

Differential Meet-in-the-Middle **Cryptanalyis**

Christina Boura¹, Nicolas David², **Patrick Derbez**³, Gregor Leander⁴, and María Nava-Plasencia²

¹ Université Paris-Saclay, UVSQ, CNRS, Laboratoire de mathématiques de Versailles ² Inria ³ Univ Rennes, Inria, CNRS, IRISA

⁴ Ruhr University Bochum

Can we use meet-in-the-middle related techniques to improve differential attacks?

Differential Attack

 Δ_{out}

 $\begin{array}{l} \text{top } P[\Delta_{in} \rightarrow \Delta_X] = 2^{-c_{in}} \\ \text{middle } P[\Delta_X \rightarrow \Delta_Y] = 2^{-p} \\ \text{bottom } P[\Delta_{out} \rightarrow \Delta_Y] = 2^{-c_{out}} \end{array}$

Main idea

Given $\alpha 2^{c_{in}} 2^{p}$ pairs with difference Δ_{in} , we expect on average α pairs following the differential in the middle rounds and thus the **right value** for $k_{in} \cup k_{out}$ should appear α times.

Differential Attack

 $\begin{array}{l} \text{top } P[\Delta_{in} \rightarrow \Delta_X] = 2^{-c_{in}} \\ \text{middle } P[\Delta_X \rightarrow \Delta_Y] = 2^{-p} \\ \text{bottom } P[\Delta_{out} \rightarrow \Delta_Y] = 2^{-c_{out}} \end{array}$

Main idea

Given $\alpha 2^{c_{in}} 2^{p}$ pairs with difference Δ_{in} , we expect on average α pairs following the differential in the middle rounds and thus the **right value** for $k_{in} \cup k_{out}$ should appear α times.

Given one pair of data, how to determine possible values for $k_{in} \cup k_{out}$?

Differential Attack - Retrieving Key Candidates

- Early abort technique
- Rebound-like procedure
- Knowing both input/output differences around an Sbox leads to the actual values
- Might be very complex depending on the key schedule and the cipher

• Initialize a Hash Table

- Initialize a Hash Table
- For all k_1 , store $M = DES_{k_1}(P) \rightarrow k_1$

- Initialize a Hash Table
- For all k_1 , store $M = DES_{k_1}(P) \rightarrow k_1$
- For all k_2 , look-up $M = DES_{k_2}^{-1}(C)$

- Initialize a Hash Table
- For all k_1 , store $M = DES_{k_1}(P) \rightarrow k_1$
- For all k_2 , look-up $M = DES_{k_2}^{-1}(C)$

Time complexity $\approx 2^k$ encryptions, with 2k-bit keys!

More complicated (Dong et al., CRYPTO'21)

Differential and MitM

• Can we combine ideas from both differential and MitM attacks?

Differential and MitM

• Can we combine ideas from both differential and MitM attacks? Yes!

- Consider plaintexts/states in structures
- Differential Enumeration Technique (Demirci-Selçuk attacks)

Differential and MitM

• Can we combine ideas from both differential and MitM attacks? Yes!

- Consider plaintexts/states in structures
- Differential Enumeration Technique (Demirci-Selçuk attacks)

- Reduce complexities of MitM attacks
- Rely on truncated differential characteristics only

Procedure:

- 1. Ask for one plaintext/ciphertext pair (P, C)
- 2. Construct the set of the $|k_{in}|$ possible plaintexts \mathcal{P}
- 3. Construct the set of the $|k_{out}|$ possible ciphertexts C
- 4. Search for valid $(P', C') \in \mathcal{P} \times \mathcal{C}$ by looking for a collision

Procedure:

Con:

- 1. Ask for one plaintext/ciphertext pair (P, C)
- 2. Construct the set of the $|k_{in}|$ possible plaintexts \mathcal{P}
- 3. Construct the set of the $|k_{out}|$ possible ciphertexts C
- 4. Search for valid $(P', C') \in \mathcal{P} \times \mathcal{C}$ by looking for a collision
- Pro: Much easier to deal with the key
 - Specific improvement for ciphers with partial key addition
 - More memory than for classical differential attacks

- SKINNY-128-384: First attack against 25 rounds in the single tweakey model!
- AES-256: First attack against 12 rounds requiring only 2 related keys!

- SKINNY-128-384: First attack against 25 rounds in the single tweakey model!
- AES-256: First attack against 12 rounds requiring only 2 related keys!

Seem to work well when the key size is larger than the block size

Two Targets - New Results

• SKINNY-128-384: First attack against 25 rounds in the single tweakey model!

# Rounds	Data	Time	Memory	Туре	Ref.
21	2 ¹²³	2 ^{353.6}	2 ³⁴¹	ID	Yang et al.
21	$2^{122.89}$	2 ^{347.35}	2 ³³⁶	ID	Hadipour et al.
22	2 ⁹⁶	2 ^{382.46}	2 ^{330.99}	DS-MITM	Shi et al.
22	2 ^{92.22}	2 ^{373.48}	$2^{147.22}$	ID	Tolba et al.
23	2 ¹⁰⁴	2 ³⁷⁶	2 ⁸	MITM	Dong et al.
23	2 ¹¹⁷	2 ^{361.9}	$2^{118.5}$	Diff. MITM	new
24	2^{117}	2 ^{361.9}	2 ¹⁸³	Diff. MITM	new
24	$2^{122.3}$	2 ^{372.5}	2 ^{123.8}	Diff. MITM	new
25	2 ^{122.3}	2 ^{372.5}	2 ^{188.3}	Diff. MITM	new

Differential on SKINNY-128

• For the 25-round attack, we use the following differential on 15 rounds:

• CP model from Delaune et al. (2021) to estimate its probability: $2^{-p} \ge 2^{-116.5}$

• Note that the best differential characteristic has probability 2^{-131}

Differential on SKINNY-128

• For the 25-round attack, we use the following differential on 15 rounds:

- CP model from Delaune et al. (2021) to estimate its probability: $2^{-p} \ge 2^{-116.5}$
 - Note that the best differential characteristic has probability 2^{-131}
- Extended by adding 4 rounds to the plaintext, 5 rounds to the ciphertext and one extra free round

4 rounds to the plaintext

Extra Free Round

- The round key is only applied to the first two rows
- Consider structure of 2⁶⁴ plaintext/ciphertext pairs
- The attack is performed on the 2⁶⁴ pairs in parallel

Procedure:

- 1. Ask for one structure of 2^{64} plaintext/ciphertext pair (P, C)
- 2. Construct the set of the $|k_{in}|$ possible plaintexts ${\cal P}$
- 3. Construct the set of the $|k_{out}|$ possible ciphertexts C
- 4. Search for valid $(P', C') \in \mathcal{P} \times \mathcal{C}$ by looking for a collision

Procedure: repeat 2^p times

- 1. Ask for one structure of 2^{64} plaintext/ciphertext pair (P, C)
- 2. Construct the set of the $|k_{in}|$ possible plaintexts ${\cal P}$
- 3. Construct the set of the $|k_{out}|$ possible ciphertexts C
- 4. Search for valid $(P', C') \in \mathcal{P} \times \mathcal{C}$ by looking for a collision

Procedure: repeat $2^p/2^{64}$ times

- 1. Ask for one structure of 2^{64} plaintext/ciphertext pair (P, C)
- 2. Construct the set of the $|k_{in}|$ possible pairs of plaintexts \mathcal{P}
- 3. Construct the set of the $|k_{out}|$ possible pairs of "ciphertexts" C
- 4. Search for valid $((P, P'), (C, C')) \in \mathcal{P} \times \mathcal{C}$ by looking for a collision

Conclusion

- New cryptanalysis technique: the Differential MITM attack
- More improvements described in the paper (e.g. data reduction)
- First attack against 25-round SKINNY-128-384 in the single tweakey model
- First attack against 12-round AES-256 with only two related keys
- Many open questions and future works:
 - When is this framework better than classical differential attacks?
 - Can we automatize the search of such attacks?
 - Can this framework work with truncated differentials?
 - Can we combine MitM attacks with other cryptanalysis techniques?
 - ...

Conclusion

- New cryptanalysis technique: the Differential MITM attack
- More improvements described in the paper (e.g. data reduction)
- First attack against 25-round SKINNY-128-384 in the single tweakey model
- First attack against 12-round AES-256 with only two related keys
- Many open questions and future works:
 - When is this framework better than classical differential attacks?
 - Can we automatize the search of such attacks?
 - Can this framework work with truncated differentials?
 - Can we combine MitM attacks with other cryptanalysis techniques?
 - ...

Thank you for your attention!