Limits of Breach-Resistant and
Snapshot-Oblivious RAMs

Giuseppe Persiano and Kevin Yeo

Oblivious RAM [GO'96]

17

41

22

Oblivious RAM

o D_

read(1)

2

17

41

22

Oblivious RAM

> [

read(1)

<

17

41

22

Oblivious RAM

> [

read(1)

<

17

41

22

Oblivious RAM

> []

What was the
accessed index?

read(1) 17
¢
3
- 41
3
22

Oblivious RAM

> [

read(1)

write(2, X)

17

41

22

Oblivious RAM Security

Definition. For any sequence of equal-length operations O, and O,, the adversary’s view OvaS(Ol) and
OvaS(OZ) from a construction ODS must be indistinguishable to a computational adversary A:

Pr[A(ObvDS(O,)) = 1] =Pr[A(ObvDS(0,)) = 1]

Adversary’s View

O-J:l

read(1)

<

ORAM Lower Bound

Theorem [LN‘18]. In the cell probe model, oblivious RAMSs require €2(log N) overhead.

Yes, There is an Oblivious RAM Lower Bound!

Kasper Green Larsen* and Jesper Buus Nielsen**

1 Computer Science. Aarhus University
2 Computer Science & DIGIT, Aarhus University

Abstract. An Oblivious RAM (ORAM) introduced by Goldreich and
Ostrovsky [JACM’96] is a (possibly randomized) RAM, for which the
memory access pattern reveals no information about the operations per-
formed. The main performance metric of an ORAM is the bandwidth
overhead, i.e., the multiplicative factor extra memory blocks that must
be accessed to hide the operation sequence. In their seminal paper in-

. ° . O Y O TR PR 1 W S .

More ORAM Lower Bounds

Logarithmic €2(log N) lower bounds have been proven for the many other privacy notions and settings:

e Differential Privacy [PY’19]

e Hidden Operational Boundaries [HKKS'19]
e Multiple Non-Colluding Servers [LSY’20]

e Encrypted Search Leakage [PPY’20]

e Small Data Blocks [KL21], [PY’23]

Persistent Adversary

-0

read(1)

17

Trusted Third Party

> [

read(1)

<

L===24

17

41

22

Trusted Third Party

|

read(1)

i..

17

41

22

Trusted Third Party

DATA BREACHES

Yum Brands Discloses Data Breach Following

Breaches Ransomware Attack

KFC and Taco Bell parent company Yum Brands says personal information was compromised in a January 2023 ransomware attack.

= MIBIEB] srcxcwme ousmiess cocture sean toeas screwce securrry sovn IR Q

=D
NET

/ tech

e —— ® a o ey o s
T-Mobile’s $150 Million Security Plan Isnt

trending tech innovation business security advice buying guides C u t ti n g I t

Do
a
o

Home /Tech / Security The mobile operator just suffered at least its fifth data breach since 2018, despite promising to spend a
fortune shoring up its systems.

Hacked! My Twitter user data is out on
the dark web -- now what?

Your Twitter user data may now be out there too,
including your phone number. Here's how to check and
what you can do about it.

Trusted Third Party

Breached Third Party

~ ™
>
S

MJ\

& & & O

Breach Remediation

Good News:
Most breaches are remediated within a few days according to DBIR: Data Breach Investigations Report.
Bad News:

Attackers can download and observe activity during those few days.

Adversary’'s View

read(10), write(17), read(2), write(18), write(54), read(20), read(21), write(95), read(1), write(5), read(82)

Persistent Adversary’s View

read(10), write(17), read(2), write(18), write(54), read(20), read(21), write(95), read(1), write(5), read(82)

S

Snapshot Adversary’s View

read(10), write(17), read(2), write(18), write(54), read(20), read(21), write(95), read(1), write(5), read(82)

<t =

S

Snapshot Adversary’s View

O

read(10), write(17), read(2), write(18), write(54), read(20), read(21), write(95), read(1), write(5), read(82)

<t =

S

Snapshot Adversary’s View

O

read(10), write(17), read(2), write(18), write(54), read(20), read(21), write(95), read(1), write(5), read(82)

<t =

S

Snapshot Adversary’s View

m| N

S

read(10), write(17), read(2), write(18), write(54), read(20), read(21), write(95), read(1), write(5), read(82)

<t =

S

Snapshot Adversary’s View

m| N

S

read(10), write(17), read(2), write(18), write(54), read(20), read(21), write(95), read(1), write(5), read(82)

<t =

S

(S, L)-Snapshot Adversary

Definition. An (S, L)-snapshot adversary may perform at most S breaches such that at most L operations
are performed during the S breaches. The adversary sees all server memory contents during breaches as
well as the transcripts of the L operations during the S breaches.

(S, L)-Snapshot Adversary

Definition. An (S, L)-snapshot adversary may perform at most S breaches such that at most L operations
are performed during the S breaches. The adversary sees all server memory contents during breaches as
well as the transcripts of the L operations during the S breaches.

Note. It is possible that L < S to simulate data breaches.

Snapshot Adversary’s View

m] o

read(10), write(17),

S

read(2), write(18), write(54), read(20), read(21), write(95), read(1), write(5), read(82)

(3, 1)-Snapshot Adversary's View

] - e

read(10), write(17),

S S S

read(2), write(18), write(54), read(20),read(21), write(95), read(1), write(5), read(82)

(S, L)-Snapshot-Oblivious RAM

Definition. For any sequence of equal-length operations O, and O,, the adversary’s view OvaS(Ol) and
ObvDS(O,) from a construction ODS must be indistinguishable to any (S, L)-snapshot adversary A:

Pr[A(ObvDS(O,)) = 1] =Pr[A(ObvDS(0,)) = 1]

(1,L)-Snapshot-Oblivious RAMs

Snapshot-Oblivious RAMs: Sub-Logarithmic Efficiency
for Short Transcripts

Yang Du’, Daniel Genkin?, and Paul Grubbs®

!University of Michigan, duyung @umich.edu
2Georgia Tech, genkin@gatech.edu
3University of Michigan, paulgrub@umich.edu

Abstract. Oblivious RAM (ORAM) is a powerful technique to prevent harmful
data breaches. Despite tremendous progress in improving the concrete perfor-
mance of ORAM, it remains too slow for use in many practical settings; recent
breakthroughs in lower bounds indicate this inefficiency is inherent for ORAM
and even some natural relaxations.

(1,L)-Snapshot Adversaries

Theorem [Du, Genkin, Grubbs ‘23]. Assuming one-way functions, there exists an (1,L)-snapshot-oblivious
RAM with O(log L) overhead.

Corollary. For L = N°W, the above (1, L)-snapshot-oblivious RAM has o(log N) overhead circumventing
oblivious RAM lower bounds with persistent adversaries.

Limits of (1,L)-Snapshot-Oblivious

Many providers get breached multiple times:
- 6+ large organizations were breached at least 3 times in the past decade

(1,L)-snapshot-oblivious RAMs cannot protect against multiple breaches

read(10), write(17), read(2), write(18), write(54), read(20), read(21), write(95), read(1), write(5), read(82)

<t = <t =

S S

Open Question

What is the complexity of ORAM against adversaries with multiple breaches?

Ou r Theorem. In the cell probe model, any
(3,1)-snapshot oblivious RAM must have

Contributions (log N) overhead.

(3,1)-Snapshot Adversary

Performs three breaches:

- Seesonly memory contents twice
- See transcript of one query exactly once

read(10), write(17),lread(2), write(18), write(54),|read(20), read(21), write(95), read(1), write(5), read(82)

-

S S S

Our
Contributions

Theorem. In the cell probe model, any
(3,1)-snapshot oblivious RAM must have
(log N) overhead.

Takeaway. Building oblivious RAMs
against general snapshot adversaries
with three breaches is as hard as
protecting against persistent adversaries.

Chronogram

The Cell Probe Complexity of Dynamic Data Structures

Michael L. Fredman '

Bellcore and
U.C. San Diego

1. Summary of Results

Dynamic data structure problems involve the representation of
data in memory in such a way as to permit certain types of
modifications of the data (updates) and certain types of questions
about the data (queries). This paradigm encompasses many
fundamental problems in computer science.

The purpose of this paper is to prove new lower and upper
bounds on the time per operation to implement solutions to some
familiar dynamic data structure problems including list
representation, subset ranking, partial sums, and the sct union
problem . The main features of our lower bounds are:

(1) They hold in the cell probe model of computation (A, Yao
(18]) in which the time complexity of a sequential
computation is defined to be the number of words of
memory that are accessed. (The number of bits b in a
single word of memory is a parameter of the model). All
other computations are free. This model is at least as
powerful as a random access machinc and allows for
unusual representation of data, indirect addressing etc. This
contrasts with most previous lower bounds which are

Michacl E. Saks 2

U.C. San Diego,
Bellcore and
Rutgers University

register size from logn to polylog(n) only reduces the time
complexity by a constant factor. On the other hand,
decreasing the register size from logn to 1 increases time
complexity by a logn factor for one of the problems we
consider and only a loglogn factor for some other
problems.

The first two specific data structure problems for which we
obtain bounds are:

List Representation. This problem concerns the represention of
an ordered list of at most n (not necessarily distinct) elements
from the universe U ={1,2,.,n}. The operations to be
supported are report(k), which returns the &* element of the list,
insert(k, u) which inserts clement u into the list between the
clements in positions k — 1 and k, delete(k), which deletes the k™
item.

Subset Rank. This problem concerns the representation of a
subset § of U ={1,2,.,n}. The operations that must be
supported are the updates ‘“‘insert item j into the set”’ and
““delete item j from the set”” and the queries rank(j), which
returns the number of elements in S that are less than or equal
o

Chronogram

e Logarithmic lower bound for DPRAMs [PY ‘20]
e Super-logarithmic lower bounds for (statistically) oblivious near-neighbor search [LMWY ‘20]
e Logarithmic lower bounds for small block sizes and general data structures [PY’23]

e Allfor persistent adversaries

Revisiting PY'20

write(1), write(2), write(3), ..., write(n), read(x)

| | | | [| '
Revisiting PY' 20
Epoch k with rk writes Epoch 1 with rl writes Epoch O with r°® writes

write(1), write(2), ..., write(r¥) write(...), ... write(...) write(n)

Revisiting PY'20

d

Revisiting PY'20

Label each cell with
epoch to last overwrite
the contents

12

12

10

10

11

11

12

11

11

10

12

Revisiting PY'20

e Fixepochi
For concreteness, let'ssayi=5

Revisiting PY'20

e Fixepochi
o For concreteness, let'ssayi=5
e What does adversary need to observe?

Revisiting PY'20

12

12

10

10

11

11

12

11

11

10

12

Revisiting PY'20

d

0 7 6
8 11 9
11 7

12 8 10
11 9 12

Revisiting PY'20

Revisiting PY'20

e Fixepochi
o For concreteness, let'ssayi=5
e What does adversary need to observe?

o Cellslast overwritten before epoch 5
o Cellslast overwritten in epoch 5
o Cellslast overwritten after epoch 5

Revisiting PY'20

write(1), write(2), write(3), ..., write(n), read(x)

Revisiting PY'20

e Fixepochi
o For concreteness, let'ssayi=5

e What does adversary need to observe?
o Cells last overwritten before epoch 5
o Cells last overwritten in epoch 5
o Cells last overwritten after epoch 5

e Test whether the final read probes a cell last overwritten in epoch 5

Revisiting PY'20

read(x)

7 6
11 9
7

8 10
9 12

Revisiting PY'20

read(x)

7 6
11 9
7

8 10
9 12

(3,1)-Snapshot Adversary

Label each cell with
epoch to last overwrite
the contents

??

??

??

??

??

??

??

??

??

??

??

??

??

??

??

??

??

??

??

??

??

??

??

??

??

??

??

??

??

??

(3,1)-Snapshot Adversary

read(10), write(17),lread(2), write(18), write(54),|read(20), read(21), write(95), read(1), write(5), read(82)

>

S S S

(3,1)-Snapshot Adversary

read(10), write(17),lread(2), write(18), write(54),|read(20), read(21), write(95), read(1), write(5), read(82)

>

S S S

(3,1)-Snapshot Adversary

read(10), write(17),lread(2), write(18), write(54),|read(20), read(21), write(95), read(1), write(5), read(82)

>

S S S

(3,1)-Snapshot Adversary

read(10), write(17),lread(2), write(18), write(54),|read(20), read(21), write(95), read(1), write(5), read(82)

>

S S S

(3, 1)-Snapshot Adversary

S

Epoch 5 with r> writes

write(...), write(...), ..., write(...)

S

Final Read

read(x)

S

First Breach

>5

>5

>5

>5

>5

>5

>5

>5

>5

>5

>5

>5

>5

>5

>5

>5

>5

>5

>5

>5

>5

>5

>5

>5

>5

>5

>5

>5

Second Breach

>5

>5

>5

>5

>5

>5

>5

>5

>5

>5

>5

>5

>5

>5

>5

>5

>5

>5

>5

>5

>5

>5

>5

>5

ad)
Third Breach (Before Re

d

)

>5

5

>5

>5

>5

>5

>5

)

>5

>5

>5

>5

<5

>5

>5

>5

>5

>5

>5

>5

<5

>5

>5

<5

>5

>5

Our Snapshot Lower Bound

e Fixepochi
o For concreteness, let'ssayi=5

e What does adversary need to observe?
o Cellslast overwritten before epoch 5
o Cellslast overwritten in epoch 5
o Cellslast overwritten after epoch 5

e Test whether the final read probes a cell last overwritten in epoch 5

' d)
Third Breach (During Rea

d

read(x)

)

>5

>5

>5

>5

>5

<5

>5

>5

>5

>5

>5

>5

>5

<5

>5

>5

<5

>5

>5

' d)
Third Breach (During Rea

d

read(x)

)

>5

>5

>5

>5

>5

<5

>5

>5

>5

>5

<5

>5

>5

<5

>5

>5

Our Snapshot Lower Bound

e Fixepochi
o For concreteness, let'ssayi=5

e What does adversary need to observe?
o Cellslast overwritten before epoch 5
o Cellslast overwritten in epoch 5
o Cellslast overwritten after epoch 5

e Test whether the final read probes a cell last overwritten in epoch 5

Our Snapshot Lower Bound

e Fixepochi
o For concreteness, let'ssayi=5

e What does adversary need to observe?
o Cellslast overwritten before epoch 5
o Cellslast overwritten in epoch 5
o Cellslast overwritten after epoch 5

e Test whether the final read probes a cell last overwritten in epoch 5

The adversarial strategy for a persistent
adversary can be simulated even with a
weaker (3,1)-snapshot adversary.

Theorem. In the cell probe model, any
Our Lower

(3,1)-snapshot RAM with any of the

following privacy properties must have
Bound (log N) overhead.
Extensions

- Differential Privacy
- Read-Only Obliviousness
- Encrypted Search Leakage

Beyond Lower
Bounds:

Our New
Constructions

Theorem. Assuming one-way functions,
there exists O(1) overhead constructions for
the following primitives:

(3, 1)-Snapshot No-Write ORAMs
(0, 1)-Snapshot Oblivious
Stacks/Queues/Deques

Open Problems

1. Whatis the complexity for (S, 0)-snapshot oblivious RAMs for S>= 2?

2. Whatis the complexity for (2, L)-snapshot oblivious RAMs for L >= 1?

Questions?

Email:

ePrint:

(o]

mailto:kwlyeo@google.com
mailto:giuper@gmail.com
https://ia.cr/2023/811

