Cryptography with Weights:
 MPC, Encryption and Signatures

Sanjam Garg

UC Berkeley \& NTT Research
Rohit Sinha

Meta -> Swirlds Labs

Abhishek Jain

JHU \& NTT Research

Mingyuan Wang
UC Berkeley

Pratyay Mukherjee

Supra Research
Yinuo Zhang

UC Berkeley

Threshold Cryptography and MPC

- Fundamental primitives that have been extensively studied
- Trust Assumption: All parties are treated equally (i.e., unweighted)

Threshold Cryptography and MPC

- Fundamental primitives that have been extensively studied
- Trust Assumption: All parties are treated equally (i.e., unweighted)
- Privacy threshold t : secure if $\leqslant t$ malicious parties.

Privacy threshold $t=3$

Threshold Cryptography and MPC

- Fundamental primitives that have been extensively studied
- Trust Assumption: All parties are treated equally (i.e., unweighted)
- Privacy threshold t : secure if $\leqslant t$ malicious parties.
- Reconstruction threshold T : correct if $\geqslant T$ honest parties.

Correctness threshold $T=4$
Privacy threshold $t=3$

Threshold Cryptography and MPC

- Fundamental primitives that have been extensively studied
- Trust Assumption: All parties are treated equally (i.e., unweighted)
- Privacy threshold t : secure if $\leqslant t$ malicious parties.
- Reconstruction threshold T : correct if $\geqslant T$ honest parties.
- Sharp threshold: $T=t+1$; Ramp setting: $T>t+1$

Correctness threshold $T=4$
Privacy threshold $t=3$

One-party-one-vote may not suffice

- Parties are naturally asymmetric in some emerging applications
- threshold signature in a stake-based blockchain setting

One-party-one-vote may not suffice

- Parties are naturally asymmetric in some emerging applications
- threshold signature in a stake-based blockchain setting
- Weighted setting:
- Party are assigned with weights $w_{1}, w_{2}, \ldots, w_{n} \in \mathbb{N}$.

One-party-one-vote may not suffice

- Parties are naturally asymmetric in some emerging applications
- threshold signature in a stake-based blockchain setting
- Weighted setting:
- Party are assigned with weights $w_{1}, w_{2}, \ldots, w_{n} \in \mathbb{N}$.
- Security holds if corrupted parties have cumulative weights $\leqslant t$.

Privacy threshold $t=4$

$w_{1}=1$

One-party-one-vote may not suffice

- Parties are naturally asymmetric in some emerging applications
- threshold signature in a stake-based blockchain setting
- Weighted setting:
- Party are assigned with weights $w_{1}, w_{2}, \ldots, w_{n} \in \mathbb{N}$.
- Security holds if corrupted parties have cumulative weights $\leqslant t$.
- Correctness holds if honest parties have cumulative weights $\geqslant T$ participate.

Correctness threshold $T=5$
Privacy threshold $t=4$

One-party-one-vote may not suffice

- Parties are naturally asymmetric in some emerging applications
- threshold signature in a stake-based blockchain setting
- Weighted setting:
- Party are assigned with weights $w_{1}, w_{2}, \ldots, w_{n} \in \mathbb{N}$.
- Security holds if corrupted parties have cumulative weights $\leqslant t$.
- Correctness holds if honest parties have cumulative weights $\geqslant T$ participate.
- Motivated by real-world scenarios, small weight regime $w_{i}=\operatorname{poly}(\lambda)$.

Correctness threshold $T=5$

Existing Solutions: Naïve Virtualization

- Party with weight w_{i} is treated as w_{i} virtual parties.
- Reduce to unweighted setting among $W=w_{1}+w_{2}+\cdots+w_{n}$ virtual parties.
- A multiplicative overhead w_{i} for each party (computation, communication).

Existing Solutions: Naïve Virtualization

- Party with weight w_{i} is treated as w_{i} virtual parties.
- Reduce to unweighted setting among $W=w_{1}+w_{2}+\cdots+w_{n}$ virtual parties.
- A multiplicative overhead w_{i} for each party (computation, communication).

Objective

Can we realize the weighted setting more efficiently?
Can we make this overhead depend additively on the weights instead of multiplicatively.

Existing Solutions: Naïve Virtualization

- Party with weight w_{i} is treated as w_{i} virtual parties.
- Reduce to unweighted setting among $W=w_{1}+w_{2}+\cdots+w_{n}$ virtual parties.
- A multiplicative overhead w_{i} for each party (computation, communication).

Objective

Can we realize the weighted setting more efficiently?
Can we make this overhead depend additively on the weights instead of multiplicatively.

This work: take-home message

The answer is yes if there is a sufficient gap between reconstruction threshold T and privacy threshold t,

$$
T-t=\Omega(\lambda) .
$$

Technical Core

Efficient Weighted Ramp Secret Sharing (WRSS)

Let $\left(w_{1}, \ldots, w_{n}, T, t\right)$ define a weighted access structure.

$$
T-t=\Omega(\lambda)
$$

There exists a weighted ramp secret sharing scheme for λ-bit secret such that

- The share size of a party with weight w_{i} is $O\left(w_{i}\right)$.
- Comparison to Shamir $w_{i} \cdot \lambda$ for a λ-bit secret
- Perfectly correct and $\exp (-\lambda)$-statistically secure.
- Build from Chinese Remainder Theorem-based secret sharing [Mignotte'83, Asmuth-Bloom'83]

Technical Core

Efficient Weighted Ramp Secret Sharing (WRSS)

Let $\left(w_{1}, \ldots, w_{n}, T, t\right)$ define a weighted access structure.

$$
T-t=\Omega(\lambda)
$$

There exists a weighted ramp secret sharing scheme for λ-bit secret such that

- The share size of a party with weight w_{i} is $O\left(w_{i}\right)$.
- Comparison to Shamir $w_{i} \cdot \lambda$ for a λ-bit secret
- Perfectly correct and $\exp (-\lambda)$-statistically secure.
- Build from Chinese Remainder Theorem-based secret sharing [Mignotte'83, Asmuth-Bloom'83]

Applications

- Applicable to MPC, threshold encryption, and threshold signature.
- The application inherits the efficiency gain of the secret-sharing schemes.
- WRSS is non-linear, which presents some technical challenges

Prior Works

[Beimel-Weinreb'05, Beimel-Tassa-Weinreb'05]

- Computational setting (OWF), Sharp threshold
- poly (n) share size, independent of the weights w_{i}
- Garbling techniques for circuits realizing weighted threshold gate

Prior Works

[Beimel-Weinreb'05, Beimel-Tassa-Weinreb'05]

- Computational setting (OWF), Sharp threshold
- poly (n) share size, independent of the weights w_{i}
- Garbling techniques for circuits realizing weighted threshold gate

Concurrent Work

[Benhamouda-Halevi-Stambler ITC'22]

- Information-theoretic and ramp setting, where $T=\beta \cdot W, t=\alpha \cdot W$ with constants $\beta>\alpha$.
- share size poly (α, β, λ), independent of the weights w_{i}
- relies on beautiful connections to wiretap channels

Prior Works

[Beimel-Weinreb'05, Beimel-Tassa-Weinreb'05]

- Computational setting (OWF), Sharp threshold
- poly (n) share size, independent of the weights w_{i}
- Garbling techniques for circuits realizing weighted threshold gate

Concurrent Work

[Benhamouda-Halevi-Stambler ITC'22]

- Information-theoretic and ramp setting, where $T=\beta \cdot W, t=\alpha \cdot W$ with constants $\beta>\alpha$.
- share size poly (α, β, λ), independent of the weights w_{i}
- relies on beautiful connections to wiretap channels

Compare to Our Work

- Our scheme still depends on the weights w_{i}, trade-off depends on the weights
- Our scheme preserves the algebraic structure of the secrets, render it applicable to threshold crypto and MPC

CRT-based Secret Sharing [Mignotte'83, Asmuth-Bloom'83]

- Suppose secret $s \in \mathbb{F}$, where $|\mathbb{F}|=p_{0} \approx 2^{\lambda}$.
- Parties are associated with integers p_{1}, \ldots, p_{n}.
- p_{0} and $p_{1}, p_{2}, \ldots, p_{n}$ are coprime.

CRT-based Secret Sharing [Mignotte'83, Asmuth-Bloom'83]

- Suppose secret $s \in \mathbb{F}$, where $|\mathbb{F}|=p_{0} \approx 2^{\lambda}$.
- Parties are associated with integers p_{1}, \ldots, p_{n}.
- p_{0} and $p_{1}, p_{2}, \ldots, p_{n}$ are coprime.

To share a secret

- Rerandomize s as a "random" integer S, where

$$
S \equiv s \bmod p_{0}
$$

- $i^{\text {th }}$ secret share is defined as $s_{i}=S \bmod p_{i}$.

CRT-based Secret Sharing [Mignotte'83, Asmuth-Bloom'83]

- Suppose secret $s \in \mathbb{F}$, where $|\mathbb{F}|=p_{0} \approx 2^{\lambda}$.
- Parties are associated with integers p_{1}, \ldots, p_{n}.
- p_{0} and $p_{1}, p_{2}, \ldots, p_{n}$ are coprime.

To share a secret

- Rerandomize s as a "random" integer S, where

$$
S \equiv s \bmod p_{0}
$$

- $i^{\text {th }}$ secret share is defined as $s_{i}=S \bmod p_{i}$.

To reconstruct a secret

- Given the secret shares $\left\{s_{i}\right\}_{i \in A}$ from an authorized set A
- Invoke Chinese remaindering theorem to find the integer S such that

$$
\forall i \in A, \quad S \bmod p_{i}=s_{i}
$$

- Reconstruct the secret s as $s=S \bmod p_{0}$.

Why is a good candidate for weighted secret sharing

- Party i receives $\log \left(p_{i}\right)$-bit information!

Why is a good candidate for weighted secret sharing

- Party i receives $\log \left(p_{i}\right)$-bit information!
- It gives a fine-grained way to control how much information each party receives.

Why is a good candidate for weighted secret sharing

- Party i receives $\log \left(p_{i}\right)$-bit information!
- It gives a fine-grained way to control how much information each party receives.
- A party with a high weight should receive more information!

Why is a good candidate for weighted secret sharing

- Party i receives $\log \left(p_{i}\right)$-bit information!
- It gives a fine-grained way to control how much information each party receives.
- A party with a high weight should receive more information!
- Set $\log \left(p_{i}\right)$ to be proportional to w_{i}, e.g., $p_{i} \approx 2^{w_{i}}$.

Why is a good candidate for weighted secret sharing

- Party i receives $\log \left(p_{i}\right)$-bit information!
- It gives a fine-grained way to control how much information each party receives.
- A party with a high weight should receive more information!
- Set $\log \left(p_{i}\right)$ to be proportional to w_{i}, e.g., $p_{i} \approx 2^{w_{i}}$.
- Authorized set A satisfies $\sum_{i} w_{i}>T$. Enough information to construct!

Why is a good candidate for weighted secret sharing

- Party i receives $\log \left(p_{i}\right)$-bit information!
- It gives a fine-grained way to control how much information each party receives.
- A party with a high weight should receive more information!
- Set $\log \left(p_{i}\right)$ to be proportional to w_{i}, e.g., $p_{i} \approx 2^{w_{i}}$.
- Authorized set A satisfies $\sum_{i} w_{i}>T$. Enough information to construct!
- Unauthorized set B satisfies $\sum_{i} w_{i}<t$. Small enough such that no information of the secret is leaked.

Weighted MPC

- information-theoretic, Honest majority

$$
t<\frac{\sum_{i=1}^{n} w_{i}}{2}=\frac{W}{2}
$$

Weighted MPC

- information-theoretic, Honest majority

$$
t<\frac{\sum_{i=1}^{n} w_{i}}{2}=\frac{W}{2}
$$

- Our secret sharing + BGW framework? [Ben-Or-Goldwasser-Wigderson'88]

Weighted MPC

- information-theoretic, Honest majority

$$
t<\frac{\sum_{i=1}^{n} w_{i}}{2}=\frac{W}{2}
$$

- Our secret sharing + BGW framework? [Ben-Or-Goldwasser-Wigderson'88]
- Works similarly, but with some differences

Weighted MPC

- information-theoretic, Honest majority

$$
t<\frac{\sum_{i=1}^{n} w_{i}}{2}=\frac{W}{2}
$$

- Our secret sharing + BGW framework? [Ben-Or-Goldwasser-Wigderson'88]
- Works similarly, but with some differences

Weighted MPC

- information-theoretic, Honest majority

$$
t<\frac{\sum_{i=1}^{n} w_{i}}{2}=\frac{W}{2}
$$

- Our secret sharing + BGW framework? [Ben-Or-Goldwasser-Wigderson'88]
- Works similarly, but with some differences

Local Homomorphism

- Suppose we have secrets x and y shared as integers X and Y such that

$$
X \equiv x \bmod p_{0} \quad Y \equiv y \bmod p_{0}
$$

Weighted MPC

- information-theoretic, Honest majority

$$
t<\frac{\sum_{i=1}^{n} w_{i}}{2}=\frac{W}{2}
$$

- Our secret sharing + BGW framework? [Ben-Or-Goldwasser-Wigderson'88]
- Works similarly, but with some differences

Local Homomorphism

- Suppose we have secrets x and y shared as integers X and Y such that

$$
X \equiv x \bmod p_{0} \quad Y \equiv y \bmod p_{0}
$$

- Party i gets the secret share $x_{i}=X \bmod p_{i}$ and $y_{i}=Y \bmod p_{i}$.

Weighted MPC

- information-theoretic, Honest majority

$$
t<\frac{\sum_{i=1}^{n} w_{i}}{2}=\frac{W}{2}
$$

- Our secret sharing + BGW framework? [Ben-Or-Goldwasser-Wigderson'88]
- Works similarly, but with some differences

Local Homomorphism

- Suppose we have secrets x and y shared as integers X and Y such that

$$
X \equiv x \bmod p_{0} \quad Y \equiv y \bmod p_{0}
$$

- Party i gets the secret share $x_{i}=X \bmod p_{i}$ and $y_{i}=Y \bmod p_{i}$.
- The local sum of secret shares $x_{i}+y_{i}$ secret shares the integer $X+Y$ (hence, the secret $x+y$).

$$
X+Y \equiv x_{i}+y_{i} \quad \bmod p_{i}
$$

Weighted MPC

- information-theoretic, Honest majority

$$
t<\frac{\sum_{i=1}^{n} w_{i}}{2}=\frac{W}{2}
$$

- Our secret sharing + BGW framework? [Ben-Or-Goldwasser-Wigderson'88]
- Works similarly, but with some differences

Local Homomorphism

- Suppose we have secrets x and y shared as integers X and Y such that

$$
X \equiv x \bmod p_{0} \quad Y \equiv y \bmod p_{0}
$$

- Party i gets the secret share $x_{i}=X \bmod p_{i}$ and $y_{i}=Y \bmod p_{i}$.
- The local sum of secret shares $x_{i}+y_{i}$ secret shares the integer $X+Y$ (hence, the secret $x+y$).

$$
X+Y \equiv x_{i}+y_{i} \quad \bmod p_{i}
$$

- The local products of secret shares $x_{i} \cdot y_{i}$ secret shares the integer $X \cdot Y$ (hence, the secret $x \cdot y$).

$$
X \cdot Y \equiv x_{i} \cdot y_{i} \bmod p_{i}
$$

Weighted MPC

Integer growing issue

- If the integer becomes too large $S>p_{1} \cdot p_{2} \cdots p_{n} \approx 2^{W}$, one cannot ensure correctness!

Weighted MPC

Integer growing issue

- If the integer becomes too large $S>p_{1} \cdot p_{2} \cdots p_{n} \approx 2^{W}$, one cannot ensure correctness!
- Integer grows slowly for + . For a polynomial-size circuit, not an issue.

Weighted MPC

Integer growing issue

- If the integer becomes too large $S>p_{1} \cdot p_{2} \cdots p_{n} \approx 2^{W}$, one cannot ensure correctness!
- Integer grows slowly for + . For a polynomial-size circuit, not an issue.
- Integer grows quickly for \times. Every multiplication doubles the length of the integer.

Weighted MPC

Integer growing issue

- If the integer becomes too large $S>p_{1} \cdot p_{2} \cdots p_{n} \approx 2^{W}$, one cannot ensure correctness!
- Integer grows slowly for + . For a polynomial-size circuit, not an issue.
- Integer grows quickly for \times. Every multiplication doubles the length of the integer.
- "degree-reduction" protocol after each multiplication!

Applications to Threshold Crypto

Given a sharing $\llbracket s \rrbracket=\left(s_{1}, \ldots, s_{n}\right)$, how do parties reconstruct g^{s} for some group generator g.

Applications to Threshold Crypto

Given a sharing $\llbracket s \rrbracket=\left(s_{1}, \ldots, s_{n}\right)$, how do parties reconstruct g^{s} for some group generator g.

Challenges with non-linear secret sharing

To reconstruct a secret s,

$$
s=(\underbrace{\left(s_{1} \cdot \lambda_{1}+s_{2} \cdot \lambda_{2}+\cdots+s_{n} \cdot \lambda_{n}\right)}_{S} \overbrace{\bmod P}^{\text {non-linear }}) \bmod p_{0} .
$$

λ_{i} is the "Lagrange" coefficient, i.e., $\lambda_{i} \bmod p_{j}=\left\{\begin{array}{ll}1 & i=j \\ 0 & i \neq j\end{array}\right.$.

Applications to Threshold Crypto

Given a sharing $\llbracket s \rrbracket=\left(s_{1}, \ldots, s_{n}\right)$, how do parties reconstruct g^{s} for some group generator g.

Challenges with non-linear secret sharing

To reconstruct a secret s,

$$
s=(\underbrace{\left(s_{1} \cdot \lambda_{1}+s_{2} \cdot \lambda_{2}+\cdots+s_{n} \cdot \lambda_{n}\right) \overbrace{\bmod P}^{\text {non-linear }}}_{S}) \bmod p_{0}
$$

λ_{i} is the "Lagrange" coefficient, i.e., $\lambda_{i} \bmod p_{j}=\left\{\begin{array}{ll}1 & i=j \\ 0 & i \neq j\end{array}\right.$.

Suppose parties want to reconstruct g^{s} by broadcasting $g^{s_{i}}$. Note that

$$
\left(g^{s_{1}}\right)^{\lambda_{1}} \cdots\left(g^{s_{n}}\right)^{\lambda_{n}} \neq g^{s}
$$

as

$$
\left(s_{1} \cdot \lambda_{1}+s_{2} \cdot \lambda_{2}+\cdots+s_{n} \cdot \lambda_{n}\right) \quad \bmod p_{0} \neq\left(\left(s_{1} \cdot \lambda_{1}+s_{2} \cdot \lambda_{2}+\cdots+s_{n} \cdot \lambda_{n}\right) \bmod P\right) \quad \bmod p_{0}
$$

Our Solution

We change the reconstruction to be

$$
s=\left(\left(\left(s_{1} \cdot \lambda_{1}\right) \bmod P+\left(s_{2} \cdot \lambda_{2}\right) \bmod P+\cdots+\left(s_{n} \cdot \lambda_{n}\right) \bmod P\right) \bmod P\right) \bmod p_{0}
$$

Our Solution

We change the reconstruction to be

$$
s=\left(\left(\left(s_{1} \cdot \lambda_{1}\right) \bmod P+\left(s_{2} \cdot \lambda_{2}\right) \bmod P+\cdots+\left(s_{n} \cdot \lambda_{n}\right) \bmod P\right) \bmod P\right) \bmod p_{0}
$$

Let r_{i} be $\left(s_{i} \cdot \lambda_{i}\right) \bmod P$. Note that

$$
s \equiv r_{1}+r_{2}+\cdots+r_{n}-\alpha \cdot P \quad \bmod p_{0}
$$

for some $\alpha \in\{0,1, \ldots, n-1\}$.

Our Solution

We change the reconstruction to be

$$
s=\left(\left(\left(s_{1} \cdot \lambda_{1}\right) \bmod P+\left(s_{2} \cdot \lambda_{2}\right) \bmod P+\cdots+\left(s_{n} \cdot \lambda_{n}\right) \bmod P\right) \bmod P\right) \bmod p_{0}
$$

Let r_{i} be $\left(s_{i} \cdot \lambda_{i}\right) \bmod P$. Note that

$$
s \equiv r_{1}+r_{2}+\cdots+r_{n}-\alpha \cdot P \quad \bmod p_{0}
$$

for some $\alpha \in\{0,1, \ldots, n-1\}$.

- Suppose parties broadcast $g^{r_{i}}$.
- Now, parties know

$$
g^{s}=g^{r_{1}} \cdots g^{r_{n}} \cdot g^{-\alpha \cdot P}
$$

for some $\alpha \in\{0,1, \ldots, n-1\}$.

Our Solution

We change the reconstruction to be

$$
s=\left(\left(\left(s_{1} \cdot \lambda_{1}\right) \bmod P+\left(s_{2} \cdot \lambda_{2}\right) \bmod P+\cdots+\left(s_{n} \cdot \lambda_{n}\right) \bmod P\right) \bmod P\right) \bmod p_{0}
$$

Let r_{i} be $\left(s_{i} \cdot \lambda_{i}\right) \bmod P$. Note that

$$
s \equiv r_{1}+r_{2}+\cdots+r_{n}-\alpha \cdot P \quad \bmod p_{0}
$$

for some $\alpha \in\{0,1, \ldots, n-1\}$.

- Suppose parties broadcast $g^{r_{i}}$.
- Now, parties know

$$
g^{s}=g^{r_{1}} \cdots g^{r_{n}} \cdot g^{-\alpha \cdot P}
$$

for some $\alpha \in\{0,1, \ldots, n-1\}$.

Weighted Threshold Encryption/Signature

- Threshold ElGamal: The encryptor will send additional information to help parties recover α.
- We also constructed weighted threshold ECDSA. Refer to the paper for details.

Follow-up Works

- Weighted (sharp-)Threshold Signature
- [Garg-Jain-Mukherjee-Sinha-Wang-Zhang S\&P'24] ia.cr/2023/567
- [Das-Camacho-Xiang-Nieto-Bunz-Ren CCS'23] ia.cr/2023/598
- Efficiency fully independent of the weights
- building on ideas from SNARK literature

Follow-up Works

- Weighted (sharp-)Threshold Signature
- [Garg-Jain-Mukherjee-Sinha-Wang-Zhang S\&P'24] ia.cr/2023/567
- [Das-Camacho-Xiang-Nieto-Bunz-Ren CCS'23] ia.cr/2023/598
- Efficiency fully independent of the weights
- building on ideas from SNARK literature
- Weighted (sharp-)Threshold Encryption
- Ongoing work: [Garg-Kolonelos-Policharla-Wang 2023]
- Efficiency partially independent of the weights
- A more efficient computational weighted secret sharing (from pairing)

Follow-up Works

- Weighted (sharp-)Threshold Signature
- [Garg-Jain-Mukherjee-Sinha-Wang-Zhang S\&P'24] ia.cr/2023/567
- [Das-Camacho-Xiang-Nieto-Bunz-Ren CCS'23] ia.cr/2023/598
- Efficiency fully independent of the weights
- building on ideas from SNARK literature
- Weighted (sharp-)Threshold Encryption
- Ongoing work: [Garg-Kolonelos-Policharla-Wang 2023]
- Efficiency partially independent of the weights
- A more efficient computational weighted secret sharing (from pairing)

Thanks! Questions?

