
Simple Tests of Quantumness
Also Certify Qubits

Zvika Brakerski (Weizmann Institute of Science)
Alexandru Gherghiu (Chalmers University of Technology)

Gregory D Kahanamoku-Meyer (University Of California, Berkeley)
Eitan Porat (Weizmann Institute of Science)

Thomas Vidick (Weizmann Institute of Science)

Quantum Supremacy (Test of Quantumness)

• Perform computations that outperforms classical
computers.
• A need for efficiently-verifiable quantum

advantage.

Google Sycamore
Image Rights: Forest Stearns,
Google AI Quantum Artist in
Residence

Example of Proof of Quantumness [Shor’94]

👩👱
Prover VerifierPrimes 𝑝 and 𝑞

factor 𝑁

Factor 𝑁 = 𝑝 ⋅ 𝑞

Generates
primes 𝑝, 𝑞

Problem: hard to implement on NISQ
(Noisy Intermediate-Scale Quantum)
Computers.

Previous Works

• BCMVV’181 – Proof of Quantumness + Certifiable Randomness
based on LWE using adaptive-hardcore bit.
• Requires an aggressive setting of parameters for LWE which hampers

practical implementation.
• YZ’222 – Proofs of Quantumness + Certifiable Randomness in

the random oracle model.
• Recently, two proposals of protocols in the standard model with

milder computational assumptions KCVY’213 and KLVY’224.

1. A Cryptographic Test of Quantumness and Certifiable Randomness from a Single Quantum Device, Z. Brakerski, P. Christiano,
U. Mahadev, U. Vazirani, T. Vidick, 2018

2. Verifiable Quantum Advantage without Structure, T. Yamakawa, M. Zhandry, 2022
3. Classically-Verifiable Quantum Advantage from a Computational Bell Test, G. Kahanamoku-Meyer, S. Choi, U. Vazirani, N.

Yao.
4. Quantum Advantage from Any Non-Local Game, Y. Tauman Kalai, A. Lombardi, V. Vaikuntanathan, L. Yang

Beyond Quantum Supremacy

• Suppose we have a NISQ computer which achieves Quantum
Supremacy
• Could we make it generate certifiable randomness?
• Could we delegate computation to the Quantum computer?
• Qubit Certification - a useful building block for quantum

verification protocols.

Qubit Certification

• Could we verify that the quantum computer has a qubit?
• What does it mean to “have” a qubit?

Qubit Certification

• Operational view of Qubits*: the prover has a triplet 𝜓 , 𝑋, 𝑍
where 𝑋 and 𝑍 are binary observables which ”approximately
anti-commute” on 𝜓 .
• Could we use existing proofs of Quantumness as tests for

qubits?
• Our Answer: Yes!

* Course FSMP, Fall’20: Interactions with Quantum
Devices, Thomas Vidick, 2022

Our Results
• For a specific class of protocols, we show:
• A quantum soundness barrier against quantum cheating provers

(vs classical soundness).
• Provers that approach the quantum soundness barrier must perform anti-

commuting measurements (a qubit test).
• NZ’23 show related results for the KLVY’22 protocol. Prove how it

can be used to get a protocol for delegation of quantum computation.

Our Protocol Template

👩👱
Prover

Verifier

…

flag ∈ {acc, rej, cont}

if flag = cont:

|𝜓 ⟩trans

rand

trans transcript of the protocol
quantum state

𝑚 ∈ 0,1 challenge

𝑏 ∈ 0,1 response

verifier accepts if 𝑏 = 𝑏!"#$$%"&(rand, trans)

PHASE 1

PHASE 2

Soundness for classical provers – Sketch
• Parity hardness: prove that it is hard for classical provers to

compute 𝑏./0112/3⊕𝑏4/0112/3 w.p. ≥ !
"
+ 𝜀

• Reduce soundness to parity hardness:
Assume adversary succeeds w.p. ≥ 5

6+ 𝜀.

Run Phase 1 of the protocol.

𝑚 = 0 challenge

response𝑏'

𝑚 = 1 challenge

response𝑏(

𝑏'⊕𝑏(≈ 𝑏'"#$$%"&⊕𝑏("#$$%"&

Computing Parity in the Quantum World

• Problem: Quantum computers cannot perform rewinding…
• Could they somehow compute the parity with some noticeable

advantage?

Modeling Quantum Provers

• For each 𝑚 ∈ {0,1} (challenge bit) the prover performs a set
projective measurement on its state

 Π!" Challenge bit

Response bit

|𝜓 ⟩trans

Parity Algorithm
(Algorithm 𝒜!)
• Execute Phase 1 of the protocol template to obtain (trans,)
(Algorithm 𝒜")
• 𝑏# = measurement of ℋ$ using Π##, Π!# .
• 𝑏! = measurement of ℋ$ using Π#!, Π!! .
• Return 𝑏#⊕𝑏!.

|𝜓 ⟩trans

Soundness for quantum provers - sketch

• Prove that it is hard (quantum) to compute the parity of both
challenges: 𝑏#%&''(%)⊕𝑏!%&''(%)

• Quantum Analogue: Show that a quantum adversary that
achieves cos" *

+
+ 𝜀 success probability, using the parity

algorithm can compute parities.

Parity Hardness → Quantum Soundness

No classical
(quantum) polynomial time

algorithm guesses ,𝑏!⊕ ,𝑏" with
non-negligible advantage

Then no classical (quantum) polynomial-time
prover succeeds in the protocol template with
probability larger than 75% (resp. cos)(⁄𝜋 8)
≈ 85%) by more than a negligible amount

→

Qubit Test

• The quantum soundness result gives us a qubit test
• If a prover approaches the soundness barrier, then the

measurements the prover performs must be close to anti-
commuting

Example: KCVY Protocol (modified)

Trapdoor claw-free functions
• Keyed functions 𝑓/: 𝒳/ → 𝒴/ with trapdoor 𝑡/

• Hard (quantum) to find a claw (𝑥#, 𝑥!) such that 𝑓/ 𝑥# = 𝑓/(𝑥!)
• Given trapdoor 𝑡/, for each 𝑦 easy to find 𝑓/ 𝑥# = 𝑓/ 𝑥! = 𝑦

𝑥.

𝑥4

𝑦

𝓧𝒌 𝓨𝒌

Trapdoor claw-free functions – cntd.

• Efficiently generate superposition

• Efficiently distinguish between the preimages 𝑥# and 𝑥!

1
𝒳D

0
E

𝑥 𝑓D 𝑥

KCVY Protocol - Simplified

😇
Honest Prover

1. Generates
∑E 𝑥 𝒳 𝑓D 𝑥 𝒴

2. Measures 𝒴 register
𝑥. 𝒳 + 𝑥4 𝒳 𝑦 𝒴

3. Sends 𝑦 to the
verifier.

👩
Verifier

𝑘 = Key for
TCF

Generates
𝑘, 𝑡! for a

TCFPHASE 1

KCVY Protocol - Simplified

1. Computes ancilla bit
0 𝑥! 𝒳 + 1 𝑥" 𝒳

2. Using ancilla
0 𝑥! 𝒳 𝑟! ⋅ 𝑥! + 1 𝑥" 𝒳 𝑟" ⋅ 𝑥"

3. Uncomputes ancilla
𝑥! 𝒳 𝑟! ⋅ 𝑥! + 𝑥" 𝒳 𝑟" ⋅ 𝑥"

👩
Verifier

𝑘 = Key for
TCF

Generates
𝑘, 𝑡! for a

TCF

𝑟', 𝑟(←* {0,1}+

😇
Honest Prover PHASE 1

KCVY Protocol - Simplified

👩
Verifier

𝑘 = Key for
TCF

Generates
𝑘, 𝑡! for a

TCF

𝑟', 𝑟(←* {0,1}+

3. Computes Hadamard on 𝒳 register

K
,

𝑑 𝒳 −1 ,⋅/! 𝑟' ⋅ 𝑥' + −1 ,⋅/" 𝑟(⋅ 𝑥(

4. Measures 𝒳 register

5. Sends 𝑑 to the verifier

𝑑 𝒳 −1 ,⋅/! 𝑟' ⋅ 𝑥' + −1 ,⋅/" 𝑟(⋅ 𝑥(

😇
Honest Prover PHASE 1

KCVY Protocol - Simplified

👩
Verifier

𝑘 = Key for
TCF

Generates
𝑘, 𝑡! for a

TCF

𝑟', 𝑟(←* {0,1}+

Holds the state
𝜓 = 𝑟! ⋅ 𝑥! + −1 $⋅('"⊕'#) 𝑟" ⋅ 𝑥"😇

Honest Prover

𝑚 = 0

𝜋
8

5𝜋
8

𝑚 = 1

−
𝜋
8

3𝜋
8

Sends 𝑏 the outcome of the measurement.

𝑚 ∈ {0,1}

PHASE 2

KCVY Protocol - Simplified

𝑑 ∈ {0,1}+
👩
Verifier

𝑘 = Key for
TCF

Generates
𝑘, 𝑡! for a

TCF

𝑟', 𝑟(←* {0,1}+

𝑦 ∈ 𝒴0

𝑚 ∈ {0,1}
𝑏 ∈ {0,1}

😇
Honest Prover

Generate claw and
measure 𝑦

Multiply by 𝑟', 𝑟(
& Perform Hadamard
measurement

Challenge-Response

PHASE 1

PHASE 2

KCVY Protocol - Simplified

👩
Verifier

Accept if 𝑏 is the “expected” measurement outcome

Using trapdoor 𝑡* can find 𝑥! and 𝑥"

Computes 𝑏+,-../,0(𝑥!, 𝑥", 𝑟!, 𝑟", 𝑑)

Accepts if 𝑏 = 𝑏+,-../,0

Post-Quantum TCF → Hardness of parity

Post-Quantum
Trapdoor claw-
free functions

Hardness of
Computing Parity

Quantum Goldreich-
Levin*

* A quantum Goldreich-Levin theorem with cryptographic applications, Mark Adcock, Richard Cleve, 2002

Open Questions
• Could we generalize our approach to the tests

of quantumness in BCMVV’18 and the ones that
operate in the random oracle model?

• A hierarchy of ”capabilities”
• What is the minimal basis for achieving

these capabilities?

Qubit
certification

Certifiable
Randomness

Classical delegation
of quantum
computation

Proofs of
Quantumess

based on non-
rewinding

Q & A

