
Limits of Breach-Resistant and
Snapshot-Oblivious RAMs

Giuseppe Persiano and Kevin Yeo

Oblivious RAM [GO’96]

17

3

41

22

Oblivious RAM

17

3

41

22

read(1)

Oblivious RAM

17

3

41

22

read(1)

...

Oblivious RAM

17

3

41

22

read(1)

...

3

Oblivious RAM

17

3

41

22

read(1)

...

3

What was the
accessed index?

Oblivious RAM

17

3

41

22

read(1)

...write(2, X)

Oblivious RAM Security
Definition. For any sequence of equal-length operations O

1
 and O

2
, the adversary’s view ObvDS(O

1
) and

ObvDS(O
2

) from a construction ODS

must be indistinguishable to a computational adversary A:

Pr[A(ObvDS(O
1

)) = 1] ≅Pr[A(ObvDS(O
2

)) = 1]

Adversary’s View

17

3

41

22

read(1)

...

3

ORAM Lower Bound
Theorem [LN‘18]. In the cell probe model, oblivious RAMs require 𝛀(log N) overhead.

More ORAM Lower Bounds
Logarithmic 𝛀(log N) lower bounds have been proven for the many other privacy notions and settings:

● Differential Privacy [PY’19]

● Hidden Operational Boundaries [HKKS’19]

● Multiple Non-Colluding Servers [LSY’20]

● Encrypted Search Leakage [PPY’20]

● Small Data Blocks [KL’21], [PY’23]

Persistent Adversary

17

3

41

22

read(1)

...

Trusted Third Party

17

3

41

22

read(1)

...

Trusted Third Party

17

3

41

22

read(1)

Trusted Third Party

Breaches

Trusted Third Party

Breached Third Party

Breach Remediation
Good News:

Most breaches are remediated within a few days according to DBIR: Data Breach Investigations Report.

Bad News:

Attackers can download and observe activity during those few days.

Adversary’s View

read(10), write(17), read(2), write(18), write(54), read(20), read(21), write(95), read(1), write(5), read(82)

Persistent Adversary’s View

read(10), write(17), read(2), write(18), write(54), read(20), read(21), write(95), read(1), write(5), read(82)

Snapshot Adversary’s View

read(10), write(17), read(2), write(18), write(54), read(20), read(21), write(95), read(1), write(5), read(82)

Snapshot Adversary’s View

read(10), write(17), read(2), write(18), write(54), read(20), read(21), write(95), read(1), write(5), read(82)

Snapshot Adversary’s View

read(10), write(17), read(2), write(18), write(54), read(20), read(21), write(95), read(1), write(5), read(82)

Snapshot Adversary’s View

read(10), write(17), read(2), write(18), write(54), read(20), read(21), write(95), read(1), write(5), read(82)

Snapshot Adversary’s View

read(10), write(17), read(2), write(18), write(54), read(20), read(21), write(95), read(1), write(5), read(82)

(S, L)-Snapshot Adversary
Definition. An (S, L)-snapshot adversary may perform at most S breaches such that at most L operations

are performed during the S breaches. The adversary sees all server memory contents during breaches as

well as the transcripts of the L operations during the S breaches.

(S, L)-Snapshot Adversary
Definition. An (S, L)-snapshot adversary may perform at most S breaches such that at most L operations

are performed during the S breaches. The adversary sees all server memory contents during breaches as

well as the transcripts of the L operations during the S breaches.

Note. It is possible that L < S to simulate data breaches.

Snapshot Adversary’s View

read(10), write(17), read(2), write(18), write(54), read(20), read(21), write(95), read(1), write(5), read(82)

(3, 1)-Snapshot Adversary’s View

read(10), write(17), read(2), write(18), write(54), read(20), read(21), write(95), read(1), write(5), read(82)

(S, L)-Snapshot-Oblivious RAM
Definition. For any sequence of equal-length operations O

1
 and O

2
, the adversary’s view ObvDS(O

1
) and

ObvDS(O
2

) from a construction ODS

must be indistinguishable to any (S, L)-snapshot adversary A:

Pr[A(ObvDS(O
1

)) = 1] ≅Pr[A(ObvDS(O
2

)) = 1]

(1,L)-Snapshot-Oblivious RAMs

(1,L)-Snapshot Adversaries
Theorem [Du, Genkin, Grubbs ‘23]. Assuming one-way functions, there exists an (1,L)-snapshot-oblivious

RAM with O(log L) overhead.

Corollary. For L = No(1), the above (1, L)-snapshot-oblivious RAM has o(log N) overhead circumventing

oblivious RAM lower bounds with persistent adversaries.

Limits of (1,L)-Snapshot-Oblivious
Many providers get breached multiple times:

- 6+ large organizations were breached at least 3 times in the past decade

(1,L)-snapshot-oblivious RAMs cannot protect against multiple breaches

read(10), write(17), read(2), write(18), write(54), read(20), read(21), write(95), read(1), write(5), read(82)

Open Question

What is the complexity of ORAM against adversaries with multiple breaches?

Our
Contributions

Theorem. In the cell probe model, any

(3,1)-snapshot oblivious RAM must have 𝛀
(log N) overhead.

(3,1)-Snapshot Adversary
Performs three breaches:

- Sees only memory contents twice
- See transcript of one query exactly once

read(10), write(17), read(2), write(18), write(54), read(20), read(21), write(95), read(1), write(5), read(82)

Our
Contributions

Theorem. In the cell probe model, any

(3,1)-snapshot oblivious RAM must have 𝛀
(log N) overhead.

Takeaway. Building oblivious RAMs

against general snapshot adversaries

with three breaches is as hard as

protecting against persistent adversaries.

Chronogram

Chronogram
● Logarithmic lower bound for DPRAMs [PY ‘20]

● Super-logarithmic lower bounds for (statistically) oblivious near-neighbor search [LMWY ‘20]

● Logarithmic lower bounds for small block sizes and general data structures [PY’23]

● All for persistent adversaries

Revisiting PY’20

write(1), write(2), write(3), …, write(n), read(x)

Revisiting PY’20

write(1), write(2), …, write(rk) write(...), … write(...)... write(n)

Epoch k with rk writes ... Epoch 1 with r1 writes Epoch 0 with r0 writes

Revisiting PY’20

Revisiting PY’20
5 12 7 0 7 6

4 12 10 8 11 9

2 6 5 11 7 5

5 9 11 12 8 10

...

5 10 7 11 9 12

Label each cell with
epoch to last overwrite
the contents

Revisiting PY’20
● Fix epoch i

○ For concreteness, let’s say i = 5

Revisiting PY’20
● Fix epoch i

○ For concreteness, let’s say i = 5

● What does adversary need to observe?

Revisiting PY’20
5 12 7 0 7 6

4 12 10 8 11 9

2 6 5 11 7 5

5 9 11 12 8 10

...

5 10 7 11 9 12

Revisiting PY’20
5 12 7 0 7 6

4 12 10 8 11 9

2 6 5 11 7 5

5 9 11 12 8 10

...

5 10 7 11 9 12

Revisiting PY’20
5 12 7 0 7 6

4 12 10 8 11 9

2 6 5 11 7 5

5 9 11 12 8 10

...

5 10 7 11 9 12

Revisiting PY’20
● Fix epoch i

○ For concreteness, let’s say i = 5

● What does adversary need to observe?
○ Cells last overwritten before epoch 5
○ Cells last overwritten in epoch 5
○ Cells last overwritten after epoch 5

Revisiting PY’20

write(1), write(2), write(3), …, write(n), read(x)

Revisiting PY’20
● Fix epoch i

○ For concreteness, let’s say i = 5

● What does adversary need to observe?
○ Cells last overwritten before epoch 5
○ Cells last overwritten in epoch 5
○ Cells last overwritten after epoch 5

● Test whether the final read probes a cell last overwritten in epoch 5

Revisiting PY’20
5 12 7 0 7 6

4 12 10 8 11 9

2 6 5 11 7 5

5 9 11 12 8 10

...

5 10 7 11 9 12

read(x)

Revisiting PY’20
5 12 7 0 7 6

4 12 10 8 11 9

2 6 5 11 7 5

5 9 11 12 8 10

...

5 10 7 11 9 12

read(x)

(3,1)-Snapshot Adversary
?? ?? ?? ?? ?? ??

?? ?? ?? ?? ?? ??

?? ?? ?? ?? ?? ??

?? ?? ?? ?? ?? ??

...

?? ?? ?? ?? ?? ??

Label each cell with
epoch to last overwrite
the contents

(3,1)-Snapshot Adversary

read(10), write(17), read(2), write(18), write(54), read(20), read(21), write(95), read(1), write(5), read(82)

(3,1)-Snapshot Adversary

read(10), write(17), read(2), write(18), write(54), read(20), read(21), write(95), read(1), write(5), read(82)

(3,1)-Snapshot Adversary

read(10), write(17), read(2), write(18), write(54), read(20), read(21), write(95), read(1), write(5), read(82)

(3,1)-Snapshot Adversary

read(10), write(17), read(2), write(18), write(54), read(20), read(21), write(95), read(1), write(5), read(82)

(3, 1)-Snapshot Adversary

write(...), write(...), …, write(...) ... read(x)

Epoch 5 with r5 writes ... Final Read

...

...

First Breach
5 12 7 0 7 6

4 12 10 8 11 9

2 6 5 11 7 5

5 9 11 12 8 10

...

5 10 7 11 9 12

> 5 > 5 > 5 > 5 > 5 > 5

> 5 > 5 > 5 > 5 > 5 > 5

> 5 > 5 > 5 > 5 > 5 > 5

> 5 > 5 > 5 > 5 > 5 > 5

...

> 5 > 5 > 5 > 5 > 5 > 5

Second Breach
5 12 7 0 7 6

4 12 10 8 11 9

2 6 5 11 7 5

5 9 11 12 8 10

...

5 10 7 11 9 12

> 5 > 5 > 5 5 > 5 > 5

> 5 > 5 > 5 > 5 > 5 > 5

5 > 5 5 > 5 > 5 > 5

> 5 > 5 > 5 > 5 5 > 5

...

> 5 5 > 5 > 5 > 5 > 5

Third Breach (Before Read)
5 12 7 0 7 6

4 12 10 8 11 9

2 6 5 11 7 5

5 9 11 12 8 10

...

5 10 7 11 9 12

< 5 > 5 > 5 < 5 > 5 > 5

> 5 > 5 > 5 > 5 > 5 > 5

5 > 5 5 > 5 > 5 < 5

> 5 < 5 > 5 > 5 5 > 5

...

> 5 5 > 5 > 5 < 5 > 5

Our Snapshot Lower Bound
● Fix epoch i

○ For concreteness, let’s say i = 5

● What does adversary need to observe?
○ Cells last overwritten before epoch 5
○ Cells last overwritten in epoch 5
○ Cells last overwritten after epoch 5

● Test whether the final read probes a cell last overwritten in epoch 5

Third Breach (During Read)
5 12 7 0 7 6

4 12 10 8 11 9

2 6 5 11 7 5

5 9 11 12 8 10

...

5 10 7 11 9 12

read(x)

5 12 7 0 7 6

4 12 10 8 11 9

2 6 5 11 7 5

5 9 11 12 8 10

...

5 10 7 11 9 12

< 5 > 5 > 5 < 5 > 5 > 5

> 5 > 5 > 5 > 5 > 5 > 5

5 > 5 5 > 5 > 5 < 5

> 5 < 5 > 5 > 5 5 > 5

...

> 5 5 > 5 > 5 < 5 > 5

Third Breach (During Read)
5 12 7 0 7 6

4 12 10 8 11 9

2 6 5 11 7 5

5 9 11 12 8 10

...

5 10 7 11 9 12

read(x)

5 12 7 0 7 6

4 12 10 8 11 9

2 6 5 11 7 5

5 9 11 12 8 10

...

5 10 7 11 9 12

< 5 > 5 > 5 < 5 > 5 > 5

> 5 > 5 > 5 > 5 > 5 > 5

5 > 5 5 > 5 > 5 < 5

> 5 < 5 > 5 > 5 5 > 5

...

> 5 5 > 5 > 5 < 5 > 5

Our Snapshot Lower Bound
● Fix epoch i

○ For concreteness, let’s say i = 5

● What does adversary need to observe?
○ Cells last overwritten before epoch 5
○ Cells last overwritten in epoch 5
○ Cells last overwritten after epoch 5

● Test whether the final read probes a cell last overwritten in epoch 5

Our Snapshot Lower Bound
● Fix epoch i

○ For concreteness, let’s say i = 5

● What does adversary need to observe?
○ Cells last overwritten before epoch 5
○ Cells last overwritten in epoch 5
○ Cells last overwritten after epoch 5

● Test whether the final read probes a cell last overwritten in epoch 5

The adversarial strategy for a persistent
adversary can be simulated even with a

weaker (3,1)-snapshot adversary.

Our Lower
Bound
Extensions

Theorem. In the cell probe model, any

(3,1)-snapshot RAM with any of the

following privacy properties must have 𝛀
(log N) overhead.

- Differential Privacy

- Read-Only Obliviousness

- Encrypted Search Leakage

Beyond Lower
Bounds:
Our New
Constructions

Theorem. Assuming one-way functions,

there exists O(1) overhead constructions for

the following primitives:

- (3, 1)-Snapshot No-Write ORAMs

- (∞, 1)-Snapshot Oblivious

Stacks/Queues/Deques

Open Problems
1. What is the complexity for (S, 0)-snapshot oblivious RAMs for S>= 2?

2. What is the complexity for (2, L)-snapshot oblivious RAMs for L >= 1?

Questions?

Email: kwlyeo@google.com or giuper@gmail.com

ePrint: ia.cr/2023/811

mailto:kwlyeo@google.com
mailto:giuper@gmail.com
https://ia.cr/2023/811

