}) \quad (\mathbf{g} \in \Lambda),$

- 4. Pick $\Lambda' + \mathbf{g}$ that maximizes $f_{\mathcal{W}}(\mathbf{t} \mathbf{g})$.
 - We recovered part of the secret: g.
- The new BDD instance is easier.

Dual-Sieve attack

$\mathrm{DualAttack}(\Lambda, \mathbf{t})$:

- 1. Pick a sublattice $\Lambda' \subset \Lambda$,
- 2. Run a lattice sieve on $(\Lambda')^{\vee}$ to acquire dual vectors \mathcal{W} ,
- 3. Write Λ as union of Λ' -cosets:

$$\Lambda = \bigcup_{\mathbf{g}} \left(\Lambda' + \mathbf{g} \right) \quad (\mathbf{g} \in \Lambda),$$

- 4. Pick $\Lambda' + \mathbf{g}$ that maximizes $f_{\mathcal{W}}(\mathbf{t} \mathbf{g})$.
 - We recovered part of the secret: g.
 - The new BDD instance is easier.

$\mathrm{DualAttack}(\Lambda, \mathbf{t})$:

- 1. Pick a sublattice $\Lambda' \subset \Lambda$,
- Run a lattice sieve on (Λ')[∨] to acquire dual vectors W,
- 3. Write Λ as union of Λ' -cosets:

$$\Lambda = \bigcup_{\mathbf{g}} \left(\Lambda' + \mathbf{g} \right) \quad (\mathbf{g} \in \Lambda),$$

- 4. Pick $\Lambda' + \mathbf{g}$ that maximizes $f_{\mathcal{W}}(\mathbf{t} \mathbf{g})$.
- We recovered part of the secret: $\ensuremath{\mathbf{g}}.$
- The new BDD instance is easier.

Fast Fourier Transform

Computes scores for T many guesses in amortized time $\log_2(T)$ per guess!

- Attack works for any lattice Λ and sparsification Λ' , not only *q*-ary lattices.
- Flexibility in sparsification \implies better attack.

Fast Fourier Transform

Computes scores for T many guesses in amortized time $log_2(T)$ per guess!

- Attack works for any lattice Λ and sparsification Λ' , not only *q*-ary lattices.
- Flexibility in sparsification \implies better attack.

Fast Fourier Transform

Computes scores for T many guesses in amortized time $\log_2(T)$ per guess!

- Attack works for any lattice Λ and sparsification Λ' , not only q-ary lattices.
- Flexibility in sparsification \implies better attack.

Fast Fourier Transform

Computes scores for T many guesses in amortized time $\log_2(T)$ per guess!

- Attack works for any lattice Λ and sparsification Λ' , not only q-ary lattices.
- Flexibility in sparsification \implies better attack.

Independence Heuristic leads to two contradictions

[LW'21]⁵: Distinguishing a single $\frac{\beta^2}{\ln(\beta)}\uparrow$ target under Independence Heuristic $\alpha = 0.75$ For any $\alpha > 0$, take $\beta > 1$ satisfying $\alpha = 0.8$ $\frac{\beta^2}{\ln(\beta)} = \frac{e^2}{\alpha^2}.$ 2e -Given the shortest β^n dual vectors, $f_{\mathcal{W}}(\mathbf{t})$ distinguishes between a uniform and a α -BDD target⁶ with success probability 99%. \sqrt{e}

⁵Laarhoven and Walter. "Dual lattice attacks for closest vector problems (with preprocessing)". CT-RSA 2021. ⁶Recall: $\mathbf{t} = \mathbf{v} + \mathbf{e}$ such that $\mathbf{v} \in \Lambda$ and $\|\mathbf{e}\| \approx \alpha \lambda_1$. Ludo Pulles (CVII) [LW'21]⁵: Distinguishing a single target under Independence Heuristic

For any $\alpha>0,$ take $\beta>1$ satisfying $\frac{\beta^2}{\ln(\beta)}=\frac{e^2}{\alpha^2}.$

Given the shortest β^n dual vectors, $f_{\mathcal{W}}(\mathbf{t})$ distinguishes between a uniform and a α -BDD target⁶ with success probability 99%.

⁵Laarhoven and Walter. "Dual lattice attacks for closest vector problems (with preprocessing)". CT-RSA 2021. ⁶Recall: $\mathbf{t} = \mathbf{v} + \mathbf{e}$ such that $\mathbf{v} \in \Lambda$ and $\|\mathbf{e}\| \approx \alpha \lambda_1$. Ludo Pulles (CVII)

[LW'21]⁵: Distinguishing a single target under Independence Heuristic

For any
$$\alpha > 0$$
, take $\beta > 1$ satisfying $\frac{\beta^2}{\ln(\beta)} = \frac{e^2}{\alpha^2}.$

Given the shortest β^n dual vectors, $f_{\mathcal{W}}(\mathbf{t})$ distinguishes between a uniform and a α -BDD target⁶ with success probability 99%.

⁵Laarhoven and Walter. "Dual lattice attacks for closest vector problems (with preprocessing)". CT-RSA 2021. ⁶Recall: $\mathbf{t} = \mathbf{v} + \mathbf{e}$ such that $\mathbf{v} \in \Lambda$ and $\|\mathbf{e}\| \approx \alpha \lambda_1$. Ludo Pulles (CVII)

#1: Distinguishing the indistinguishable (2/2)

Indistinguishability Theorem ("Smoothing bound")

 $[DDRT'22]^7$: In a random lattice, errors uniform from the ball of radius $\alpha\lambda_1$ become statistically indistinguishable from uniform errors in \mathbb{R}^n/Λ when $\alpha > 1$.

In particular, no adversary (having unbounded runtime) can ever succeed distinguishing with probability more than $\frac{1}{2} + \alpha^{-n/2}$.

Z

⁷Debris-Alazard, Ducas, Resch & Tillich. "Smoothing codes and lattices: Systematic Study and New Bounds".

#1: Distinguishing the indistinguishable (2/2)

Indistinguishability Theorem ("Smoothing bound")

 $[DDRT'22]^7$: In a random lattice, errors uniform from the ball of radius $\alpha\lambda_1$ become statistically indistinguishable from uniform errors in \mathbb{R}^n/Λ when $\alpha > 1$.

In particular, no adversary (having unbounded runtime) can ever succeed distinguishing with probability more than $\frac{1}{2} + \alpha^{-n/2}$.

ź

⁷Debris-Alazard, Ducas, Resch & Tillich. "Smoothing codes and lattices: Systematic Study and New Bounds".

Distinguishing α -BDD among many uniforms

Given: T random uniform targets and a single α -BDD target, shuffled.

Return: the BDD target.

By Dimitris Vetsikas @Pixabaj

Recall from Dual-Sieve attack ([GJ'21], [MAT'22] & more): 4. Pick $\Lambda' + \mathbf{g}$ that maximizes $f_{\mathcal{W}}(\mathbf{t} - \mathbf{g})$.

Limit on 7

Question: What is biggest T for which Dual-Sieve attack works with 99% probability?

Distinguishing α -BDD among many uniforms

Given: T random uniform targets and a single α -BDD target, shuffled.

Return: the BDD target.

Recall from Dual-Sieve attack ([GJ'21], [MAT'22] & more): 4. Pick $\Lambda' + \mathbf{g}$ that maximizes $f_{\mathcal{W}}(\mathbf{t} - \mathbf{g})$.

Limit on 7

Question: What is biggest T for which Dual-Sieve attack works with 99% probability?

Distinguishing α -BDD among many uniforms

Given: T random uniform targets and a single α -BDD target, shuffled.

Return: the BDD target.

Recall from Dual-Sieve attack ([GJ'21], [MAT'22] & more): 4. Pick $\Lambda' + \mathbf{g}$ that maximizes $f_{\mathcal{W}}(\mathbf{t} - \mathbf{g})$.

Limit on T

Question: What is biggest T for which Dual-Sieve attack works with 99% probability?

Distinguishing failures

Failure \implies a) α -BDD target has low score, or b) *any* of the *T* uniform targets has high score.

Claim [GJ'21], [MAT'22] under Independence Heuristic

Classic tail bound: $p \leq e^{-E_{\alpha}^2/|\mathcal{W}|}$.

For $\alpha < 0.89$: $E_{\alpha}^2/|\mathcal{W}| \sim e^{Cn}$, as $n \to \infty$.

Distinguishing failures

Failure \implies a) α -BDD target has low score, or b) *any* of the *T* uniform targets has high score.

Claim [GJ'21], [MAT'22] under Independence Heuristic:

Classic tail bound: $p \leq e^{-E_{\alpha}^2/|\mathcal{W}|}$.

For $\alpha < 0.89$: $E_{\alpha}^2/|\mathcal{W}| \sim e^{Cn}$, as $n \to \infty$.

Distinguishing failures

Failure \implies a) α -BDD target has low score, or b) *any* of the *T* uniform targets has high score.

Claim [GJ'21], [MAT'22] under Independence Heuristic:

Classic tail bound: $p \leq e^{-E_{\alpha}^2/|\mathcal{W}|}$.

For $\alpha < 0.89$: $E_{\alpha}^2 / |\mathcal{W}| \sim e^{Cn}$, as $n \to \infty$.

Distinguishing failures

Failure \implies a) α -BDD target has low score, or b) *any* of the *T* uniform targets has high score.

Claim [GJ'21], [MAT'22] under Independence Heuristic:

Classic tail bound: $p \leq e^{-E_{\alpha}^2/|\mathcal{W}|}$.

For $\alpha < 0.89$: $E_{\alpha}^2/|\mathcal{W}| \sim e^{Cn}$, as $n \to \infty$.

Distinguishing failures

Failure \implies a) α -BDD target has low score, or b) *any* of the *T* uniform targets has high score.

Claim [GJ'21], [MAT'22] under Independence Heuristic:

Classic tail bound: $p \leq e^{-E_{\alpha}^2/|\mathcal{W}|}$.

For $\alpha < 0.89$: $E_{\alpha}^2/|\mathcal{W}| \sim e^{Cn}$, as $n \to \infty$.

Closeness Lemma

Given a random lattice Λ and $r < \frac{1}{2},$ a uniform target

 $\mathbf{t} \stackrel{\$}{\leftarrow} \mathbb{R}^n / \Lambda,$

is at most $r\lambda_1$ away from a lattice point with probability r^n .

Geometric contradiction

- Given $T \gg \alpha^{-n}$ uniform targets, there is one of them *closer to* Λ than the α -BDD target.
- This target has a *higher score* than the α -BDD target!

Closeness Lemma

Given a random lattice Λ and $r < \frac{1}{2},$ a uniform target

 $\mathbf{t} \stackrel{\$}{\leftarrow} \mathbb{R}^n / \Lambda,$

is at most $r\lambda_1$ away from a lattice point with probability r^n .

Geometric contradiction

- Given $T \gg \alpha^{-n}$ uniform targets, there is one of them *closer to* Λ than the α -BDD target.
- This target has a *higher score* than the α-BDD target!

Closeness Lemma

Given a random lattice Λ and $r < \frac{1}{2},$ a uniform target

 $\mathbf{t} \stackrel{\$}{\leftarrow} \mathbb{R}^n / \Lambda,$

is at most $r\lambda_1$ away from a lattice point with probability r^n .

Geometric contradiction

- Given $T \gg \alpha^{-n}$ uniform targets, there is one of them *closer to* Λ than the α -BDD target.
- This target has a *higher score* than the α -BDD target!

ź

Independence Heuristic:"The scores $(\cos(2\pi \langle \mathbf{w}, \mathbf{t} \rangle))_{\mathbf{w} \in \mathcal{W}}$ are independent."

Independence Heuristic: "The scores $(\cos(2\pi \langle \mathbf{w}, \mathbf{t} \rangle))_{\mathbf{w} \in \mathcal{W}}$ are independent."

Inder endence inteuristic: "The scores $(\cos(2\pi^2, \cdot, \cdot))_{w \in W}$ are independent."

Experimental confirmation

Score distribution of uniform targets in dimension 80

Ludo Pulles (CWI)

Score distribution of uniform targets in dimension 80

Independence Heuristic overestimates

success probability of attack.

Score distribution of 0.7-BDD targets in dimension 80

Even prediction of BDD scores is off

- Variance is much higher than predicted.
- Median is lower than predicted.

Again, *Independence Heuristic* overestimates success probability of attack.

Score distribution of 0.7-BDD targets in dimension 80

Even prediction of BDD scores is off

- Variance is much higher than predicted.
- Median is lower than predicted.

Again, *Independence Heuristic* overestimates success probability of attack.

Aftermath

Dual-Sieve analyses are invalidated

- Success probability of the Dual-Sieve attack is significantly overestimated.

- Hardness of BDD with respect to the Dual-Sieve attack is currently unknown.

Dual-Sieve analyses are invalidated

- Success probability of the Dual-Sieve attack is significantly overestimated.
- Hardness of BDD with respect to the Dual-Sieve attack is currently unknown.
Ongoing research

- Describing the score distribution of BDD targets using Bessel functions.
- New prediction for uniform targets that predicts "waterfall-floor phenomenon".

A heuristic has to be *stress-tested* on small instances before being used in cryptographic attacks!

Ongoing research

- Describing the score distribution of BDD targets using Bessel functions.
- New prediction for uniform targets that predicts "waterfall-floor phenomenon".

A heuristic has to be *stress-tested* on small instances before being used in cryptographic attacks! Score distribution of targets drawn uniformly from \mathbb{R}^n/Λ

Ongoing research

- Describing the score distribution of BDD targets using Bessel functions.
- New prediction for uniform targets that predicts "waterfall-floor phenomenon".

A heuristic has to be *stress-tested* on small instances before being used in cryptographic attacks!

Score distribution of targets drawn uniformly from \mathbb{R}^n/Λ

Questions?

ePrint: code & data: https://ia.cr/2023/302

https://github.com/ludopulles/DoesDualSieveWork