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Quantum Supremacy (Test of Quantumness)

* Perform computations that outperforms classical
computers.

* A need for efficiently-verifiable quantum
advantage.
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Example of Proof of Quantumness [Shor’'94]

Prover

Primes p and q Verifier

factor N

Generates

primes p, q
‘.
: {FactorN=p-q\J7

Problem: hard to implement on NISQ
(Noisy Intermediate-Scale Quantum)
Computers.
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Previous Works

« BCMVV’18! — Proof of Quantumness + Certifiable Randomness
based on LWE using adaptive-hardcore bit.

 Requires an aggressive setting of parameters for LWE which hampers
practical implementation.

* YZ'22?2 — Proofs of Quantumness + Certifiable Randomness in
the random oracle model.

* Recently, two proposals of protocols in the standard model with
milder computational assumptions KCVY’213 and KLVY"224.

A Cryptographic Test of Quantumness and Certifiable Randomness from a Single Quantum Device, Z. Brakerski, P. Christiano,
U. Mahadev, U. Vazirani, T. Vidick, 2018
Verifiable Quantum Advantage without Structure, T. Yamakawa, M. Zhandry, 2022

Classically-Verifiable Quantum Advantage from a Computational Bell Test, G. Kahanamoku-Meyer, S. Choi, U. Vazirani, N.
Yao.

Quantum Advantage from Any Non-Local Game, Y. Tauman Kalai, A. Lombardi, V. Vaikuntanathan, L. Yang



Beyond Quantum Supremacy

* Suppose we have a NISQ computer which achieves Quantum
Supremacy

* Could we make it generate certifiable randomness?
 Could we delegate computation to the Quantum computer?

* Qubit Certification - a useful building block for quantum
verification protocols.



Qubit Certification

 Could we verify that the quantum computer has a qubit?
« What does it mean to “have” a qubit?



Qubit Certification

* Operational view of Qubits’: the prover has a triplet (i), X, Z)
where X and Z are binary observables which “approximately
anti-commute” on |y).

* Could we use existing proofs of Quantumness as tests for
qubits?

e Our Answer: Yes!

* Course FSMP, Fall’20: Interactions with Quantum
Devices, Thomas Vidick, 2022



Our Results

» For a specific class of protocols, we show:

* A quantum soundness barrier against quantum cheating provers
(vs classical soundness).

* Provers that approach the quantum soundness barrier must perform anti-
commuting measurements (a qubit test).

« NZ'23 show related results for the KLVY’22 protocol. Prove how it
can be used to get a protocol for delegation of guantum computation.



Our Protocol Template

Prover
Verifier
10 o PHASE 1 - rand
- <
flag € {acc, rej, cont}
|¢ trans )
quantum state ]
if flag = cont: ,
trans transcript of the protocol
m € {0,1} challenge
PHASE 2 )

h € {0, 1} response

n
»

verifier accepts if b = b5 *Y(rand, trans)



Soundness for classical provers — Sketch

* Parity hardness: prove that it is hard for classical provers to
Compute b(()torrect @ bcorrect p > _l_ c

* Reduce soundness to parity hardnegss:
Assume adversary succeeds w.p. =~ + €.

Run Phase 1 of the protocol.

m=20 challenge

bg response

m=1 challenge

b4 response

b() @ b]_ b(()IOI'I'eCt @ bCOI'I'eCt



Computing Parity in the Quantum World

* Problem: Quantum computers cannot perform rewinding...

* Could they somehow compute the parity with some noticeable
advantage?



Modeling Quantum Provers

* For each m € {0,1} (challenge bit) the prover performs a set
projective measurement on its state [¥:.an:)

{ l_[ m }< Challenge bit

Response bit




Parity Algorithm




Soundness for quantum provers - sketch

* Prove that it is hard (quantum) to compute the parity of both
Challenges: b(():orrect D b{:orrect

* Quantum Analogue: Show that a quantum adversary that
[ ] 2 E L] [ ] L] L]
achieves cos (8) + £ success probability, using the parity

algorithm can compute parities.



Parity Hardness —» Quantum Soundness

No classical Then no classical (quantum) polynomial-time

(quantum) polyngmialAtime % prover succeeds in the protocol template with
algorithm guesses b, @ b; with probability larger than 75% (resp. cos*(m/8)
non-negligible advantage ~ 85%) by more than a negligible amount




Qubit Test

* The quantum soundness result gives us a qubit test

« If a prover approaches the soundness barrier, then the
measurements the prover performs must be close to anti-
commuting



Example: KCVY Protocol modified)



Trapdoor claw-free functions

* Keyed functions f;: X}, = Y, with trapdoor t;

Xk yk

« Hard (quantum) to find a claw (x,, x;) such that f; (x,) = fi (x1)
* Given trapdoor t;, for each y easy to find f (xy) = fi(x1) =y



Trapdoor claw-free functions — cntd.

* Efficiently generate superposition
1

m2|x>|fk<x>>
kI x

- Efficiently distinguish between the preimages x, and x,




KCVY Protocol - Simplified

Generates

k, tk for a

Honest Prover PHASE 1 TCF

@®. Verifier
' 1. Generates

g Zx|x>X|fk(x))‘y { k=;<§%7for j>

2. Measures Y register
(xodx + [x1) ) ¥)y

3. Sends y to the
verifier.



KCVY Protocol - Simplified

Honest Prover PHASE 1

S ———

1. Computes ancilla bit
g 10} x0)x + [1Hx1)x
2. Using ancilla

10)x0)xlmo - x0)  + [D)x1)xlmy - x1)

@ 3. Uncomputes ancilla
Ixodx |70 - x0) + |x1)x|71 - %1)

Generates

k, tk for a
TCFE
Verifier

70,71 < g {0,1}"

@,
e -—
k = Key for
TCF 0o
.

-




Generates

KCVY Protocol - Simplified

k, tk for a

Honest Prover PHASE 1 TCF

Verifier

®,
——— 3. Computes Hadamard on X register - -
4 4 k = Key for
> 1)y ((~D@%lrg - x0) + (=111 - 1)) et Mo
d -

4. Measures X register

|d)x ((—1)d°x°|7”0 - %) + (D)4 'xl)) 70,71 < g {0,1}"
5. Sends d to the verifier _




KCVY Protocol - Simplified

Generates

k, tk for a

Honest Prover PHASE 2 TCF

@®. Verifier

\

Holds the state p

1Y) = |1y - x0) + (—1)F DX |y, . x,) k = Key for
TCF

O O

m =0 m=1

70,71 < g {0,1}"

-

) m € {0,1}

VvV

Sends b the outcome of the measurement.



KCVY Protocol - Simplified

Generates

k, tk for a

Honest Prover PHASE 1 TCF

@®. Verifier

S ———t A

p
y €Yy Generate claw and k = Key for
measure y TCE
.

e Multiply by 7y, 1y

d € {0,1}" & Perform Hadamard 4
@ )~ measurement 70,71 < g {0,1}"

PHASE 2 .

N
ﬁ b € {0,1} Challenge-Response o1
) m € 0,13

\-

J

VvV




KCVY Protocol - Simplified

Accept if b is the “expected” measurement outcome

Using trapdoor t, can find xy and x;

Computes b (xg, x1, 7o, 71, d)

Accepts if b = pgorrect



Post-Quantum TCF - Hardness of parity

Quantum Goldreich-
Levin®

Post-Quantum
Trapdoor claw-
free functions

Hardness of
Computing Parity

v

* A quantum Goldreich-Levin theorem with cryptographic applications, Mark Adcock, Richard Cleve, 2002



Open Questions

 Could we generalize our approach to the tests
of quantumness in BCMVV’18 and the ones that

operate in the random oracle model?
* A hierarchy of ”capabilities”

» What is the minimal basis for achieving
these capabilities?

Certifiable
Randomness

Proofs of
Quantumess
based on non-
rewinding

{

Qubit

certification







