LaBRADOR: Compact proofs for R1CS from Module-SIS

Ward Beullens, Gregor Seiler
IBM Research Europe

August 23, 2023

Motivation for Lattice-Based Proof Systems

- Quantum Security

Motivation for Lattice-Based Proof Systems

- Quantum Security
- Suitability for building quantum-safe privacy-preserving protocols

Motivation for Lattice-Based Proof Systems

- Quantum Security
- Suitability for building quantum-safe privacy-preserving protocols
- Better proof sizes than hash-based STARKs

Motivation for Lattice-Based Proof Systems

- Quantum Security
- Suitability for building quantum-safe privacy-preserving protocols
- Better proof sizes than hash-based STARKs
- High computational performance

Motivation for Lattice-Based Proof Systems

- Quantum Security
- Suitability for building quantum-safe privacy-preserving protocols
- Better proof sizes than hash-based STARKs
- High computational performance

Evolution of Linear-Sized Lattice-Based Proof Systems

LaBRADOR

Lattice- $\underline{\text { Based }}$ Recursively Amortized Demonstrations Of R1CS

Highlights:

- Proof size of $<60 \mathrm{~KB}$ for large statements
- Recursive structure

R1CS Principal Relation

Parameterized by a rank n and a multiplicity r
Witness consists of r (polynomial) vectors $\boldsymbol{s}_{1}, \ldots, \boldsymbol{s}_{r}$ of rank n that fulfill many dot-product constraints

$$
f^{(k)}\left(\boldsymbol{s}_{1}, \ldots, \boldsymbol{s}_{r}\right)=\sum_{i, j} \boldsymbol{a}_{i j}^{(k)}\left\langle\boldsymbol{s}_{i}, \boldsymbol{s}_{j}\right\rangle+\sum_{i}\left\langle\boldsymbol{\varphi}_{i}^{(k)}, \boldsymbol{s}_{i}\right\rangle+\boldsymbol{b}^{(k)}=\mathbf{0}
$$

and a norm constraint

$$
\left\|\boldsymbol{s}_{1}\right\|^{2}+\cdots+\left\|\boldsymbol{s}_{r}\right\|^{2} \leq \beta^{2}
$$

Protocol can be seen as a chain of sub-protocols that transform the relation into new instances with smaller parameters

Inner Commitments

Need commitments to \boldsymbol{s}_{i} for sound transformations of relation

- Prover sends $\boldsymbol{t}_{i}=\boldsymbol{A} \boldsymbol{s}_{i}$ for $i=1, \ldots, r$

Note: All commitments share same matrix \boldsymbol{A} (commitment key)

Outer Commitments

Sending lattice commitments is very expensive ($\approx 4 \mathrm{~KB}$ per commitment)

Idea: Hide inner commitments \boldsymbol{t}_{i} in an outer commitment

$$
\boldsymbol{u}=\sum_{i, k} \boldsymbol{B}_{i k} \boldsymbol{t}_{i}^{(k)} \quad \text { where } \quad \boldsymbol{t}_{i}=\boldsymbol{t}_{i}^{(0)}+b \boldsymbol{t}_{i}^{(1)} \cdots+b^{(t-1)} \boldsymbol{t}_{i}^{(t-1)} \text { with }\left\|\boldsymbol{t}_{i}^{(k)}\right\|_{\infty} \leq \frac{b}{2}
$$

Outer commitment needs to account for less slack; hence much smaller

Johnson-Lindenstrauss Projection

Recall: Certain random linear maps from a high-dimensional into a low-dimensional vector space preserve the ℓ_{2}-norm up to small constants

- Verifier sends random matrices Π_{i}
- Prover sends projection $\vec{p}=\sum_{i} \Pi_{i} \vec{s}_{i} \in \mathbb{Z}_{q}^{256}$
- Verifier checks $\|\vec{p}\| \leq \sqrt{128} \beta$

Aggregation

Randomly linear-combine dot-product constraints $f^{(k)}$ with uniform challenges

- Verifier sends challenges $\boldsymbol{\alpha}_{k}$
- Prover and verifier compute aggregated constraint

$$
f\left(\boldsymbol{s}_{1}, \ldots, \boldsymbol{s}_{r}\right)=\sum_{i, j} \boldsymbol{a}_{i j}\left\langle\boldsymbol{s}_{i}, \boldsymbol{s}_{j}\right\rangle+\sum_{i}\left\langle\boldsymbol{\varphi}_{i}, \boldsymbol{s}_{i}\right\rangle+\boldsymbol{b}=\mathbf{0} \quad \text { where } \quad\left\{\begin{array}{l}
\boldsymbol{a}_{i j}=\sum_{k} \boldsymbol{\alpha}_{k} \boldsymbol{a}_{i j}^{(k)}, \\
\boldsymbol{\varphi}_{i}=\sum_{k} \boldsymbol{\alpha}_{k} \boldsymbol{\varphi}_{i}^{(k)}, \\
\boldsymbol{b}=\sum_{k} \boldsymbol{\alpha}_{k} \boldsymbol{b}^{(k)}
\end{array}\right.
$$

Amortization

Amortize over witness vectors \boldsymbol{s}_{i}

- Prover sends garbage polynomials $\boldsymbol{g}_{i j}=\left\langle\boldsymbol{s}_{i}, \boldsymbol{s}_{j}\right\rangle$ and $\boldsymbol{h}_{i j}=\left\langle\boldsymbol{\varphi}_{i}, \boldsymbol{s}_{j}\right\rangle$
- Verifier sends challenge polynomials $\boldsymbol{c}, \ldots, \boldsymbol{c}_{r}$
- Prover sends amortized opening

$$
z=c_{1} s_{1}+c_{2} s_{2}+\cdots+c_{r} s_{r}
$$

Target Relation of Multiplicity 2

Witness:

$$
\boldsymbol{z}, \boldsymbol{v}=\left(\boldsymbol{t}_{i}^{(k)}\right)
$$

Constraints:

$$
\begin{array}{ll}
\sum_{i, j} \boldsymbol{a}_{i j} \boldsymbol{g}_{i j}+\sum_{i} \boldsymbol{h}_{i j}+\boldsymbol{b}=\mathbf{0} & \boldsymbol{A} \boldsymbol{z}=\boldsymbol{c}_{1} \boldsymbol{t}_{1}+\cdots+\boldsymbol{c}_{r} \boldsymbol{t}_{r} \\
\langle\boldsymbol{z}, \boldsymbol{z}\rangle=\sum_{i, j} \boldsymbol{c}_{i} \boldsymbol{c}_{j} \boldsymbol{g}_{i j} & \sum_{i, k} \boldsymbol{B}_{i k} \boldsymbol{t}_{i}^{(k)}=\boldsymbol{u} \\
\langle\boldsymbol{\varphi}, \boldsymbol{z}\rangle=\sum_{i, j} \boldsymbol{c}_{i} \boldsymbol{c}_{j} \boldsymbol{h}_{i j} & \|\boldsymbol{z}\|^{2}+\|\boldsymbol{v}\|^{2} \leq \beta^{\prime \prime 2}
\end{array}
$$

Decomposition in Rank

Before recursing the protocol, want to increase multiplicity and decrease rank

Decomposition in rank: Split vectors of rank n into r vectors of rank n / r :

$$
\mathbf{z}=\mathbf{z}_{1}\|\cdots\| \mathbf{z}_{r}
$$

Quadratic term $\langle\boldsymbol{z}, \boldsymbol{z}\rangle$ transforms as

$$
\langle\boldsymbol{z}, \boldsymbol{z}\rangle=\left\langle\boldsymbol{z}_{1}, \boldsymbol{z}_{1}\right\rangle+\cdots+\left\langle\boldsymbol{z}_{r}, \boldsymbol{z}_{r}\right\rangle
$$

Decomposition in Width

Amortization blows up standard deviation due to multiplication by challenge polynomials; consequently, lattice parameters need to increase to retain SIS-hardness

Decomposition in width:

$$
z=z_{0}+b z_{1} \text { with }\left\|z_{0}\right\|_{\infty} \leq \frac{b}{2}
$$

Quadratic term $\langle\boldsymbol{z}, \boldsymbol{z}\rangle$ transforms as

$$
\langle\mathbf{z}, \boldsymbol{z}\rangle=\left\langle\mathbf{z}_{0}, \mathbf{z}_{0}\right\rangle+2 b\left\langle\mathbf{z}_{0}, \mathbf{z}_{1}\right\rangle+b^{2}\left\langle\mathbf{z}_{1}, \mathbf{z}_{1}\right\rangle
$$

Lattice Bulletproofs?

Want to prove commitment $\boldsymbol{t}=\boldsymbol{A} \boldsymbol{s}=\boldsymbol{A}_{0} \boldsymbol{s}_{0}+\boldsymbol{A}_{1} \boldsymbol{s}_{1}$ using folding $\boldsymbol{z}=\boldsymbol{s}_{0}+\boldsymbol{c} \boldsymbol{s}_{1}$
Bulletproofs: Quadratic verification using bilinearity of commitment:

$$
\left(\boldsymbol{A}_{0}+\boldsymbol{c} \boldsymbol{A}_{1}\right)\left(s_{0}+\boldsymbol{c} s_{1}\right)=\boldsymbol{A}_{0} \boldsymbol{s}_{0}+\boldsymbol{c}\left(\boldsymbol{A}_{0} \boldsymbol{s}_{1}+\boldsymbol{A}_{1} \boldsymbol{s}_{0}\right)+\boldsymbol{c}^{2} \boldsymbol{A}_{1} \boldsymbol{s}_{1}=\boldsymbol{t}+\boldsymbol{c} \boldsymbol{t}_{1}+\boldsymbol{c}^{2} \boldsymbol{t}_{2}
$$

Generalization to n parts needs $O\left(n^{2}\right)$ garbage commitments
Amortization: Linear verification

$$
\boldsymbol{A}_{0}\left(\boldsymbol{s}_{0}+\boldsymbol{c} \boldsymbol{s}_{1}\right)=\boldsymbol{A}_{0} \boldsymbol{s}_{0}+\boldsymbol{A}_{0} \boldsymbol{s}_{1}=\boldsymbol{t}_{0}+\boldsymbol{c} \boldsymbol{t}_{1}
$$

using only n "garbage commitments". Doesn't prove initial commitment \boldsymbol{t}. But can collapse ("aggregate") initial commitment to single polynomial and prove with $O\left(n^{2}\right)$ garbage polynomials.

Results I: Proof sizes in Kilobytes for binary R1CS

No. of constraints	2^{20}	2^{21}	2^{22}	2^{23}	2^{24}	2^{25}
Proof Size (KB)	49.02	49.37	51.47	51.6	52.7	53.84

Results II: R1CS $\bmod 2^{64}+1$

Thank you!

