On the Impossibility of Algebraic NIZK In Pairing-Free Groups

Emanuele Giunta ${ }^{1,2}$

1. IMDEA Software Institute, Madrid, Spain.
2. Universidad Politecnica de Madrid, Spain.

Non-Interactive Zero-Knowledge Arguments

\mathcal{R} an NP relation, $(x, w) \in \mathcal{R}$

Completeness
Soundness

Zero-Knowledge
Proof of Knowledge

Requires the random oracle or a trusted setup (CRS).

NIZK in the CRS model

Pairing Equations [GS12]

$$
\xrightarrow[e\left(c_{i}, c_{j}\right)=?]{ }
$$

Correlation-Intractable Hash Functions [CGH04]

NIZK from Prime-Order Groups

Groth-Sahai Proofs [GS12]

O Uses the group black-box
(1) Requires pairings

Jain-Jin CIHF [JJ21]
from sub-exponential DDH
($)$ Non black-box group usage

- Does not require pairings

> Do best of both worlds NIZKs exists?

NIZK from Prime-Order Groups

Groth-Sahai Proofs [GS12]
Jain-Jin CIHF [JJ21]
from sub-exponential DDH
\bigcirc Uses the group black-box
© Requires pairings

Do best of both worlds NIZKs exists?
$(\mathbb{G},+)$ is modeled as an oracle machine with a list of group elements V.

- Initially $V=[G]$
- (add, i, j): append $V[i]+V[j]$ to V
- $(e q, i, j)$: return $V[i]==V[j]$.

Maurer's Generic Group Model

$(\mathbb{G},+)$ is modeled as an oracle machine with a list of group elements V.

- Initially $V=[G]$
- (add, i, j): append $V[i]+V[j]$ to V
- (eq, $i, j)$: return $V[i]==V[j]$.

Unlike Shoup's model, elements have no (random) representation.

Our Result

We show that these primitives are impossible in Maurer's GGM:

NIZK-AoK for the preimage re-
lation for one-way functions.
$\mathcal{R}=\{(x, w): f(w)=x\}$

- Discrete Logarithm
- "Powers of $\tau^{\prime \prime}\left(g^{\tau^{i}}\right)_{i=1}^{n}$

Our Result

We show that these primitives are impossible in Maurer's GGM:

NIZK-AoK for the preimage relation for one-way functions.
$\mathcal{R}=\{(x, w): f(w)=x\}$

- Discrete Logarithm
- "Powers of $\tau^{\prime \prime}\left(g^{\tau^{i}}\right)_{i=1}^{n}$

NIZK for hard subset membership problems.
$x \leftarrow \mathcal{L}, z \leftarrow \overline{\mathcal{L}}: x \approx_{c} z$

- Decisional Diffie-Helman
- MDDH, DLin

Our Result

We show that these primitives are impossible in Maurer's GGM:

NIZK-AoK for the preimage relation for one-way functions.
$\mathcal{R}=\{(x, w): f(w)=x\}$

- Discrete Logarithm
- "Powers of $\tau^{\prime \prime}\left(g^{\tau^{i}}\right)_{i=1}^{n}$

NIZK for hard subset membership problems.
$x \leftarrow \mathcal{L}, z \leftarrow \overline{\mathcal{L}}: x \approx_{c} z$

- Decisional Diffie-Helman
- MDDH, DLin
... secure against an unbounded adversary with polynomial GGM queries (GPPT).

How to Circumvent our Result?

Using group elements representation
(Hashing, Padding)

Using more structure
(Pairing, Unknown order)

Using external
hardness assumptions
(RSA, LWE, iO)

NIZK-AoK Impossibility

Overview

Algebraic VC Lower Bounds

Position Binding: Computing two openings for position i is hard.
[CFGG22]: In Maurer's GGM, $|c| \cdot\left|\pi_{i}\right|=\Omega(n)$.

Algebraic Hiding VC Lower Bound

Improved Bound: For any VC in Maurer's GGM

Hiding + Position Binding $\Rightarrow c$ contains $\geq n$ group elements.

Hiding VC from NIZK-AoK (DLog)

Let $h: \mathbb{F}_{q} \rightarrow\{0,1\}$ be an hard-core predicate for DLog
I.e. $h(x)$ is hard to guess given only g^{x}.

$$
\begin{aligned}
& \text { CRS }=g_{1}, \ldots, g_{n} \quad \begin{array}{l}
\text { Uniformly } \\
\text { Sampled }
\end{array} \\
& \operatorname{Com}\left(b_{1}, \ldots, b_{n}\right)=\prod_{i=1}^{n} g_{i}^{x_{i}} \longrightarrow h\left(x_{i}\right)=b_{i} \\
& \operatorname{Open}\left(b_{i}\right)=x_{i},\left(g^{x_{j}}, \pi_{j}\right)_{j \neq i} \\
& \text { AoK for } x_{j}
\end{aligned}
$$

- The commitment only contains 1 group element!

Hiding VC from NIZK-AoK (OWF family)

$f_{k}:\{0,1\}^{\mu} \rightarrow \mathbb{G}^{m}$ OWF family, with key space $k \sim \mathbb{G}^{\kappa}$

$$
\mathrm{CRS}=k_{1}, \ldots, k_{n} \longrightarrow \begin{aligned}
& \text { Uniformly } \\
& \text { Sampled }
\end{aligned}
$$

$\operatorname{Com}\left(b_{1}, \ldots, b_{n}\right)=\prod_{i=1}^{n} f_{k_{i}}\left(x_{i}\right), r_{1}, \ldots, r_{n}-\left\langle x_{i}, r_{i}\right\rangle=b_{i}$

$$
\operatorname{Open}\left(b_{i}\right)=x_{i},\left(f_{k_{j}}\left(x_{j}\right), \pi_{j}\right)_{j \neq i} \quad \text { AoK for } x_{j}
$$

Hiding VC from NIZK-AoK (OWF family)

$f_{k}:\{0,1\}^{\mu} \rightarrow \mathbb{G}^{m}$ OWF family, with key space $k \sim \mathbb{G}^{\kappa}$

$$
\mathrm{CRS}=k_{1}, \ldots, k_{n} \quad \begin{aligned}
& \text { Uniformly } \\
& \text { Sampled }
\end{aligned}
$$

$\operatorname{Com}\left(b_{1}, \ldots, b_{n}\right)=\prod_{i=1}^{n} f_{k_{i}}\left(x_{i}\right), r_{1}, \ldots, r_{n}-\left\langle x_{i}, r_{i}\right\rangle=b_{i}$

$$
\operatorname{Open}\left(b_{i}\right)=x_{i},\left(f_{k_{j}}\left(x_{j}\right), \pi_{j}\right)_{j \neq i} \quad \text { AoK for } x_{j}
$$

- [GL89]: $\langle x, r\rangle$ is an hardcore predicate for $F_{k}(x, r)=\left(f_{k}(x), r\right)$
- In GPPT time, $f_{k}(\cdot)$ can be restricted to be collision resistant
- The commitment only contains $O(1)$ group elements!

NIZK for hard subset membership Impossibility

Overview

$$
\begin{gathered}
\text { message space }|M| \geq|v k| \\
\hline \text { Signatures Impossibility } \\
{\left[\mathrm{DHH}^{+} 21, \text { CFG } 22\right]}
\end{gathered}
$$

```
message space |M| =1
```

Signatures from NIZK for Hard Subset Membership

NIZK for HSMP
Impossibility

Hard Subset Membership Problems

Hard Subset Membership Problem

Can sample indistinguishably from \mathcal{L} (with a witness) and $\overline{\mathcal{L}}$.

Eg. DDH, MDDH, DLin.

Signatures from NIZK

Single element message space $M=\{0\}$.

$$
\begin{aligned}
\mathrm{crs} & =x \longleftarrow \overline{\mathcal{L}} \begin{array}{l}
\text { False } \\
\text { statement }
\end{array} \\
\mathrm{vk} & =\text { NIKZ.crs } \longleftarrow \mathcal{S}\left(1^{\lambda}\right) \begin{array}{l}
\text { Simulated } \\
\text { crs }
\end{array} \\
\mathrm{sk} & =\mathrm{td} \longleftarrow \mathcal{S}(\mathrm{td}, x) \underset{\begin{array}{l}
\text { Simulated } \\
\text { proof }
\end{array}}{\text { Sign }(0)}=\pi \longleftarrow \longleftarrow
\end{aligned}
$$

Correctness: \mathcal{S} cannot tell x is false $\Rightarrow \pi$ is almost always correct.

Signature Adversary

Without loss of generality crs, vk are vectors of group elements.

Either:

- Finds a forgery σ
- Finds $v:\langle v, v k\rangle=0$.

Fails with probability $\frac{1}{\operatorname{poly}(\lambda)}$ forgery

In our case crs $=x \in \overline{\mathcal{L}}$ and $v k=$ NIZK.crs

NIZK Adversary

Initially get NIZK.crs

NIZK Adversary

Initially get NIZK.crs

Conclusion

Conclusion \& Open Questions

We proved that in Maurer's GGM, there exist GPPT adversaries breaking the security of any

- NIZK-AoK for the preimage relation of many OWF families,
- NIZK for hard subset membership problems.

Open questions:

- Can witness hiding be achieved?
- Do NIZK for non-trivial non-HSMP languages exists?

Thanks for your attention!

