
Cryptography with Weights:
MPC, Encryption and Signatures

Sanjam Garg

UC Berkeley & NTT Research

Abhishek Jain

JHU & NTT Research

Pratyay Mukherjee

Supra Research

Rohit Sinha

Meta –> Swirlds Labs

Mingyuan Wang

UC Berkeley

Yinuo Zhang

UC Berkeley

August 23, 2023

Threshold Cryptography and MPC

Fundamental primitives that have been extensively studied

Trust Assumption: All parties are treated equally (i.e., unweighted)

Privacy threshold t: secure if ⩽ t malicious parties.
Reconstruction threshold T : correct if ⩾ T honest parties.
Sharp threshold: T = t+ 1; Ramp setting: T > t+ 1

Privacy threshold t = 3

Correctness threshold T = 4

Threshold Cryptography and MPC

Fundamental primitives that have been extensively studied

Trust Assumption: All parties are treated equally (i.e., unweighted)

Privacy threshold t: secure if ⩽ t malicious parties.

Reconstruction threshold T : correct if ⩾ T honest parties.
Sharp threshold: T = t+ 1; Ramp setting: T > t+ 1

Privacy threshold t = 3

Correctness threshold T = 4

Threshold Cryptography and MPC

Fundamental primitives that have been extensively studied

Trust Assumption: All parties are treated equally (i.e., unweighted)

Privacy threshold t: secure if ⩽ t malicious parties.
Reconstruction threshold T : correct if ⩾ T honest parties.

Sharp threshold: T = t+ 1; Ramp setting: T > t+ 1

Privacy threshold t = 3

Correctness threshold T = 4

Threshold Cryptography and MPC

Fundamental primitives that have been extensively studied

Trust Assumption: All parties are treated equally (i.e., unweighted)

Privacy threshold t: secure if ⩽ t malicious parties.
Reconstruction threshold T : correct if ⩾ T honest parties.
Sharp threshold: T = t+ 1; Ramp setting: T > t+ 1

Privacy threshold t = 3

Correctness threshold T = 4

One-party-one-vote may not suffice

Parties are naturally asymmetric in some emerging applications
threshold signature in a stake-based blockchain setting

Weighted setting:
Party are assigned with weights w1, w2, . . . , wn ∈ N.

Security holds if corrupted parties have cumulative weights ⩽ t.
Correctness holds if honest parties have cumulative weights ⩾ T participate.
Motivated by real-world scenarios, small weight regime wi = poly(λ).

w1 = 1

w2 = 2

w3 = 1

w4 = 2

w5 = 3

Privacy threshold t = 4

Correctness threshold T = 5

One-party-one-vote may not suffice

Parties are naturally asymmetric in some emerging applications
threshold signature in a stake-based blockchain setting

Weighted setting:
Party are assigned with weights w1, w2, . . . , wn ∈ N.

Security holds if corrupted parties have cumulative weights ⩽ t.
Correctness holds if honest parties have cumulative weights ⩾ T participate.
Motivated by real-world scenarios, small weight regime wi = poly(λ).

w1 = 1

w2 = 2

w3 = 1

w4 = 2

w5 = 3

Privacy threshold t = 4

Correctness threshold T = 5

One-party-one-vote may not suffice

Parties are naturally asymmetric in some emerging applications
threshold signature in a stake-based blockchain setting

Weighted setting:
Party are assigned with weights w1, w2, . . . , wn ∈ N.
Security holds if corrupted parties have cumulative weights ⩽ t.

Correctness holds if honest parties have cumulative weights ⩾ T participate.
Motivated by real-world scenarios, small weight regime wi = poly(λ).

w1 = 1

w2 = 2

w3 = 1

w4 = 2

w5 = 3

Privacy threshold t = 4

Correctness threshold T = 5

One-party-one-vote may not suffice

Parties are naturally asymmetric in some emerging applications
threshold signature in a stake-based blockchain setting

Weighted setting:
Party are assigned with weights w1, w2, . . . , wn ∈ N.
Security holds if corrupted parties have cumulative weights ⩽ t.
Correctness holds if honest parties have cumulative weights ⩾ T participate.

Motivated by real-world scenarios, small weight regime wi = poly(λ).

w1 = 1

w2 = 2

w3 = 1

w4 = 2

w5 = 3

Privacy threshold t = 4

Correctness threshold T = 5

One-party-one-vote may not suffice

Parties are naturally asymmetric in some emerging applications
threshold signature in a stake-based blockchain setting

Weighted setting:
Party are assigned with weights w1, w2, . . . , wn ∈ N.
Security holds if corrupted parties have cumulative weights ⩽ t.
Correctness holds if honest parties have cumulative weights ⩾ T participate.
Motivated by real-world scenarios, small weight regime wi = poly(λ).

w1 = 1

w2 = 2

w3 = 1

w4 = 2

w5 = 3

Privacy threshold t = 4

Correctness threshold T = 5

Existing Solutions: Naïve Virtualization

Party with weight wi is treated as wi virtual parties.

Reduce to unweighted setting among W = w1 + w2 + · · ·+ wn virtual parties.

A multiplicative overhead wi for each party (computation, communication).

Objective
Can we realize the weighted setting more efficiently?

Can we make this overhead depend additively on the weights instead of multiplicatively.

This work: take-home message
The answer is yes if there is a sufficient gap between reconstruction threshold T and privacy threshold t,

T − t = Ω(λ).

Existing Solutions: Naïve Virtualization

Party with weight wi is treated as wi virtual parties.

Reduce to unweighted setting among W = w1 + w2 + · · ·+ wn virtual parties.

A multiplicative overhead wi for each party (computation, communication).

Objective
Can we realize the weighted setting more efficiently?

Can we make this overhead depend additively on the weights instead of multiplicatively.

This work: take-home message
The answer is yes if there is a sufficient gap between reconstruction threshold T and privacy threshold t,

T − t = Ω(λ).

Existing Solutions: Naïve Virtualization

Party with weight wi is treated as wi virtual parties.

Reduce to unweighted setting among W = w1 + w2 + · · ·+ wn virtual parties.

A multiplicative overhead wi for each party (computation, communication).

Objective
Can we realize the weighted setting more efficiently?

Can we make this overhead depend additively on the weights instead of multiplicatively.

This work: take-home message
The answer is yes if there is a sufficient gap between reconstruction threshold T and privacy threshold t,

T − t = Ω(λ).

Technical Core

Efficient Weighted Ramp Secret Sharing (WRSS)

Let (w1, . . . , wn, T, t) define a weighted access structure.

T − t = Ω(λ).

There exists a weighted ramp secret sharing scheme for λ-bit secret such that

The share size of a party with weight wi is O(wi).
Comparison to Shamir wi · λ for a λ-bit secret

Perfectly correct and exp(−λ)-statistically secure.

Build from Chinese Remainder Theorem-based secret sharing [Mignotte’83, Asmuth-Bloom’83]

Applications

Applicable to MPC, threshold encryption, and threshold signature.

The application inherits the efficiency gain of the secret-sharing schemes.

WRSS is non-linear, which presents some technical challenges

Technical Core

Efficient Weighted Ramp Secret Sharing (WRSS)

Let (w1, . . . , wn, T, t) define a weighted access structure.

T − t = Ω(λ).

There exists a weighted ramp secret sharing scheme for λ-bit secret such that

The share size of a party with weight wi is O(wi).
Comparison to Shamir wi · λ for a λ-bit secret

Perfectly correct and exp(−λ)-statistically secure.

Build from Chinese Remainder Theorem-based secret sharing [Mignotte’83, Asmuth-Bloom’83]

Applications

Applicable to MPC, threshold encryption, and threshold signature.

The application inherits the efficiency gain of the secret-sharing schemes.

WRSS is non-linear, which presents some technical challenges

Prior Works
[Beimel-Weinreb’05, Beimel-Tassa-Weinreb’05]

Computational setting (OWF), Sharp threshold
poly(n) share size, independent of the weights wi

Garbling techniques for circuits realizing weighted threshold gate

Concurrent Work
[Benhamouda-Halevi-Stambler ITC’22]

Information-theoretic and ramp setting, where T = β ·W, t = α ·W with constants β > α.
share size poly(α, β, λ), independent of the weights wi

relies on beautiful connections to wiretap channels

Compare to Our Work

Our scheme still depends on the weights wi, trade-off depends on the weights
Our scheme preserves the algebraic structure of the secrets, render it applicable to threshold crypto and MPC

Prior Works
[Beimel-Weinreb’05, Beimel-Tassa-Weinreb’05]

Computational setting (OWF), Sharp threshold
poly(n) share size, independent of the weights wi

Garbling techniques for circuits realizing weighted threshold gate

Concurrent Work
[Benhamouda-Halevi-Stambler ITC’22]

Information-theoretic and ramp setting, where T = β ·W, t = α ·W with constants β > α.
share size poly(α, β, λ), independent of the weights wi

relies on beautiful connections to wiretap channels

Compare to Our Work

Our scheme still depends on the weights wi, trade-off depends on the weights
Our scheme preserves the algebraic structure of the secrets, render it applicable to threshold crypto and MPC

Prior Works
[Beimel-Weinreb’05, Beimel-Tassa-Weinreb’05]

Computational setting (OWF), Sharp threshold
poly(n) share size, independent of the weights wi

Garbling techniques for circuits realizing weighted threshold gate

Concurrent Work
[Benhamouda-Halevi-Stambler ITC’22]

Information-theoretic and ramp setting, where T = β ·W, t = α ·W with constants β > α.
share size poly(α, β, λ), independent of the weights wi

relies on beautiful connections to wiretap channels

Compare to Our Work

Our scheme still depends on the weights wi, trade-off depends on the weights
Our scheme preserves the algebraic structure of the secrets, render it applicable to threshold crypto and MPC

CRT-based Secret Sharing [Mignotte’83, Asmuth-Bloom’83]

Suppose secret s ∈ F, where |F| = p0 ≈ 2λ.
Parties are associated with integers p1, . . . , pn.
p0 and p1, p2, . . . , pn are coprime.

To share a secret
Rerandomize s as a “random” integer S, where

S ≡ s mod p0

ith secret share is defined as si = S mod pi.

To reconstruct a secret
Given the secret shares {si}i∈A from an authorized set A

Invoke Chinese remaindering theorem to find the integer S such that
∀i ∈ A, S mod pi = si.

Reconstruct the secret s as s = S mod p0.

CRT-based Secret Sharing [Mignotte’83, Asmuth-Bloom’83]

Suppose secret s ∈ F, where |F| = p0 ≈ 2λ.
Parties are associated with integers p1, . . . , pn.
p0 and p1, p2, . . . , pn are coprime.

To share a secret
Rerandomize s as a “random” integer S, where

S ≡ s mod p0

ith secret share is defined as si = S mod pi.

To reconstruct a secret
Given the secret shares {si}i∈A from an authorized set A

Invoke Chinese remaindering theorem to find the integer S such that
∀i ∈ A, S mod pi = si.

Reconstruct the secret s as s = S mod p0.

CRT-based Secret Sharing [Mignotte’83, Asmuth-Bloom’83]

Suppose secret s ∈ F, where |F| = p0 ≈ 2λ.
Parties are associated with integers p1, . . . , pn.
p0 and p1, p2, . . . , pn are coprime.

To share a secret
Rerandomize s as a “random” integer S, where

S ≡ s mod p0

ith secret share is defined as si = S mod pi.

To reconstruct a secret
Given the secret shares {si}i∈A from an authorized set A

Invoke Chinese remaindering theorem to find the integer S such that
∀i ∈ A, S mod pi = si.

Reconstruct the secret s as s = S mod p0.

Why is a good candidate for weighted secret sharing

Party i receives log(pi)-bit information!

It gives a fine-grained way to control how much information each party receives.

A party with a high weight should receive more information!

Set log(pi) to be proportional to wi, e.g., pi ≈ 2wi .

Authorized set A satisfies
∑

i wi > T . Enough information to construct!

Unauthorized set B satisfies
∑

i wi < t. Small enough such that no information of the secret is leaked.

Why is a good candidate for weighted secret sharing

Party i receives log(pi)-bit information!

It gives a fine-grained way to control how much information each party receives.

A party with a high weight should receive more information!

Set log(pi) to be proportional to wi, e.g., pi ≈ 2wi .

Authorized set A satisfies
∑

i wi > T . Enough information to construct!

Unauthorized set B satisfies
∑

i wi < t. Small enough such that no information of the secret is leaked.

Why is a good candidate for weighted secret sharing

Party i receives log(pi)-bit information!

It gives a fine-grained way to control how much information each party receives.

A party with a high weight should receive more information!

Set log(pi) to be proportional to wi, e.g., pi ≈ 2wi .

Authorized set A satisfies
∑

i wi > T . Enough information to construct!

Unauthorized set B satisfies
∑

i wi < t. Small enough such that no information of the secret is leaked.

Why is a good candidate for weighted secret sharing

Party i receives log(pi)-bit information!

It gives a fine-grained way to control how much information each party receives.

A party with a high weight should receive more information!
Set log(pi) to be proportional to wi, e.g., pi ≈ 2wi .

Authorized set A satisfies
∑

i wi > T . Enough information to construct!

Unauthorized set B satisfies
∑

i wi < t. Small enough such that no information of the secret is leaked.

Why is a good candidate for weighted secret sharing

Party i receives log(pi)-bit information!

It gives a fine-grained way to control how much information each party receives.

A party with a high weight should receive more information!
Set log(pi) to be proportional to wi, e.g., pi ≈ 2wi .

Authorized set A satisfies
∑

i wi > T . Enough information to construct!

Unauthorized set B satisfies
∑

i wi < t. Small enough such that no information of the secret is leaked.

Why is a good candidate for weighted secret sharing

Party i receives log(pi)-bit information!

It gives a fine-grained way to control how much information each party receives.

A party with a high weight should receive more information!
Set log(pi) to be proportional to wi, e.g., pi ≈ 2wi .

Authorized set A satisfies
∑

i wi > T . Enough information to construct!

Unauthorized set B satisfies
∑

i wi < t. Small enough such that no information of the secret is leaked.

Weighted MPC
information-theoretic, Honest majority

t <
∑n

i=1 wi

2
= W

2

Our secret sharing + BGW framework? [Ben-Or-Goldwasser-Wigderson’88]
Works similarly, but with some differences

Local Homomorphism

Suppose we have secrets x and y shared as integers X and Y such that
X ≡ x mod p0 Y ≡ y mod p0

Party i gets the secret share xi = X mod pi and yi = Y mod pi.
The local sum of secret shares xi + yi secret shares the integer X + Y (hence, the secret x+ y).

X + Y ≡ xi + yi mod pi

The local products of secret shares xi · yi secret shares the integer X · Y (hence, the secret x · y).
X · Y ≡ xi · yi mod pi

Weighted MPC
information-theoretic, Honest majority

t <
∑n

i=1 wi

2
= W

2

Our secret sharing + BGW framework? [Ben-Or-Goldwasser-Wigderson’88]

Works similarly, but with some differences

Local Homomorphism

Suppose we have secrets x and y shared as integers X and Y such that
X ≡ x mod p0 Y ≡ y mod p0

Party i gets the secret share xi = X mod pi and yi = Y mod pi.
The local sum of secret shares xi + yi secret shares the integer X + Y (hence, the secret x+ y).

X + Y ≡ xi + yi mod pi

The local products of secret shares xi · yi secret shares the integer X · Y (hence, the secret x · y).
X · Y ≡ xi · yi mod pi

Weighted MPC
information-theoretic, Honest majority

t <
∑n

i=1 wi

2
= W

2

Our secret sharing + BGW framework? [Ben-Or-Goldwasser-Wigderson’88]
Works similarly, but with some differences

Local Homomorphism

Suppose we have secrets x and y shared as integers X and Y such that
X ≡ x mod p0 Y ≡ y mod p0

Party i gets the secret share xi = X mod pi and yi = Y mod pi.
The local sum of secret shares xi + yi secret shares the integer X + Y (hence, the secret x+ y).

X + Y ≡ xi + yi mod pi

The local products of secret shares xi · yi secret shares the integer X · Y (hence, the secret x · y).
X · Y ≡ xi · yi mod pi

Weighted MPC
information-theoretic, Honest majority

t <
∑n

i=1 wi

2
= W

2

Our secret sharing + BGW framework? [Ben-Or-Goldwasser-Wigderson’88]
Works similarly, but with some differences

Local Homomorphism

Suppose we have secrets x and y shared as integers X and Y such that
X ≡ x mod p0 Y ≡ y mod p0

Party i gets the secret share xi = X mod pi and yi = Y mod pi.
The local sum of secret shares xi + yi secret shares the integer X + Y (hence, the secret x+ y).

X + Y ≡ xi + yi mod pi

The local products of secret shares xi · yi secret shares the integer X · Y (hence, the secret x · y).
X · Y ≡ xi · yi mod pi

Weighted MPC
information-theoretic, Honest majority

t <
∑n

i=1 wi

2
= W

2

Our secret sharing + BGW framework? [Ben-Or-Goldwasser-Wigderson’88]
Works similarly, but with some differences

Local Homomorphism
Suppose we have secrets x and y shared as integers X and Y such that

X ≡ x mod p0 Y ≡ y mod p0

Party i gets the secret share xi = X mod pi and yi = Y mod pi.
The local sum of secret shares xi + yi secret shares the integer X + Y (hence, the secret x+ y).

X + Y ≡ xi + yi mod pi

The local products of secret shares xi · yi secret shares the integer X · Y (hence, the secret x · y).
X · Y ≡ xi · yi mod pi

Weighted MPC
information-theoretic, Honest majority

t <
∑n

i=1 wi

2
= W

2

Our secret sharing + BGW framework? [Ben-Or-Goldwasser-Wigderson’88]
Works similarly, but with some differences

Local Homomorphism
Suppose we have secrets x and y shared as integers X and Y such that

X ≡ x mod p0 Y ≡ y mod p0

Party i gets the secret share xi = X mod pi and yi = Y mod pi.

The local sum of secret shares xi + yi secret shares the integer X + Y (hence, the secret x+ y).
X + Y ≡ xi + yi mod pi

The local products of secret shares xi · yi secret shares the integer X · Y (hence, the secret x · y).
X · Y ≡ xi · yi mod pi

Weighted MPC
information-theoretic, Honest majority

t <
∑n

i=1 wi

2
= W

2

Our secret sharing + BGW framework? [Ben-Or-Goldwasser-Wigderson’88]
Works similarly, but with some differences

Local Homomorphism
Suppose we have secrets x and y shared as integers X and Y such that

X ≡ x mod p0 Y ≡ y mod p0

Party i gets the secret share xi = X mod pi and yi = Y mod pi.
The local sum of secret shares xi + yi secret shares the integer X + Y (hence, the secret x+ y).

X + Y ≡ xi + yi mod pi

The local products of secret shares xi · yi secret shares the integer X · Y (hence, the secret x · y).
X · Y ≡ xi · yi mod pi

Weighted MPC
information-theoretic, Honest majority

t <
∑n

i=1 wi

2
= W

2

Our secret sharing + BGW framework? [Ben-Or-Goldwasser-Wigderson’88]
Works similarly, but with some differences

Local Homomorphism
Suppose we have secrets x and y shared as integers X and Y such that

X ≡ x mod p0 Y ≡ y mod p0

Party i gets the secret share xi = X mod pi and yi = Y mod pi.
The local sum of secret shares xi + yi secret shares the integer X + Y (hence, the secret x+ y).

X + Y ≡ xi + yi mod pi

The local products of secret shares xi · yi secret shares the integer X · Y (hence, the secret x · y).
X · Y ≡ xi · yi mod pi

Weighted MPC

Integer growing issue
If the integer becomes too large S > p1 · p2 · · · pn ≈ 2W , one cannot ensure correctness!

Integer grows slowly for +. For a polynomial-size circuit, not an issue.
Integer grows quickly for ×. Every multiplication doubles the length of the integer.
“degree-reduction” protocol after each multiplication!

Weighted MPC

Integer growing issue
If the integer becomes too large S > p1 · p2 · · · pn ≈ 2W , one cannot ensure correctness!
Integer grows slowly for +. For a polynomial-size circuit, not an issue.

Integer grows quickly for ×. Every multiplication doubles the length of the integer.
“degree-reduction” protocol after each multiplication!

Weighted MPC

Integer growing issue
If the integer becomes too large S > p1 · p2 · · · pn ≈ 2W , one cannot ensure correctness!
Integer grows slowly for +. For a polynomial-size circuit, not an issue.
Integer grows quickly for ×. Every multiplication doubles the length of the integer.

“degree-reduction” protocol after each multiplication!

Weighted MPC

Integer growing issue
If the integer becomes too large S > p1 · p2 · · · pn ≈ 2W , one cannot ensure correctness!
Integer grows slowly for +. For a polynomial-size circuit, not an issue.
Integer grows quickly for ×. Every multiplication doubles the length of the integer.
“degree-reduction” protocol after each multiplication!

Applications to Threshold Crypto
Given a sharing JsK = (s1, . . . , sn), how do parties reconstruct gs for some group generator g.

Challenges with non-linear secret sharing
To reconstruct a secret s,

s =
((

s1 · λ1 + s2 · λ2 + · · ·+ sn · λn
) non-linear︷ ︸︸ ︷

mod P︸ ︷︷ ︸
S

)
mod p0.

λi is the “Lagrange” coefficient, i.e., λi mod pj =

{
1 i = j

0 i ̸= j
.

Suppose parties want to reconstruct gs by broadcasting gsi . Note that

(gs1)λ1 · · · (gsn)λn ̸= gs

as (
s1 · λ1 + s2 · λ2 + · · ·+ sn · λn

)
mod p0 ̸=

((
s1 · λ1 + s2 · λ2 + · · ·+ sn · λn

)
mod P

)
mod p0

Applications to Threshold Crypto
Given a sharing JsK = (s1, . . . , sn), how do parties reconstruct gs for some group generator g.

Challenges with non-linear secret sharing
To reconstruct a secret s,

s =
((

s1 · λ1 + s2 · λ2 + · · ·+ sn · λn
) non-linear︷ ︸︸ ︷

mod P︸ ︷︷ ︸
S

)
mod p0.

λi is the “Lagrange” coefficient, i.e., λi mod pj =

{
1 i = j

0 i ̸= j
.

Suppose parties want to reconstruct gs by broadcasting gsi . Note that

(gs1)λ1 · · · (gsn)λn ̸= gs

as (
s1 · λ1 + s2 · λ2 + · · ·+ sn · λn

)
mod p0 ̸=

((
s1 · λ1 + s2 · λ2 + · · ·+ sn · λn

)
mod P

)
mod p0

Applications to Threshold Crypto
Given a sharing JsK = (s1, . . . , sn), how do parties reconstruct gs for some group generator g.

Challenges with non-linear secret sharing
To reconstruct a secret s,

s =
((

s1 · λ1 + s2 · λ2 + · · ·+ sn · λn
) non-linear︷ ︸︸ ︷

mod P︸ ︷︷ ︸
S

)
mod p0.

λi is the “Lagrange” coefficient, i.e., λi mod pj =

{
1 i = j

0 i ̸= j
.

Suppose parties want to reconstruct gs by broadcasting gsi . Note that

(gs1)λ1 · · · (gsn)λn ̸= gs

as (
s1 · λ1 + s2 · λ2 + · · ·+ sn · λn

)
mod p0 ̸=

((
s1 · λ1 + s2 · λ2 + · · ·+ sn · λn

)
mod P

)
mod p0

Our Solution
We change the reconstruction to be

s =

(((
s1 · λ1

)
mod P +

(
s2 · λ2

)
mod P + · · ·+

(
sn · λn

)
mod P

)
mod P

)
mod p0.

Let ri be
(
si · λi

)
mod P . Note that

s ≡ r1 + r2 + · · ·+ rn − α · P mod p0

for some α ∈ {0, 1, . . . , n− 1}.
Suppose parties broadcast gri .
Now, parties know

gs = gr1 · · · grn · g−α·P

for some α ∈ {0, 1, . . . , n− 1}.

Weighted Threshold Encryption/Signature
Threshold ElGamal: The encryptor will send additional information to help parties recover α.
We also constructed weighted threshold ECDSA. Refer to the paper for details.

Our Solution
We change the reconstruction to be

s =

(((
s1 · λ1

)
mod P +

(
s2 · λ2

)
mod P + · · ·+

(
sn · λn

)
mod P

)
mod P

)
mod p0.

Let ri be
(
si · λi

)
mod P . Note that

s ≡ r1 + r2 + · · ·+ rn − α · P mod p0

for some α ∈ {0, 1, . . . , n− 1}.

Suppose parties broadcast gri .
Now, parties know

gs = gr1 · · · grn · g−α·P

for some α ∈ {0, 1, . . . , n− 1}.

Weighted Threshold Encryption/Signature
Threshold ElGamal: The encryptor will send additional information to help parties recover α.
We also constructed weighted threshold ECDSA. Refer to the paper for details.

Our Solution
We change the reconstruction to be

s =

(((
s1 · λ1

)
mod P +

(
s2 · λ2

)
mod P + · · ·+

(
sn · λn

)
mod P

)
mod P

)
mod p0.

Let ri be
(
si · λi

)
mod P . Note that

s ≡ r1 + r2 + · · ·+ rn − α · P mod p0

for some α ∈ {0, 1, . . . , n− 1}.
Suppose parties broadcast gri .
Now, parties know

gs = gr1 · · · grn · g−α·P

for some α ∈ {0, 1, . . . , n− 1}.

Weighted Threshold Encryption/Signature
Threshold ElGamal: The encryptor will send additional information to help parties recover α.
We also constructed weighted threshold ECDSA. Refer to the paper for details.

Our Solution
We change the reconstruction to be

s =

(((
s1 · λ1

)
mod P +

(
s2 · λ2

)
mod P + · · ·+

(
sn · λn

)
mod P

)
mod P

)
mod p0.

Let ri be
(
si · λi

)
mod P . Note that

s ≡ r1 + r2 + · · ·+ rn − α · P mod p0

for some α ∈ {0, 1, . . . , n− 1}.
Suppose parties broadcast gri .
Now, parties know

gs = gr1 · · · grn · g−α·P

for some α ∈ {0, 1, . . . , n− 1}.

Weighted Threshold Encryption/Signature
Threshold ElGamal: The encryptor will send additional information to help parties recover α.
We also constructed weighted threshold ECDSA. Refer to the paper for details.

Follow-up Works
Weighted (sharp-)Threshold Signature

[Garg-Jain-Mukherjee-Sinha-Wang-Zhang S&P’24] ia.cr/2023/567
[Das-Camacho-Xiang-Nieto-Bunz-Ren CCS’23] ia.cr/2023/598
Efficiency fully independent of the weights
building on ideas from SNARK literature

Weighted (sharp-)Threshold Encryption
Ongoing work: [Garg-Kolonelos-Policharla-Wang 2023]
Efficiency partially independent of the weights
A more efficient computational weighted secret sharing (from pairing)

Thanks! Questions?

ia.cr/2023/567
ia.cr/2023/598

Follow-up Works
Weighted (sharp-)Threshold Signature

[Garg-Jain-Mukherjee-Sinha-Wang-Zhang S&P’24] ia.cr/2023/567
[Das-Camacho-Xiang-Nieto-Bunz-Ren CCS’23] ia.cr/2023/598
Efficiency fully independent of the weights
building on ideas from SNARK literature

Weighted (sharp-)Threshold Encryption
Ongoing work: [Garg-Kolonelos-Policharla-Wang 2023]
Efficiency partially independent of the weights
A more efficient computational weighted secret sharing (from pairing)

Thanks! Questions?

ia.cr/2023/567
ia.cr/2023/598

Follow-up Works
Weighted (sharp-)Threshold Signature

[Garg-Jain-Mukherjee-Sinha-Wang-Zhang S&P’24] ia.cr/2023/567
[Das-Camacho-Xiang-Nieto-Bunz-Ren CCS’23] ia.cr/2023/598
Efficiency fully independent of the weights
building on ideas from SNARK literature

Weighted (sharp-)Threshold Encryption
Ongoing work: [Garg-Kolonelos-Policharla-Wang 2023]
Efficiency partially independent of the weights
A more efficient computational weighted secret sharing (from pairing)

Thanks! Questions?

ia.cr/2023/567
ia.cr/2023/598

