Orbweaver

Succinct Linear Functional Commitments from Lattices

Ben Fisch, Zeyu Liu, and Psi Vesely

Yale University
Results

- Lattice arguments with $O(\log n \log \log n)$ complexity verifier*
Results

- Lattice arguments with $O(\log n \log \log n)$ complexity verifier* ($O(\log^{1.58} n)$ with Karatsuba)

Results

• Lattice arguments with $O(\log n \log \log n)$ complexity verifier* ($O(\log^{1.58} n)$ with Karatsuba)

• Constructions for both cyclotomic rings R_q and integers \mathbb{Z}_q of:
 • Linear map functional commitments/ inner product argument
 • Polynomial commitments
 • SNARK for R1CS
Results

• Lattice arguments with $O(\log n \log \log n)$ complexity verifier* ($O(\log^{1.58} n)$ with Karatsuba)

• Constructions for both cyclotomic rings R_q and integers \mathbb{Z}_q of:
 • Linear map functional commitments/ inner product argument
 • Polynomial commitments
 • SNARK for R1CS

• All extractable, preprocessing, mostly structure-preserving
Results

• Lattice arguments with $O(\log n \log \log n)$ complexity verifier* $(O(\log^{1.58} n)$ with Karatsuba)

• Constructions for both cyclotomic rings R_q and integers \mathbb{Z}_q of:
 • Linear map functional commitments/ inner product argument
 • Polynomial commitments
 • SNARK for R1CS

• All extractable, preprocessing, mostly structure-preserving
Abstract linear map equation

\[
\left(\sum_{i=1}^{n} f_i \cdot Y^{-i} \right) \cdot \left(\sum_{i=1}^{n} x_i \cdot Y^i \right) \equiv \langle f, x \rangle + \sum_{i = -n + 1, \ i \neq 0}^{n-1} b_i \cdot Y^i \ \text{mod} \ q
\]

Form used in [Gro10, LRY16, AC20]
Evaluation verification equation

\[
\left(\sum_{i=1}^{n} f_i \cdot Y^{-i} \right) \cdot \left(\sum_{i=1}^{n} x_i \cdot Y^i \right) \equiv \langle f, x \rangle + \sum_{i=-n+1}^{n-1} b_i \cdot Y^i \mod q
\]

Form used in [Gro10, LRY16, AC20], translated to lattice setting using techniques from [ACLMT22]
Evaluation verification equation

\[
\begin{align*}
\langle f, x \rangle & \equiv \left(\sum_{i=1}^{n} f_i \cdot Y^{-i} \right) \cdot \left(\sum_{i=1}^{n} x_i \cdot Y^i \right) + \sum_{i = -n + 1, i \neq 0}^{n-1} b_i \cdot Y^i \mod q \\
\end{align*}
\]

Form used in [Gro10,LRY16,AC20], translated to lattice setting using techniques from [ACLMT22]
Ring Vandermonde SIS (R-V-SIS) commitment

\[c := \sum_{i=1}^{n} x_i \cdot v^i \mod q , \text{ where } v \leftarrow R_q \text{ is public} \]
Ring Vandermonde SIS (R-V-SIS) commitment

\[c := \sum_{i=1}^{n} x_i \cdot v^i \mod q, \text{ where } v \leftarrow R_q \text{ is public} \]

- Ajtai’s R-SIS commitment, with a Vandermonde key
Ring Vandermonde SIS (R-V-SIS) commitment

\[c := \sum_{i=1}^{n} x_i \cdot v^i \mod q, \text{ where } v \leftarrow R_q \text{ is public} \]

- Ajtai’s R-SIS commitment, with a Vandermonde key
- Similar to assumption used in PASS Sign. If we pick \(v \) instead from the primitive roots of unity binding reduces to Vandermonde R-SIS [HS15,LZA18,BSS22]
Evaluation verification equation

\[
\left(\sum_{i=1}^{n} f_i \cdot Y^{-i} \right) \cdot \left(\sum_{i=1}^{n} x_i \cdot Y^i \right) \equiv \langle f, x \rangle + \sum_{i = -n + 1, \ i \neq 0}^{n-1} b_i \cdot Y^i \mod q
\]

\[
\begin{align*}
&c_f \quad \cdot \quad c_x \\
\text{(preprocessed)}
\end{align*}
\]

Form used in [Gro10,LRY16,AC20], translated to lattice setting using techniques from [ACLMT22]
Evaluation verification equation

\[\left(\sum_{i=1}^{n} f_i \cdot Y^{-i} \right) \cdot \left(\sum_{i=1}^{n} x_i \cdot Y^i \right) \equiv \langle f, x \rangle + \sum_{i=-n+1, i \neq 0}^{n-1} b_i \cdot Y^i \mod q \]

\[c_f \cdot c_x \equiv y \]

(preprocessed)

Form used in [Gro10, LRY16, AC20], translated to lattice setting using techniques from [ACLMT22]
Form used in [Gro10, LRY16, AC20], translated to lattice setting using techniques from [ACLMT22]
Prover key

Generate short preimages u_i for $i \in \{-n + 1, \ldots, n - 1\}\setminus\{0\}$ such that

$$\langle a, u_i \rangle \equiv v^i \mod q$$

Using a trapdoor public SIS matrix a [MP12]
Computing the proof

- Given $\langle a, u_i \rangle \equiv v^i \mod q$ except for $i = 0$

- Where b_i is the sum of cross terms corresponding to the coefficient of v^i compute

$$
\pi := \sum_{i = -n + 1, i \neq 0}^{n-1} b_i \cdot u_i \mod q
$$
Computing the proof

• Given \(\langle a, u_i \rangle \equiv v^i \mod q \) except for \(i = 0 \)

• Where \(b_i \) is the sum of cross terms corresponding to the coefficient of \(v^i \) compute

\[
\pi := \sum_{\substack{i = -n + 1, \\
i \neq 0}}^{n-1} b_i \cdot u_i \mod q
\]

• Then

\[
\langle a, \pi \rangle \equiv \sum_{\substack{i = -n + 1, \\
i \neq 0}}^{n-1} b_i \cdot v_i \mod q
\]
Computing the proof

- Given $\langle \mathbf{a}, \mathbf{u}_i \rangle \equiv v^i \mod q$ except for $i = 0$

- Where b_i is the sum of cross terms corresponding to the coefficient of v^i compute

$$\pi := \sum_{i = -n + 1, \ i \neq 0}^{n-1} b_i \cdot u_i \mod q$$

- Then

$$\langle \mathbf{a}, \pi \rangle \equiv \sum_{i = -n + 1, \ i \neq 0}^{n-1} b_i \cdot v^i \mod q$$

- \mathbf{f}, \mathbf{x} short $\implies b_i$ short, u_i short $\implies \pi$ short
Evaluation binding

\[
\left(\sum_{i=1}^{n} f_i \cdot v^{-i} \right) \cdot \left(\sum_{i=1}^{n} x_i \cdot v^i \right) \equiv \langle f, x \rangle + \sum_{i=-n+1, \ i \neq 0}^{n-1} b_i \cdot v^i \mod q
\]

\[
c_f \cdot c_x \equiv y + \langle a, \pi \rangle \mod q
\]
Evaluation binding

\[
\left(\sum_{i=1}^{n} f_i \cdot v^{-i} \right) \cdot \left(\sum_{i=1}^{n} x_i \cdot v^i \right) \equiv \langle f, x \rangle + \sum_{i=-n+1, \ i \neq 0}^{n-1} b_i \cdot v^i \mod q
\]

\[
c_f \cdot c_x \equiv y + \langle a, \pi \rangle \mod q
\]

\[
\langle a, \pi - \pi' \rangle \equiv y' - y \mod q
\]
Evaluation binding

\[\langle a, \pi - \pi' \rangle \equiv y' - y \mod q \]

- k-R-ISIS family of assumptions: can only generate short preimages for targets within a short linear span of the \(v^i \) or for random targets [ACLMT22]
Evaluation binding

\[\langle a, \pi - \pi' \rangle \equiv y' - y \mod q \]

- k-R-ISIS family of assumptions: can only generate short preimages for targets within a short linear span of the \(v^i \) or for random targets [ACLMT22]
- \(y' - y \) is short, while for \(v \leftarrow R_q \) all \(v^i \mod q \) will be long whp, as will the random targets
Multiple outputs

Can prove $\langle f_i, x \rangle = y_i$ for $i \in [t]$ with a single evaluation proof:

$$\langle a, \pi \rangle \equiv c \cdot \sum_{i=1}^{t} h_i \cdot c k_f_i - \sum_{i=1}^{t} h_i \cdot y_i \mod q$$
Multiple outputs

Can prove $\langle f_i, x \rangle = y_i$ for $i \in [t]$ with a single evaluation proof:

$$\langle a, \pi \rangle \equiv c \cdot \sum_{i=1}^{t} h_i \cdot c^k_f - \sum_{i=1}^{t} h_i \cdot y_i \mod q$$

Key observation: the prover submits a separate knowledge proof π' for c from which we extract x. It’s thus unnecessary to extract the hypothetical π_i s.t.

$$\pi = \sum_{i=1}^{t} h_i \cdot \pi_i$$
Multiple outputs

Using extracted x we get

$$\langle a, \pi \rangle \equiv \sum_{i=1}^{t} h_i \cdot (\langle f_i, x \rangle - y_i) - \sum_{i=1}^{t} h_i \cdot \sum_{j=-n+1}^{n-1} b_{i,j} \cdot Y^i \mod q$$
Multiple outputs

\[\langle a, \pi \rangle \equiv \sum_{i=1}^{t} h_i \cdot (\langle f_i, x \rangle - y_i) - \sum_{i=1}^{t} h_i \cdot \sum_{j=-n+1, j \neq 0}^{n-1} b_{i,j} \cdot Y^i \mod q \]

\[p(h_1, \ldots, h_t) \]

- For \(h_1, \ldots, h_t \leftarrow \mathcal{H} \) want \(p(h_1, \ldots, h_t) = 0 \) only with negligible probability if \(p \) is not the zero polynomial
Multiple outputs

\[\langle a, \pi \rangle \equiv \sum_{i=1}^{t} h_i \cdot (\langle f_i, x \rangle - y_i) - \sum_{i=1}^{t} h_i \cdot \sum_{j=-n+1, j \neq 0}^{n-1} b_{i,j} \cdot Y^i \mod q \]

\[p(h_1, \ldots, h_t) \]

- For \(h_1, \ldots, h_t \leftarrow \mathcal{H} \) want \(p(h_1, \ldots, h_t) = 0 \) only with negligible probability if \(p \) is not the zero polynomial

- Can pick exponential size “exceptional set” \(\mathcal{H} \) over \(R_q \) for large \(q \) [LS18] and invoke Generalized Alon-Füredi Theorem [BCPS18]
Multiple outputs

\[
\langle a, \pi \rangle \equiv \sum_{i=1}^{t} h_i \cdot (\langle f_i, x \rangle - y_i) - \sum_{i=1}^{t} h_i \cdot \sum_{j=-n+1, j \neq 0}^{n-1} b_{i,j} \cdot Y^i \mod q
\]

\[
p(h_1, \ldots, h_t)
\]

- For \(h_1, \ldots, h_t \leftarrow \mathcal{H} \) want \(p(h_1, \ldots, h_t) = 0 \) only with negligible probability if \(p \) is not the zero polynomial
- Can pick exponential size “exceptional set” \(\mathcal{H} \) over \(R_q \) for large \(q \) [LS18] and invoke Generalized Alon-Füredi Theorem [BCPS18]
- Better to perform ternary decomposition on \(f, x \) and batch verification
Proof and SRS sizes for \mathbb{Z}_2^{32}

<table>
<thead>
<tr>
<th>log2(x)</th>
<th>18</th>
<th>22</th>
<th>26</th>
<th>30</th>
</tr>
</thead>
<tbody>
<tr>
<td>$</td>
<td>c</td>
<td>$ (B)</td>
<td>293</td>
<td>347</td>
</tr>
<tr>
<td>total proof size (KiB)</td>
<td>845</td>
<td>1,081</td>
<td>1,315</td>
<td>1,571</td>
</tr>
<tr>
<td>verifier key (MiB)</td>
<td>12</td>
<td>17</td>
<td>23</td>
<td>30</td>
</tr>
<tr>
<td>prover key (GiB)</td>
<td>0.3</td>
<td>6</td>
<td>111</td>
<td>2,070</td>
</tr>
</tbody>
</table>

- These are maximum proof sizes. When f or x are sparse or have entries much smaller than the norm bound this is reflected by the proof size.
Proof and SRS sizes for $\mathbb{Z}_{2^{32}}$

<table>
<thead>
<tr>
<th>log2(x)</th>
<th>18</th>
<th>22</th>
<th>26</th>
<th>30</th>
</tr>
</thead>
<tbody>
<tr>
<td>$</td>
<td>c</td>
<td>(B)$</td>
<td>293</td>
<td>347</td>
</tr>
<tr>
<td>total proof size (KiB)</td>
<td>845</td>
<td>1,081</td>
<td>1,315</td>
<td>1,571</td>
</tr>
<tr>
<td>verifier key (MiB)</td>
<td>12</td>
<td>17</td>
<td>23</td>
<td>30</td>
</tr>
<tr>
<td>prover key (GiB)</td>
<td>0.3</td>
<td>6</td>
<td>111</td>
<td>2,070</td>
</tr>
</tbody>
</table>

- These are maximum proof sizes. When f or x are sparse or have entries much smaller than the norm bound this is reflected by the proof size.
- Binding only version reduces proof size by ~65%, prover key size by ~75%
Proof and SRS sizes for $\mathbb{Z}_{2^{32}}$

<table>
<thead>
<tr>
<th>log2(x)</th>
<th>18</th>
<th>22</th>
<th>26</th>
<th>30</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>c</td>
<td>(B)</td>
<td>293</td>
<td>347</td>
</tr>
<tr>
<td>total proof size (KiB)</td>
<td>845</td>
<td>1,081</td>
<td>1,315</td>
<td>1,571</td>
</tr>
<tr>
<td>verifier key (MiB)</td>
<td>12</td>
<td>17</td>
<td>23</td>
<td>30</td>
</tr>
<tr>
<td>prover key (GiB)</td>
<td>0.3</td>
<td>6</td>
<td>111</td>
<td>2,070</td>
</tr>
</tbody>
</table>

- These are maximum proof sizes. When f or x are sparse or have entries much smaller than the norm bound this is reflected by the proof size.
- Evaluation binding only version (no extractability) reduces proof size by ~65%, prover key size by ~75%
- Smallest compressing proofs start around 165 KiB (binding) and 668 KiB (extractable) — recursion threshold
Lattice-based Succinct Arguments from Vanishing Polynomials

Valerio Cini1, Russell W. F. Lai2, Giulio Malavolta3

1AIT Austrian Institute of Technology, Austria
2Aalto University, Finland
3Max Planck Institute for Security and Privacy, Germany

CRYPTO, Santa Barbara, CA, U.S., 2023
Lattice-based Succinct Arguments

<table>
<thead>
<tr>
<th>Approach</th>
<th>Publicly verifiable</th>
<th>Sublinear-verifier (preprocessing)</th>
<th>Linear-prover</th>
</tr>
</thead>
<tbody>
<tr>
<td>PCP/IOP + linear-only enc. [BCIOP13; BISW17; BISW18; GMNO18]</td>
<td>✗</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Linearisation + folding [BLNS20; AL21; ACK21; BS22]</td>
<td>✓</td>
<td>✗ $\tilde{O}_\lambda(</td>
<td>\text{stmt}</td>
</tr>
<tr>
<td>Direct [ACLMT22]</td>
<td>✓</td>
<td>✓</td>
<td>✗ $\tilde{O}_\lambda(</td>
</tr>
<tr>
<td>This work (and [BCS23])</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
</tbody>
</table>
Lattice-based Succinct Arguments

<table>
<thead>
<tr>
<th>Approach</th>
<th>Publicly verifiable</th>
<th>Sublinear-verifier (preprocessing)</th>
<th>Linear-prover</th>
</tr>
</thead>
<tbody>
<tr>
<td>PCP/IOP + linear-only enc. [BCIOP13; BISW17; BISW18; GMNO18]</td>
<td>✗</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Linearisation + folding [BLNS20; AL21; ACK21; BS22]</td>
<td>✓</td>
<td>✗ 𝑂̃(</td>
<td>stmt</td>
</tr>
<tr>
<td>Direct [ACLMT22]</td>
<td>✓</td>
<td>✓</td>
<td>✗ 𝑂̃(</td>
</tr>
<tr>
<td>This work (and [BCS23])</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
</tbody>
</table>
Our Results

† New assumption: Vanishing Short Integer Solution (vSIS)
 ‡ generalization of SIS
† New tool: vSIS commitment for committing to polynomials with short coefficients
 ‡ Very small (polylog(|stmt|)) commitment key
 ‡ (Almost) additively and multiplicatively homomorphic
 ‡ Admit $\tilde{O}(|stmt|)$-prover polylog(|stmt|)-verifier arguments for commitment openings
† New lattice-based succinct arguments for NP \iff Succinct arguments for vSIS commitment openings
Our Results

† New assumption: Vanishing Short Integer Solution (vSIS)
 ‡ generalization of SIS

† New tool: vSIS commitment for committing to polynomials with short coefficients
 ‡ Very small \(\text{polylog}(|\text{stmt}|)\) commitment key
 ‡ (Almost) additively and \textit{multiplicatively} homomorphic
 ‡ Admit \(\tilde{O}(|\text{stmt}|)\)-prover polylog\(|\text{stmt}|\)-verifier arguments for commitment openings

† New lattice-based succinct arguments for NP \(\leftrightarrow\) Succinct arguments for vSIS commitment openings
Our Results

† New assumption: Vanishing Short Integer Solution (vSIS)
 ‡ generalization of SIS

† New tool: vSIS commitment for committing to polynomials with short coefficients
 ‡ Very small \(\text{polylog}(|\text{stmt}|) \) commitment key
 ‡ (Almost) additively and \textit{multiplicatively} homomorphic
 ‡ Admit \(\tilde{O}(|\text{stmt}|) \)-prover polylog\(|\text{stmt}|\)-verifier arguments for commitment openings

† New lattice-based succinct arguments for NP \iff\ Succinct arguments for vSIS commitment openings
Our Results

| Instantiations | $|\pi|$ | Time(\mathcal{P}) | Time(\mathcal{V}) | Setup | Assumptions |
|---------------------------|------|---------------------|---------------------|-----------|-----------------------------|
| Folding | $\tilde{O}_\lambda(1)$ | $\tilde{O}_\lambda(|\text{stmt}|)$ | $\tilde{O}_\lambda(1)$ | Transparent | vSIS (+ RO for NI) |
| Knowledge assumption | $\tilde{O}_\lambda(1)$ | $\tilde{O}_\lambda(|\text{stmt}|)$ | $\tilde{O}_\lambda(1)$ | Trusted | vSIS + Knowledge-kRISIS |

Roadmap

1. vSIS assumptions and commitments
2. Quadratic Relations using vSIS commitments
3. Succinct arguments for vSIS commitment openings
1. Preliminaries

Short Integer Solution (SIS) Assumption

† Parameters: # rows n, # columns m, modulus q.
† Instance: A matrix $A \in \mathcal{R}_{q}^{n \times m}$.
† Problem: Find a short vector $u \in \mathcal{R}^{m}$ such that

$$A \cdot u = 0 \mod q$$

and

$$0 < \|u\| \approx 0.$$

† Shorthand: If u is a short non-zero vector satisfying $A \cdot u = v \mod q$, write

$$u \in A^{-1}(v).$$
Vanishing SIS as SIS Generalisations

<table>
<thead>
<tr>
<th>SIS</th>
<th>Find short solution to linear equations</th>
</tr>
</thead>
</table>
| | \[
<table>
<thead>
<tr>
<th></th>
<th>{A \cdot u = 0 \mod q \quad \text{and} \quad 0 < |u| \approx 0.}</th>
</tr>
</thead>
<tbody>
<tr>
<td>SIS (Alternative Interpretation)</td>
<td>Find linear function with short coefficients which vanishes at all given points</td>
</tr>
<tr>
<td>Vanishing SIS (vSIS)</td>
<td>Find polynomial (from some class) with short coefficients which vanishes at all given points</td>
</tr>
</tbody>
</table>
Vanishing SIS as SIS Generalisations

<table>
<thead>
<tr>
<th>SIS</th>
<th>Find short solution to linear equations</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>[\mathbf{A} \cdot \mathbf{u} = 0 \mod q \quad \text{and} \quad 0 < | \mathbf{u} | \approx 0.]</td>
</tr>
</tbody>
</table>

| SIS (Alternative Interpretation) | Find linear function with short coefficients which vanishes at all given points |

| Vanishing SIS (vSIS) | Find polynomial (from some class) with short coefficients which vanishes at all given points |
Vanishing SIS as SIS Generalisations

SIS

Find short solution to linear equations

\[A \cdot u = 0 \mod q \]

and

\[0 < ||u|| \approx 0. \]

SIS (Alternative Interpretation)

Find linear function with short coefficients which vanishes at all given points

Vanishing SIS (vSIS)

Find polynomial (from some class) with short coefficients which vanishes at all given points
Vanishing Short Integer Solution (vSIS) Assumption

Example: Univariate

† Problem: Find short degree m polynomial without constant term

$$p(X) = p_1X + \ldots + p_mX^m \in \mathcal{R}[X]$$

which vanishes at $v \in \mathcal{R}_q^\times$ modulo q, i.e.

$$p(v) = 0 \mod q \quad \text{and} \quad 0 < \|p\| \approx 0.$$

In other words, find short vector $p \in \mathcal{R}^m$ such that

$$\begin{bmatrix} v & v^2 & \ldots & v^m \end{bmatrix} \cdot p = 0 \mod q \quad \text{and} \quad 0 < \|p\| \approx 0.$$
Simple vSIS Commitments (or Hash Functions)

† Domain: Polynomials $p \in \mathcal{R}[X, X^{-1}]$ (of some class) with short coefficients.
† Public parameters: Random unit $v \leftarrow \mathcal{R}_q^\times$.
† Commitment of polynomial p:
 \[
 \text{com}(p) = p(v) \mod q.
 \]
† Binding: If $p(v) = p'(v) \mod q$, then we break vSIS, i.e.
 \[
 (p - p')(v) = 0 \mod q \quad \|p - p'\| \leq \|p\| + \|p'\| \approx 0.
 \]
† (Almost) additively and multiplicatively homomorphic (w.r.t. polynomial addition and multiplications):
 \[
 p(v) + p'(v) = (p + p')(v) \mod q \quad \|p + p'\| \leq \|p\| + \|p'\| \approx 0
 \]
 \[
 p(v) \cdot p'(v) = (p \cdot p')(v) \mod q \quad \|p \cdot p'\| \leq \|p\| \cdot \|p'\| \approx 0.
 \]
Simple vSIS Commitments (or Hash Functions)

† Domain: Polynomials $p \in \mathcal{R}[X, X^{-1}]$ (of some class) with short coefficients.
† Public parameters: Random unit $v \leftarrow \mathcal{R}_q^\times$.
† Commitment of polynomial p:
 \[
 \text{com}(p) = p(v) \mod q.
 \]

† Binding: If $p(v) = p'(v) \mod q$, then we break vSIS, i.e.
 \[
 (p - p')(v) = 0 \mod q \quad \|p - p'\| \leq \|p\| + \|p'\| \approx 0.
 \]

† (Almost) additively and multiplicatively homomorphic (w.r.t. polynomial addition and multiplications):
 \[
 \begin{align*}
 p(v) + p'(v) &= (p + p')(v) \mod q \quad \|p + p'\| \leq \|p\| + \|p'\| \approx 0 \\
 p(v) \cdot p'(v) &= (p \cdot p')(v) \mod q \quad \|p \cdot p'\| \leq \|p\| \cdot \|p'\| \approx 0.
 \end{align*}
 \]
Simple vSIS Commitments (or Hash Functions)

† Domain: Polynomials $p \in \mathcal{R}[X, X^{-1}]$ (of some class) with short coefficients.
† Public parameters: Random unit $v \leftarrow \mathcal{R}_q^\times$.
† Commitment of polynomial p:
$$\text{com}(p) = p(v) \mod q.$$

† Binding: If $p(v) = p'(v) \mod q$, then we break vSIS, i.e.
$$ (p - p')(v) = 0 \mod q \quad \quad \|p - p'\| \leq \|p\| + \|p'\| \approx 0. $$

† (Almost) additively and multiplicatively homomorphic (w.r.t. polynomial addition and multiplications):
$$ p(v) + p'(v) = (p + p')(v) \mod q \quad \quad \|p + p'\| \leq \|p\| + \|p'\| \approx 0 $$
$$ p(v) \cdot p'(v) = (p \cdot p')(v) \mod q \quad \quad \|p \cdot p'\| \approx \|p\| \cdot \|p'\| \approx 0.$$
Simple vSIS Commitments (or Hash Functions)

† Domain: Polynomials \(p \in \mathcal{R}[X, X^{-1}] \) (of some class) with short coefficients.
† Public parameters: Random unit \(v \leftarrow \mathcal{R}_q^\times \).
† Commitment of polynomial \(p \):
 \[\text{com}(p) = p(v) \mod q. \]

† Binding: If \(p(v) = p'(v) \mod q \), then we break vSIS, i.e.
 \[(p - p')(v) = 0 \mod q \quad \|p - p'\| \leq \|p\| + \|p'\| \approx 0. \]

† (Almost) additively and multiplicatively homomorphic (w.r.t. polynomial addition and multiplications):
 \[p(v) + p'(v) = (p + p')(v) \mod q \quad \|p + p'\| \leq \|p\| + \|p'\| \approx 0 \]
 \[p(v) \cdot p'(v) = (p \cdot p')(v) \mod q \quad \|p \cdot p'\| \approx \|p\| \cdot \|p'\| \approx 0. \]
Encoding Vectors as (Laurent) Polynomials

\[a := (a_1, \ldots, a_m) \in \mathcal{R}^m \quad \bar{p}_a(X) := p_a(X^{-1}) := a_1X^{-1} + a_2X^{-2} + \ldots + a_mX^{-m} \]

\[b := (b_1, \ldots, b_m) \in \mathcal{R}^m \quad p_b(X) := b_1X + b_2X^2 + \ldots + b_mX^m \]

Note that

\[\bar{p}_a(X) \cdot p_b(X) = \hat{p}_{a \ast b}(X) \implies \hat{p}_{a \ast b} \text{ has } O(m) \text{ terms (lots of collisions!)} \]

where

† \(a \ast b := \left(\sum_{j-i=k} a_i \cdot b_j \right)_k^{i=-m} \) “convolution”, and

† constant term is given by \(\langle a, b \rangle \).
Encoding Vectors as (Laurent) Polynomials

\[\mathbf{a} := (a_1, \ldots, a_m) \in \mathbb{R}^m \quad \overline{p}_\mathbf{a}(X) := p_{\mathbf{a}}(X^{-1}) := a_1 X^{-1} + a_2 X^{-2} + \ldots + a_m X^{-m} \]

\[\mathbf{b} := (b_1, \ldots, b_m) \in \mathbb{R}^m \quad p_{\mathbf{b}}(X) := b_1 X + b_2 X^2 + \ldots + b_m X^m \]

Note that
\[\overline{p}_\mathbf{a}(X) \cdot p_{\mathbf{b}}(X) = \hat{p}_{\mathbf{a}*\mathbf{b}}(X) \implies \hat{p}_{\mathbf{a}*\mathbf{b}} \text{ has } O(m) \text{ terms (lots of collisions!)} \]

where
\[\uparrow \mathbf{a} \ast \mathbf{b} := \left(\sum_{j-i=k} a_i \cdot b_j \right)_{k=-m}^m \text{ "convolution", and} \]
\[\uparrow \text{ constant term is given by } \langle \mathbf{a}, \mathbf{b} \rangle. \]
Key Example

Want to prove that \mathbf{x} is binary (i.e. $x_i \cdot (1 - x_i) = 0$ for all i).

† \mathbf{x} is committed in vSIS commitment as $c_x := \rho_x(v)$.
† \mathbf{x} is committed also in dual vSIS commitment as $\bar{c}_x := \bar{\rho}_x(v)$,
† 1 is committed in dual vSIS commitment as $\bar{c}_1 := \bar{\rho}_1(v)$.

Observe that

\[
\sum_{i} x_i \cdot v^{i} \cdot \left(\sum_{j} x_j \cdot v^{-j} - \sum_{j} 1 \cdot v^{-j} \right) = \sum_{i} x_i \cdot (x_i - 1) + \text{mixed terms}
\]

\[
\hat{\rho}_x^{*(1-x)}(v) \quad \begin{pmatrix} c_x \vline \bar{c}_x \vline \bar{c}_1 \end{pmatrix}
\]
Key Example

Want to prove that x is binary (i.e. $x_i \cdot (1 - x_i) = 0$ for all i).

† x is committed in vSIS commitment as $c_x := \rho_x(v)$.
† x is committed also in dual vSIS commitment as $\bar{c}_x := \bar{\rho}_x(v)$,
† 1 is committed in dual vSIS commitment as $\bar{c}_1 := \bar{\rho}_1(v)$.

Observe that

$$
\sum_i x_i \cdot v^i \cdot \left(\sum_j x_j \cdot v^{-j} - \sum_j 1 \cdot v^{-j} \right) = \sum_i x_i \cdot (x_i - 1) + \text{mixed terms}
$$
2. Vanishing SIS Assumptions and Commitments

Key Example

Want to prove that x is binary (i.e. $x_i \cdot (1 - x_i) = 0$ for all i).

† x is committed in vSIS commitment as $c_x := p_x(v)$.
† x is committed also in dual vSIS commitment as $\bar{c}_x := \bar{p}_x(v)$,
† 1 is committed in dual vSIS commitment as $\bar{c}_1 := \bar{p}_1(v)$.

Observe that

$$\sum_i x_i \cdot v^i \cdot \left(\sum_j x_j \cdot v^{-j} - \sum_j 1 \cdot v^{-j} \right) = \sum_i x_i \cdot (x_i - 1) + \text{mixed terms}$$
2. Vanishing SIS Assumptions and Commitments

Key Example

Want to prove that \mathbf{x} is binary (i.e. $x_i \cdot (1 - x_i) = 0$ for all i).

- \mathbf{x} is committed in vSIS commitment as $c_x := p_x(v)$.
- $\mathbf{h} \circ \mathbf{x}$ is committed also in dual vSIS commitment as $\bar{c}_{\mathbf{h} \circ \mathbf{x}} := \bar{p}_{\mathbf{h} \circ \mathbf{x}}(v)$,
- \mathbf{h} is committed in dual vSIS commitment as $\bar{c}_h := \bar{p}_h(v)$.

Observe that

$$
\sum_i x_i \cdot v^i \cdot \left(\sum_j h_j \cdot x_j \cdot v^{-j} - \sum_j h_j \cdot v^{-j} \right) = \sum_i h_i \cdot x_i \cdot (x_i - 1) + \text{mixed terms}
$$

$$
\hat{p}_{x \circ h}(x-1)(v)
$$
To prove that a vSIS commitment is committing to a (Laurent) polynomial without constant term:

\[
\begin{bmatrix}
 v & v^2 & \ldots & v^m \\
 v^{-1} & v^{-2} & \ldots & v^{-m}
\end{bmatrix} \cdot x = \begin{bmatrix}
 c_x \\
 \bar{c}_x
\end{bmatrix} \mod q \land \|x\| \approx 0,
\]

and

\[
\begin{bmatrix}
 v^{-m} & \ldots & v^{-1} & v^1 & \ldots & v^m
\end{bmatrix} \cdot w = \frac{c_x \cdot (\bar{c}_x - \bar{c}_1)}{\hat{c}} \mod q \land \|w\| \approx 0,
\]

1. using knowledge-kRISIS [ACLMT22], or
2. using folding arguments “Bulletproofs” [BLNS20]
To prove that a vSIS commitment is committing to a (Laurent) polynomial without constant term:

$$\begin{bmatrix} v & v^2 & \cdots & v^m \\ v^{-1} & v^{-2} & \cdots & v^{-m} \end{bmatrix} \cdot x = \begin{bmatrix} c_x \\ \bar{c}_x \end{bmatrix} \mod q \land \|x\| \approx 0,$$

and

$$\begin{bmatrix} v^{-m} & \cdots & v^{-1} & v^1 & \cdots & v^m \end{bmatrix} \cdot w = c_x \cdot (\bar{c}_x - \bar{c}_1) \mod q \land \|w\| \approx 0,$$

1. using knowledge-kRISIS [ACLMT22], or
2. using folding arguments “Bulletproofs” [BLNS20]
Knowledge-kRISIS Assumption(s) [ACLMT22] (a Member of)

Parameters:
- SIS parameters \((n, m, q)\),
- submodule rank \(t < n\), and
- \(t\)-tuples of Laurent monomials \(G\).

Assumption: If a PPT (quantum) algorithm \(A\), which on input \((A, T, v, (u_g)_{g \in G})\)
where \(A \in \mathcal{R}_{q}^{n \times m}\), \(T \in (\mathcal{R}_{q}^{\times})^{n \times t}\), \(v \in \mathcal{R}_{q}^{\times}\), and \(u_g \in A^{-1}(T \cdot g(v))\),
can find \((u, c)\) where \(u \in A^{-1}(T \cdot c)\),
then it must “know” short linear combination \(x\) such that
\[c = \sum_{g \in G} g(v) \cdot x_g \mod q. \]
Knowledge-kRISIS Assumption(s) [ACLMT22] (a Member of)

† Parameters:

‡ SIS parameters \((n, m, q)\),
‡ submodule rank \(t < n\), and
‡ \(t\)-tuples of Laurent monomials \(\mathcal{G}\).

† Assumption: If a PPT (quantum) algorithm \(\mathcal{A}\), which on input

\[
(A, T, \nu, (u_g)_{g \in \mathcal{G}})
\]

where \(A \in \mathbb{R}^{n \times m}_q\), \(T \in (\mathbb{R}^{\times}_q)^{n \times t}\), \(\nu \in \mathbb{R}^{\times}_q\), and \(u_g \in A^{-1}(T \cdot g(\nu))\),

can find \((u, c)\) where

\[
u \in A^{-1}(T \cdot c),
\]

then it must “know” short linear combination \(x\) such that

\[
c = \sum_{g \in \mathcal{G}} g(\nu) \cdot x_g \mod q.
\]
Using Knowledge-kRISIS

Want to prove \hat{c} and $w \in \mathcal{R}^{2m+1}$ satisfies:

\[
\begin{align*}
 w_0 &= 0 \\
 \hat{c} &= \hat{p}_w(\nu) \\
 ||w|| &\approx 0.
\end{align*}
\]

† Public parameters: kRISIS instance $(A, t, \nu, (u_i)_{i \in \pm [m]})$ where

\[
 u_i \in A^{-1}(t \cdot \nu^i).
\]

† Prover: Output $u = \sum_{i \in \pm [m]} u_i \cdot w_i$.

† Verifier: Check that $A \cdot u = t \cdot \hat{c} \mod q$ and $||u|| \approx 0$.

† Knowledge-soundness follows immediately from the knowledge-kRISIS assumption.

† Prover runs in $\tilde{O}_\lambda(m)$ time.

† Verifier runs in $\tilde{O}_\lambda(1)$ time.
Using Knowledge-kRISIS

<table>
<thead>
<tr>
<th>Want to prove \hat{c} and $w \in \mathcal{R}^{2m+1}$ satisfies:</th>
</tr>
</thead>
<tbody>
<tr>
<td>$w_0 = 0$</td>
</tr>
</tbody>
</table>

† Public parameters: kRISIS instance $(A, t, v, (u_i)_{i \in \pm[m]})$ where

$u_i \in A^{-1}(t \cdot v^i)$.

† Prover: Output $u = \sum_{i \in \pm[m]} u_i \cdot w_i$.

† Verifier: Check that $A \cdot u = t \cdot \hat{c} \mod q$ and $\|u\| \approx 0$.

† Knowledge-soundness follows immediately from the knowledge-kRISIS assumption.

† Prover runs in $\tilde{O}_\lambda(m)$ time.

† Verifier runs in $\tilde{O}_\lambda(1)$ time.
3. Succinct Arguments for vSIS Commitment Openings

Using Knowledge-kRISIS

Want to prove \(\hat{c} \) and \(\mathbf{w} \in \mathbb{R}^{2m+1} \) satisfies:

\[
\begin{align*}
 w_0 &= 0 \\
 \hat{c} &= \hat{\rho}_w(v) \\
 \|\mathbf{w}\| &\approx 0.
\end{align*}
\]

† Public parameters: kRISIS instance \((\mathbf{A}, t, v, (u_i)_{i \in \pm [m]}) \) where

\[
 u_i \in \mathbf{A}^{-1}(t \cdot v^i).
\]

† Prover: Output \(\mathbf{u} = \sum_{i \in \pm [m]} u_i \cdot w_i \).

† Verifier: Check that \(\mathbf{A} \cdot \mathbf{u} = t \cdot \hat{c} \mod q \) and \(\|\mathbf{u}\| \approx 0 \).

† Knowledge-soundness follows immediately from the knowledge-kRISIS assumption.

† Prover runs in \(\tilde{O}_\lambda(m) \) time.

† Verifier runs in \(\tilde{O}_\lambda(1) \) time.
Lattice-based Bulletproofs

Goal: Prove SIS relation with $O(\log m)$ communication:

$$\mathbf{x} \in \mathcal{R}^m : \mathbf{M} \cdot \mathbf{x} = \mathbf{y} \mod q \land \|\mathbf{x}\| \approx 0$$

where $m = 2^\ell$, $\mathbf{M} = [\mathbf{M}_1 \mid \mathbf{M}_2]$, $\mathbf{x} = \begin{bmatrix} \mathbf{x}_1 \\ \mathbf{x}_2 \end{bmatrix}$.

Prover $\mathcal{P}((\mathbf{M}, \mathbf{y}), \mathbf{x})$

Verifier $\mathcal{V}(\mathbf{M}, \mathbf{y})$

\[
\begin{align*}
\mathbf{y}_{12} &:= \mathbf{M}_1 \cdot \mathbf{x}_2 \\
\mathbf{y}_{21} &:= \mathbf{M}_2 \cdot \mathbf{x}_1 \\
\hat{\mathbf{x}}_c &:= c \cdot \mathbf{x}_1 + \mathbf{x}_2 \\
\hat{\mathbf{y}}_c &:= \mathbf{y}_{12} + \mathbf{y} \cdot c + \mathbf{y}_{21} \cdot c^2 \mod q \\
\hat{\mathbf{M}}_c &:= \mathbf{M}_1 + c \cdot \mathbf{M}_2
\end{align*}
\]

return $\begin{cases}
\hat{\mathbf{M}}_c \cdot \hat{\mathbf{x}}_c = \hat{\mathbf{y}}_c \\
\|\hat{\mathbf{x}}_c\| \approx 0
\end{cases}$

Just another SIS relation but with only $m/2$ columns \implies Recursion
3. Succinct Arguments for vSIS Commitment Openings

Lattice-based Bulletproofs

Goal: Prove SIS relation with $O(\log m)$ communication:

$$x \in \mathcal{R}^m : M \cdot x = y \mod q \land \|x\| \approx 0$$

where $m = 2^\ell$, $M = [M_1 \mid M_2]$, $x = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$.

Prover $P((M, y), x)$

- $y_{12} := M_1 \cdot x_2$
- $y_{21} := M_2 \cdot x_1$
- $\hat{x}_c := c \cdot x_1 + x_2$

Verifier $V(M, y)$

- $c \leftarrow$ C
- $\hat{M}_c := M_1 + c \cdot M_2$
- $\hat{y}_c := y_{12} + y \cdot c + y_{21} \cdot c^2 \mod q$

Return

$$\begin{cases} \hat{M}_c \cdot \hat{x}_c = \hat{y}_c \\ \|\hat{x}_c\| \approx 0 \end{cases}$$

Just another SIS relation but with only $m/2$ columns \implies Recursion
Lattice-based Bulletproofs

After ℓ-fold recursive composition:

Prover $\mathcal{P}((\mathbf{M}, \mathbf{y}), \mathbf{x})$

\[
\begin{align*}
\mathbf{y}^{(1)}_{12}, \mathbf{y}^{(1)}_{21} \\
\vdots \\
\mathbf{y}^{(\ell)}_{12}, \mathbf{y}^{(\ell)}_{21} \\
\end{align*}
\]

\[
\begin{align*}
c_1 \\
\vdots \\
c_\ell \\
\end{align*}
\]

\[
\hat{\mathbf{x}}_{c_1, \ldots, c_\ell}
\]

Verifier $\mathcal{V}(\mathbf{M}, \mathbf{y})$

\[
\begin{align*}
(\hat{\mathbf{M}}_{c_1}, \hat{\mathbf{y}}_{c_1}) := \ldots \\
\vdots \\
(\hat{\mathbf{M}}_{c_1, \ldots, c_\ell}, \hat{\mathbf{y}}_{c_1, \ldots, c_\ell}) := \ldots \\
\end{align*}
\]

\[
\begin{align*}
\hat{\mathbf{M}}_{c_1, \ldots, c_\ell} \cdot \hat{\mathbf{x}}_{c_1, \ldots, c_\ell} = \hat{\mathbf{y}}_{c_1, \ldots, c_\ell} \\
\|\hat{\mathbf{x}}_{c_1, \ldots, c_\ell}\| \approx 0
\end{align*}
\]

Main verifier bottleneck: Computing $\hat{\mathbf{M}}_{c_1, \ldots, c_\ell}$. In general, this requires $\Omega(\lambda(m))$ time.
Lattice-based Bulletproofs

After ℓ-fold recursive composition:

Prover $P((M, y), x)$

$y^{(1)}_{12}, y^{(1)}_{21}$

$\leftarrow c_1$

\vdots

$y^{(\ell)}_{12}, y^{(\ell)}_{21}$

$\leftarrow c_\mu$

$\hat{x}_{c_1, \ldots, c_\ell}$

Verifier $V(M, y)$

$(\hat{M}_{c_1}, \hat{y}_{c_1}) := \ldots$

\vdots

$(\hat{M}_{c_1, \ldots, c_\ell}, \hat{y}_{c_1, \ldots, c_\ell}) := \ldots$

return $\left\{ \hat{M}_{c_1, \ldots, c_\ell} \cdot \hat{x}_{c_1, \ldots, c_\ell} = \hat{y}_{c_1, \ldots, c_\ell}, \|\hat{x}_{c_1, \ldots, c_\ell}\| \approx 0 \right\}$

Main verifier bottleneck: Computing $\hat{M}_{c_1, \ldots, c_\ell}$. In general, this requires $\Omega_\lambda(m)$ time.
Structured Folding for vSIS

Core Idea

For M corresponding to vSIS instance, computing $\hat{M}_{c_1,\ldots,c_\ell}$ takes $\tilde{O}_\lambda(\log m) = \tilde{O}_\lambda(1)$ time.

Example for $\ell = 3$

\[
M = \begin{pmatrix} v & v^2 & v^3 & v^4 & v^5 & v^6 & v^7 & v^8 \end{pmatrix}
\]
\[
\hat{M}_{c_1} = \begin{pmatrix} v & v^2 & v^3 & v^4 \end{pmatrix} + \begin{pmatrix} v^5 & v^6 & v^7 & v^8 \end{pmatrix} \cdot c_1
\]
\[
= \begin{pmatrix} v & v^2 & v^3 & v^4 \end{pmatrix} \cdot (1 + v^4 \cdot c_1)
\]
\[
\hat{M}_{c_1,c_2} = \begin{pmatrix} v & v^2 \end{pmatrix} \cdot (1 + v^4 \cdot c_1) \cdot (1 + v^2 \cdot c_2)
\]
\[
\hat{M}_{c_1,c_2,c_3} = v \cdot (1 + v^4 \cdot c_1) \cdot (1 + v^2 \cdot c_2) \cdot (1 + v \cdot c_3)
\]
\[
= v \cdot \prod_{i=1}^{3} (1 + v^{2^{3-i}} \cdot c_i)
\]
Structured Folding for vSIS

Core Idea

For \(M \) corresponding to vSIS instance, computing \(\hat{M}_{c_1,\ldots,c_\ell} \) takes \(\tilde{O}_\lambda (\log m) = \tilde{O}_\lambda (1) \) time.

Example for \(\ell = 3 \)

\[
\begin{align*}
M &= \begin{pmatrix} v & v^2 & v^3 & v^4 & v^5 & v^6 & v^7 & v^8 \end{pmatrix} \\
\hat{M}_{c_1} &= \left(\begin{pmatrix} v & v^2 & v^3 & v^4 \end{pmatrix} + \begin{pmatrix} v^5 & v^6 & v^7 & v^8 \end{pmatrix} \right) \cdot c_1 \\
&= \left(\begin{pmatrix} v & v^2 & v^3 & v^4 \end{pmatrix} \right) \cdot (1 + v^4 \cdot c_1) \\
\hat{M}_{c_1,c_2} &= \left(v \cdot v^2 \right) \cdot (1 + v^4 \cdot c_1) \cdot (1 + v^2 \cdot c_2) \\
\hat{M}_{c_1,c_2,c_3} &= v \cdot (1 + v^4 \cdot c_1) \cdot (1 + v^2 \cdot c_2) \cdot (1 + v \cdot c_3) \\
&= v \cdot \prod_{i=1}^{3} (1 + v^{2^{3-i}} \cdot c_i)
\end{align*}
\]
Conclusion

† Vanishing Short Integer Solution (vSIS) assumption and commitments
† Succinct arguments for vSIS commitment openings
† Used to construct succinct arguments for NP
 ‡ Lattice-based
 ‡ Quasi-linear-time prover
 ‡ Public and Polylogarithmic-time verifier (after preprocessing)
 ‡ Transparent setup (RO instantiation)

Valerio Cini
AIT Austrian Institute of Technology