Simple Tests of Quantumness Also Certify Qubits

Zvika Brakerski (Weizmann Institute of Science) Alexandru Gherghiu (Chalmers University of Technology) Gregory D Kahanamoku-Meyer (University Of California, Berkeley) <u>Eitan Porat (Weizmann Institute of Science)</u> Thomas Vidick (Weizmann Institute of Science)

Quantum Supremacy (Test of Quantumness)

- Perform computations that outperforms classical computers.
- A need for efficiently-verifiable quantum advantage.

Google Sycamore Image Rights: Forest Stearns, Google AI Quantum Artist in Residence

Example of Proof of Quantumness [Shor'94]

Problem: hard to implement on NISQ (Noisy Intermediate-Scale Quantum) Computers.

Previous Works

- BCMVV'18¹ Proof of Quantumness + Certifiable Randomness based on LWE using **adaptive-hardcore bit**.
 - Requires an aggressive setting of parameters for LWE which hampers practical implementation.
- YZ'22² Proofs of Quantumness + Certifiable Randomness in the **random oracle model**.
- Recently, two proposals of protocols in the standard model with milder computational assumptions KCVY'21³ and KLVY'22⁴.
- A Cryptographic Test of Quantumness and Certifiable Randomness from a Single Quantum Device, Z. Brakerski, P. Christiano, U. Mahadev, U. Vazirani, T. Vidick, 2018
- 2. Verifiable Quantum Advantage without Structure, T. Yamakawa, M. Zhandry, 2022
- 3. Classically-Verifiable Quantum Advantage from a Computational Bell Test, G. Kahanamoku-Meyer, S. Choi, U. Vazirani, N. Yao.
- 4. Quantum Advantage from Any Non-Local Game, Y. Tauman Kalai, A. Lombardi, V. Vaikuntanathan, L. Yang

Beyond Quantum Supremacy

- Suppose we have a NISQ computer which achieves Quantum Supremacy
- Could we make it generate certifiable randomness?
- Could we delegate computation to the Quantum computer?
- Qubit Certification a useful building block for quantum verification protocols.

Qubit Certification

- Could we verify that the quantum computer has a qubit?
- What does it mean to "have" a qubit?

Qubit Certification

- **Operational view of Qubits**^{*}: the prover has a triplet $(|\psi\rangle, X, Z)$ where *X* and *Z* are binary observables which "approximately anti-commute" on $|\psi\rangle$.
- Could we use existing proofs of Quantumness as tests for qubits?
- Our Answer: Yes!

* Course FSMP, Fall'20: Interactions with Quantum Devices, Thomas Vidick, 2022

Our Results

- For a specific class of protocols, we show:
 - A quantum soundness barrier against quantum cheating provers (vs classical soundness).
 - Provers that approach the quantum soundness barrier *must perform anti- commuting measurements* (a qubit test).
- NZ'23 show related results for the KLVY'22 protocol. Prove how it can be used to get a protocol *for delegation of quantum computation*.

Our Protocol Template

Prover

verifier accepts if $b = b_m^{\text{correct}}(\text{rand, trans})$

Soundness for classical provers – Sketch

- **Parity hardness:** prove that it is hard for classical provers to compute $b_0^{\text{correct}} \oplus b_1^{\text{correct}} \text{ w.p.} \ge \frac{1}{2} + \varepsilon$
- Reduce soundness to parity hardness: Assume adversary succeeds w.p. $\geq \frac{3}{4} + \varepsilon$.

Run Phase 1 of the protocol.

Computing Parity in the Quantum World

- **Problem:** Quantum computers cannot perform rewinding...
- Could they somehow compute the parity with some noticeable advantage?

Modeling Quantum Provers

• For each $m \in \{0,1\}$ (challenge bit) the prover performs a set projective measurement on its state $|\psi_{trans}\rangle$

 $\left\{ \prod_{b}^{m} \right\} \xrightarrow{} \text{Challenge bit}$ Response bit

Parity Algorithm

(Algorithm \mathcal{A}_1)

- Execute Phase 1 of the protocol template to obtain (trans, $|\psi_{trans}\rangle$) (*Algorithm* A_2)
- b_0 = measurement of \mathcal{H}_P using { Π_0^0, Π_1^0 }.
- b_1 = measurement of \mathcal{H}_P using { Π_0^1, Π_1^1 }.
- Return $b_0 \oplus b_1$.

Soundness for quantum provers - sketch

- Prove that it is hard (**quantum**) to compute the parity of both challenges: $b_0^{\text{correct}} \oplus b_1^{\text{correct}}$
- Quantum Analogue: Show that a quantum adversary that achieves $\cos^2\left(\frac{\pi}{8}\right) + \varepsilon$ success probability, using the parity algorithm can compute parities.

Parity Hardness → Quantum Soundness

No classical (quantum) polynomial time algorithm **guesses** $\hat{b}_0 \oplus \hat{b}_1$ with non-negligible advantage

Then no classical (quantum) polynomial-time prover **succeeds in the protocol template** with probability larger than 75% (resp. $\cos^2(\pi/8) \approx 85\%$) by more than a negligible amount

Qubit Test

- The quantum soundness result gives us a qubit test
- If a prover approaches the soundness barrier, then the measurements the prover performs must be close to anti-commuting

Example: KCVY Protocol (modified)

Trapdoor claw-free functions

• Keyed functions $f_k: \mathcal{X}_k \to \mathcal{Y}_k$ with trapdoor t_k

- Hard (quantum) to find a claw (x_0, x_1) such that $f_k(x_0) = f_k(x_1)$
- Given trapdoor t_k , for each y easy to find $f_k(x_0) = f_k(x_1) = y$

Trapdoor claw-free functions – cntd.

• Efficiently generate superposition

$$\frac{1}{\sqrt{|\mathcal{X}_k|}} \sum_{x} |x\rangle |f_k(x)\rangle$$

• Efficiently distinguish between the preimages x_0 and x_1

Honest Prover

PHASE 1

- 1. Generates $\sum_{x} |x\rangle_{\chi} |f_{k}(x)\rangle_{y}$
- 2. Measures \mathcal{Y} register $(|x_0\rangle_{\mathcal{X}} + |x_1\rangle_{\mathcal{X}})|y\rangle_{\mathcal{Y}}$
- 3. Sends *y* to the verifier.

Honest Prover

PHASE 1

1. Computes ancilla bit $|0\rangle|x_0\rangle_{\chi} + |1\rangle|x_1\rangle_{\chi}$ 2. Using ancilla $|0\rangle|x_0\rangle_{\chi}|r_0\cdot x_0\rangle + |1\rangle|x_1\rangle_{\chi}|r_1\cdot x_1\rangle$ 3. Uncomputes ancilla $|x_0\rangle_{\chi}|r_0\cdot x_0\rangle + |x_1\rangle_{\chi}|r_1\cdot x_1\rangle$

Honest Prover

PHASE 1

- 3. Computes Hadamard on X register
 - $\sum_{d} |d\rangle_{\chi} \left((-1)^{d \cdot x_0} |r_0 \cdot x_0\rangle + (-1)^{d \cdot x_1} |r_1 \cdot x_1\rangle \right)$
- 4. Measures X register

$$|d\rangle_{\mathcal{X}}\left((-1)^{d\cdot x_0}|r_0\cdot x_0\rangle + (-1)^{d\cdot x_1}|r_1\cdot x_1\rangle\right)$$

5. Sends *d* to the verifier

Sends *b* the outcome of the measurement.

Honest Prover

Generate claw and measure *y*

Multiply by *r*₀, *r*₁ & Perform Hadamard measurement

PHASE 2

Challenge-Response

Verifier

Accept if *b* is the "expected" measurement outcome

Using trapdoor t_k can find x_0 and x_1

Computes $b_m^{\text{correct}}(x_0, x_1, r_0, r_1, d)$

Accepts if $b = b_m^{\text{correct}}$

Post-Quantum TCF → Hardness of parity

* A quantum Goldreich-Levin theorem with cryptographic applications, Mark Adcock, Richard Cleve, 2002

Open Questions

- Could we generalize our approach to the tests of quantumness in BCMVV'18 and the ones that operate in the random oracle model?
- A hierarchy of "capabilities"
 - What is the minimal basis for achieving these capabilities?

