Cryptography with Weights:

MPC, Encryption and Signatures

Sanjam Garg Abhishek Jain Pratyay Mukherjee

h &
UC Berkeley & NTT Research JHU & NTT Research Supra Research
Rohit Sinha Yinuo Zhang

g Al

Mingyuan Wang

UC Berkeley

Meta —> Swirlds Labs UC Berkeley



Threshold Cryptography and MPC

@ Fundamental primitives that have been extensively studied

@ Trust Assumption: All parties are treated equally (i.e., unweighted)

g
e o



Threshold Cryptography and MPC

@ Fundamental primitives that have been extensively studied

@ Trust Assumption: All parties are treated equally (i.e., unweighted)

e Privacy threshold t: secure if < ¢ malicious parties.

Privacy threshold t = 3

t

5

R
e o



Threshold Cryptography and MPC

@ Fundamental primitives that have been extensively studied

@ Trust Assumption: All parties are treated equally (i.e., unweighted)

e Privacy threshold t: secure if < ¢ malicious parties.
e Reconstruction threshold 7: correct if > 7" honest parties.

Correctness threshold 7' = 4

§ &

3 &

Privacy threshold t = 3

t



Threshold Cryptography and MPC

@ Fundamental primitives that have been extensively studied

@ Trust Assumption: All parties are treated equally (i.e., unweighted)

e Privacy threshold t: secure if < ¢ malicious parties.
e Reconstruction threshold 7: correct if > 7" honest parties.
o Sharp threshold: 7' =t + 1; Ramp setting: 7' >t + 1

Correctness threshold T' = 4

§ &

3 8

Privacy threshold t = 3

t



one-vote may not suffice

@ Parties are naturally asymmetric in some emerging applications

@ threshold signature in a stake-based blockchain setting

ey
‘B

wyp =1



one-vote may not suffice

@ Parties are naturally asymmetric in some emerging applications

@ threshold signature in a stake-based blockchain setting

@ Weighted setting:

o Party are assigned with weights wi,wa, ..., wy, € N.

ey
‘B

wyp =1



One-party-one-vote may not suffice

@ Parties are naturally asymmetric in some emerging applications
@ threshold signature in a stake-based blockchain setting
@ Weighted setting:

o Party are assigned with weights wi,wa, ..., wy, € N.
@ Security holds if corrupted parties have cumulative weights < ¢.

Privacy threshold ¢ = 4

s
t

w; =1

‘Bh



One-party-one-vote may not suffice

@ Parties are naturally asymmetric in some emerging applications

@ threshold signature in a stake-based blockchain setting

@ Weighted setting:

o Party are assigned with weights wi,wa, ..., wy, € N.
@ Security holds if corrupted parties have cumulative weights < ¢.
@ Correctness holds if honest parties have cumulative weights > T' participate.

Correctness threshold T'= 5

w§2 w;:)Q
3
3 8

wz =1 ws = 3

Privacy threshold ¢ = 4



One-party-one-vote may not suffice

@ Parties are naturally asymmetric in some emerging applications

@ threshold signature in a stake-based blockchain setting

@ Weighted setting:

o Party are assigned with weights wi,wa, ..., wy, € N.

@ Security holds if corrupted parties have cumulative weights < ¢.

@ Correctness holds if honest parties have cumulative weights > T' participate.
@ Motivated by real-world scenarios, small weight regime w; = poly(\).

Correctness threshold T'= 5

w§2 w;:)Q
3
3 8

wz =1 ws = 3

Privacy threshold ¢ = 4



Existing Solutions: Naive Virtualization

@ Party with weight w; is treated as w; virtual parties.
@ Reduce to unweighted setting among W = w; + w2 + - - - + w,, virtual parties.

@ A multiplicative overhead w; for each party (computation, communication).




Existing Solutions: Naive Virtualization

@ Party with weight w; is treated as w; virtual parties.
@ Reduce to unweighted setting among W = w; + w2 + - - - + w,, virtual parties.

@ A multiplicative overhead w; for each party (computation, communication).

Objective

Can we realize the weighted setting more efficiently?

Can we make this overhead depend additively on the weights instead of multiplicatively.




Existing Solutions: Naive Virtualization

@ Party with weight w; is treated as w; virtual parties.
@ Reduce to unweighted setting among W = w; + w2 + - - - + w,, virtual parties.

@ A multiplicative overhead w; for each party (computation, communication).

Objective

Can we realize the weighted setting more efficiently?

Can we make this overhead depend additively on the weights instead of multiplicatively.

This work: take-home message

The answer is yes if there is a sufficient gap between reconstruction threshold 7" and privacy threshold ¢,

T —t=Q(\).




Technical Core

Efficient Weighted Ramp Secret Sharing (WRSS)

Let (w1, ..., wn,T,t) define a weighted access structure.
T—t=Q(\).
There exists a weighted ramp secret sharing scheme for \-bit secret such that

@ The share size of a party with weight w; is O(w;).
o Comparison to Shamir w; - A for a A-bit secret

@ Perfectly correct and exp(—\)-statistically secure.

@ Build from Chinese Remainder Theorem-based secret sharing [Mignotte’83, Asmuth-Bloom’83|




Technical Core

Efficient Weighted Ramp Secret Sharing (WRSS)

Let (w1, ..., wn,T,t) define a weighted access structure.
T—t=Q(\).
There exists a weighted ramp secret sharing scheme for \-bit secret such that

@ The share size of a party with weight w; is O(w;).
@ Comparison to Shamir w; - A for a A-bit secret
@ Perfectly correct and exp(—\)-statistically secure.

@ Build from Chinese Remainder Theorem-based secret sharing [Mignotte’83, Asmuth-Bloom’83]

@ Applicable to MPC, threshold encryption, and threshold signature.

@ The application inherits the efficiency gain of the secret-sharing schemes.

@ WRSS is non-linear, which presents some technical challenges




[Beimel-Weinreb’05, Beimel-Tassa-Weinreb’05]
@ Computational setting (OWF), Sharp threshold

@ poly(n) share size, independent of the weights w;

@ Garbling techniques for circuits realizing weighted threshold gate




[Beimel-Weinreb’05, Beimel-Tassa-Weinreb’05]
@ Computational setting (OWF), Sharp threshold

@ poly(n) share size, independent of the weights w;

@ Garbling techniques for circuits realizing weighted threshold gate

[Benhamouda-Halevi-Stambler ITC’22|

@ Information-theoretic and ramp setting, where T'= 3 - W, t = o - W with constants 8 > a.

@ share size poly(a, 3, \), independent of the weights w;

@ relies on beautiful connections to wiretap channels




Prior Works

[Beimel-Weinreb’05, Beimel-Tassa-Weinreb’05]
@ Computational setting (OWF), Sharp threshold
@ poly(n) share size, independent of the weights w;

@ Garbling techniques for circuits realizing weighted threshold gate

Concurrent Work
[Benhamouda-Halevi-Stambler ITC’22|

@ Information-theoretic and ramp setting, where T'= 3 - W, t = o - W with constants 8 > a.

@ share size poly(a, 3, \), independent of the weights w;

@ relies on beautiful connections to wiretap channels

Compare to Our Work

@ Our scheme still depends on the weights w;, trade-off depends on the weights

@ Our scheme preserves the algebraic structure of the secrets, render it applicable to threshold crypto and MPC




CRT-based Secret Sharing [Mignotte’83, Asmuth-Bloom’83]

@ Suppose secret s € F, where |F| = pg ~ 2.
@ Parties are associated with integers pi,...,pn.

@ po and p1,p2,...,pn are coprime.




CRT-based Secret Sharing [Mignotte’83, Asmuth-Bloom’83]

Suppose secret s € F, where |F| = pg ~ 2*.

Parties are associated with integers pi,...,pn.

po and pi1,p2,...,pPn are coprime.

@ Rerandomize s as a “random” integer S, where

S =s mod pg

@ ! secret share is defined as s; = S mod p;.




CRT-based Secret Sharing [Mignotte’83, Asmuth-Bloom’83]

Suppose secret s € F, where |F| = pg ~ 2*.

Parties are associated with integers pi,...,pn.

(]
=
o
)
5
2
=
3
v

..... pn are coprime.

@ Rerandomize s as a “random” integer S, where

S =s mod pg

@ ! secret share is defined as s; = S mod p;.

To reconstruct a secret

@ Given the secret shares {s;};c4 from an authorized set A
@ Invoke Chinese remaindering theorem to find the integer S such that
Vi € A, S mod p; = s;.

@ Reconstruct the secret s as s =S mod pg.



y is a good candidate for weighted secret sharing

@ Party ¢ receives log(p;)-bit information!




7 is a good candidate for weighted secret sharing

@ Party ¢ receives log(p;)-bit information!

@ It gives a fine-grained way to control how much information each party receives.




7 is a good candidate for weighted secret sharing

@ Party ¢ receives log(p;)-bit information!
@ It gives a fine-grained way to control how much information each party receives.

@ A party with a high weight should receive more information!




7 is a good candidate for weighted secret sharing

@ Party ¢ receives log(p;)-bit information!
@ It gives a fine-grained way to control how much information each party receives.

@ A party with a high weight should receive more information!

@ Set log(p;) to be proportional to w;, e.g., p; ~ 2%i.




Nhy is a good candidate for weighted secret sharing
3 g g )

@ Party ¢ receives log(p;)-bit information!
@ It gives a fine-grained way to control how much information each party receives.
@ A party with a high weight should receive more information!

@ Set log(p;) to be proportional to w;, e.g., p; ~ 2%i.

@ Authorized set A satisfies . w; > 7. Enough information to construct!




Why is a good candidate for weighted secret sharing
3 g g g

@ Party ¢ receives log(p;)-bit information!
@ [t gives a fine-grained way to control how much information each party receives.
@ A party with a high weight should receive more information!
@ Set log(p;) to be proportional to w;, e.g., p; ~ 2%i.
@ Authorized set A satisfies . w; > 7. Enough information to construct!

@ Unauthorized set B satisfies >, w; < t. Small enough such that no information of the secret is leaked.




Weighted MPC

@ information-theoretic, Honest majority

Ticiwi _ W




Weighted MPC

@ information-theoretic, Honest majority
Tiawi _ W
t<=5—=7%
@ Our secret sharing + BGW framework? [Ben-Or-Goldwasser-Wigderson’88|




Weighted MPC

@ information-theoretic, Honest majority

Titawi _ W
t<=5—=7

@ Our secret sharing + BGW framework? [Ben-Or-Goldwasser-Wigderson’88|

@ Works similarly, but with some differences




Weighted MPC

@ information-theoretic, Honest majority

Titawi _ W
t<=5—=7

@ Our secret sharing + BGW framework? [Ben-Or-Goldwasser-Wigderson’88|

@ Works similarly, but with some differences




Weighted MPC

@ information-theoretic, Honest majority
< Tzl W
@ Our secret sharing + BGW framework? [Ben-Or-Goldwasser-Wigderson’88)|

@ Works similarly, but with some differences

Local Homomorphism

@ Suppose we have secrets x and y shared as integers X and Y such that

X =2 mod po Y =y mod po




Weighted MPC

@ information-theoretic, Honest majority
< Tzl W
@ Our secret sharing + BGW framework? [Ben-Or-Goldwasser-Wigderson’88)|

@ Works similarly, but with some differences

Local Homomorphism

@ Suppose we have secrets x and y shared as integers X and Y such that
X =2 mod po Y =y mod po
@ Party i gets the secret share z; = X mod p; and y; =Y mod p;.




Weighted MPC

@ information-theoretic, Honest majority
< Tzl W
@ Our secret sharing + BGW framework? [Ben-Or-Goldwasser-Wigderson’88)|

@ Works similarly, but with some differences

Local Homomorphism

@ Suppose we have secrets x and y shared as integers X and Y such that
X =2 mod po Y =y mod po
@ Party i gets the secret share z; = X mod p; and y; =Y mod p;.
@ The local sum of secret shares z; + y; secret shares the integer X + Y (hence, the secret x + y).

X+Y =z; +y; mod p;




Weighted MPC

@ information-theoretic, Honest majority
< Tzl W
@ Our secret sharing + BGW framework? [Ben-Or-Goldwasser-Wigderson’88)|

@ Works similarly, but with some differences

Local Homomorphism

@ Suppose we have secrets x and y shared as integers X and Y such that
X =2 mod po Y =y mod po
@ Party i gets the secret share z; = X mod p; and y; =Y mod p;.
@ The local sum of secret shares z; + y; secret shares the integer X + Y (hence, the secret x + y).
X+Y =z; +y; mod p;

@ The local products of secret shares z; - y; secret shares the integer X - Y (hence, the secret z - y).

X Y =uz;-y; mod p;




Weighted MPC

Integer growing issue

@ If the integer becomes too large S > p1 - p2 - - pn ~ 2V, one cannot ensure correctness!




Weighted MPC

Integer growing issue
@ If the integer becomes too large S > p1 - p2 - - pn ~ 2V, one cannot ensure correctness!

@ Integer grows slowly for 4. For a polynomial-size circuit, not an issue.




Weighted MPC

Integer growing issue
@ If the integer becomes too large S > p1 - p2 - - pn ~ 2V, one cannot ensure correctness!

@ Integer grows slowly for 4. For a polynomial-size circuit, not an issue.

@ Integer grows quickly for x. Every multiplication doubles the length of the integer.




Weighted MPC

Integer growing issue
@ If the integer becomes too large S > p1 - p2 - - pn ~ 2V, one cannot ensure correctness!

@ Integer grows slowly for 4. For a polynomial-size circuit, not an issue.

@ Integer grows quickly for x. Every multiplication doubles the length of the integer.

@ “degree-reduction” protocol after each multiplication!




Applications to Threshold Crypto

Given a sharing [s]| = (s1,. .., sn), how do parties reconstruct g° for some group generator g.




Applications to Threshold Crypto

Given a sharing [s]| = (s1,. .., sn), how do parties reconstruct g° for some group generator g.

Challenges with non-linear secret sharing

To reconstruct a secret s,

non-linear

=
s:<(51-/\1 +52-/\2+~--+sn-)\n) modP) mod pg.

S
1 < 99 . . 1 Z = .]
A; is the “Lagrange” coefficient, i.e., \; mod p; = 0 istj
i#j




Applications to Threshold Crypto

Given a sharing [s]| = (s1,. .., sn), how do parties reconstruct g° for some group generator g.

Challenges with non-linear secret sharing

To reconstruct a secret s,

non-linear

=
s:<(51-/\1 +52-/\2+~--+sn-)\n) modP) mod pg.

S
. . R o 1 i=j
A; is the “Lagrange” coefficient, i.e., \; mod p; = 0 istj
i#j

Suppose parties want to reconstruct g° by broadcasting g®:. Note that

(g°)M - (g )M £ g°

as

(51~/\1+52-/\2+---+sn-)\n) modpo;é((31-)\1+52-/\2+--»+sn-/\n) modP> mod pg




We change the reconstruction to be

s = (((sl.)\l) mod P+ (s2-X2) mod P+---+ (sp-An) mod P) mod P> mod pg.




We change the reconstruction to be
s = (((Sl A1) mod P+ (s2-A2) mod P+ -+ (sn-An) mod P) mod P> mod pg.

Let r; be (si ~)\i) mod P. Note that
s=r1+ra+---+rp—a-P mod po

for some a € {0,1,...,n — 1}.




We change the reconstruction to be
s = (((Sl A1) mod P+ (s2-A2) mod P+ -+ (sn-An) mod P) mod P> mod pg.

Let r; be (si ~)\i) mod P. Note that
s=r1+ra+---+rp—a-P mod po

for some a € {0,1,...,n — 1}.
@ Suppose parties broadcast g"i.

@ Now, parties know

for some a € {0,1,...,n— 1}.




We change the reconstruction to be
s = (((81 A1) mod P+ (s2-A2) mod P+ -+ (sn-An) mod P) mod P> mod po.

Let r; be (s,- ~)\i) mod P. Note that
s=r1+ra+---+rp—a-P mod po

for some a € {0,1,...,n — 1}.
@ Suppose parties broadcast g"i.

@ Now, parties know

for some o € {0,1,...,n —1}.

Weighted Threshold Encryption/Signature

@ Threshold ElGamal: The encryptor will send additional information to help parties recover a.
@ We also constructed weighted threshold ECDSA. Refer to the paper for details.




@ Weighted (sharp-)Threshold Signature
[Garg-Jain-Mukherjee-Sinha-Wang-Zhang S&P’24]  ia.cr/2023/567
[Das-Camacho-Xiang-Nieto-Bunz-Ren CCS’23| ia.cr/2023/598
Efficiency fully independent of the weights

building on ideas from SNARK literature



ia.cr/2023/567
ia.cr/2023/598

@ Weighted (sharp-)Threshold Signature
[Garg-Jain-Mukherjee-Sinha-Wang-Zhang S&P’24]  ia.cr/2023/567
@ |[Das-Camacho-Xiang-Nieto-Bunz-Ren CCS’23| ia.cr/2023/598

o Efficiency fully independent of the weights

@ building on ideas from SNARK literature

@ Weighted (sharp-)Threshold Encryption
@ Ongoing work: [Garg-Kolonelos-Policharla-Wang 2023|
o Efficiency partially independent of the weights
@ A more efficient computational weighted secret sharing (from pairing)



ia.cr/2023/567
ia.cr/2023/598

@ Weighted (sharp-)Threshold Signature
[Garg-Jain-Mukherjee-Sinha-Wang-Zhang S&P’24]  ia.cr/2023/567
@ |[Das-Camacho-Xiang-Nieto-Bunz-Ren CCS’23| ia.cr/2023/598

o Efficiency fully independent of the weights

@ building on ideas from SNARK literature

@ Weighted (sharp-)Threshold Encryption
@ Ongoing work: [Garg-Kolonelos-Policharla-Wang 2023|
o Efficiency partially independent of the weights
@ A more efficient computational weighted secret sharing (from pairing)

Thanks!  Questions?


ia.cr/2023/567
ia.cr/2023/598

