## Algorithms for the Alternating Trilinear Form Equivalence Problem

Ward Beullens
IBM Research Europe

Crypto '23


## Alternating Trilinear Form Equivalence

Let $V$ be a vector space of dimension $n$ over a finite field $K$ with $q$ elements.
Definition (alternating trilinear form):
$\phi: V^{3} \rightarrow K$ is an alternating trilinear form if:

1) $\phi$ is $K$-linear in each of its 3 arguments (trilinear)

$$
\text { e.g., } \phi\left(\alpha u+\beta u^{\prime}, v, w\right)=\alpha \phi(u, v, w)+\beta \phi\left(u^{\prime}, v, w\right)
$$

2) $\phi(u, v, w)=0$ if $u=v, u=w$, or $v=w$ (alternating)

Definition (equivalence): We say two alternating trilinear forms $\phi_{1}, \phi_{2}$ are equivalent if there exists $S \in G L(V)$ such that for all $u, v, w \in V$

$$
\phi_{2}(u, v, w)=\phi_{1}(S u, S v, S w) .
$$

## Given equivalent alternating trilinear forms $\phi_{1}, \phi_{2}$, how to find an equivalence $S$ ?

This problem was recently used to construct cryptography, in particular, for $n=\operatorname{dim}(V) \in\{9,10,11\}$


## Summary of results:

New algorithms for the ATFE problem for small $n$

| $\operatorname{dim}(V)$ | Tang et al. | This work |  |
| :---: | :---: | :---: | :---: |
| 9 | $\tilde{O}\left(q^{7}\right)$ | $\tilde{O}(q)$ | This |
| 10 | $\tilde{O}\left(q^{7}\right)$ | $\tilde{O}\left(q^{6}\right)$ | talk |
| 11 | $\tilde{O}\left(q^{9}\right)$ | $\tilde{O}\left(q^{4}\right)$ |  |

For $n=10$ we have an algorithm that runs in $O(1)$ field operations but that only works with probability $\sim 1 / q$ over the choice of ( $\phi_{1}, \phi_{2}$ ) ( $\sim 1$ hour of laptop time and probability $2^{-17}$ for proposed parameters)

## We use a black box [Bouillagutet etal. 2011]


$S$

Guessing $S u$ gives an algorithm with complexity $O\left(q^{n} \cdot \operatorname{poly}(n)\right)$.

## Invariants

We say an invariant is a function

$$
F(\phi, u): A T F(V) \times V \rightarrow X
$$

such that

$$
\forall S \in G L(V) \quad F(\phi, u)=F\left(\phi \circ S, S^{-1} u\right)
$$

The dream is to find a "perfect" invariant i.e.
$F\left(\phi_{1}, u\right)=F\left(\phi_{2}, v\right) \Leftrightarrow \exists S: \phi_{2}=\phi_{1} \circ S$ and $v=S^{-1} u$
We then only need to find $u, v$ such that $F\left(\phi_{1}, u\right)=F\left(\phi_{2}, v\right)$, and use

## Attempt 0: rank

Given $\phi, u$ it is natural to look at the bilinear form

$$
\phi_{u}(., .):=\phi(u, . . .)
$$

Any invariant of $\phi_{u}$ is an invariant of $(\phi, u)$. E.g., the rank.

$$
F(\phi, u):=\operatorname{rank}\left(\phi_{u}\right)
$$

## Attempt 1: Graph-based invariants

We can define a graph $G_{4}$ whose vertices are the projective points of rank 4.

$$
\left\{\boldsymbol{u} \in P(V) \mid \phi_{u} \text { has rank } 4\right\}
$$

and where two vertices $u, v$ share an edge if

$$
\phi(\boldsymbol{u}, \boldsymbol{v}, .)=0
$$

Lemma: For random $\phi$ in dimension 9 this graph has on average $q^{2}+O(q)$ vertices, and $q^{3} / 2+O\left(q^{2}\right)$ edges.

An isomorphism of forms induces an isomorphism of the graphs, so we can use the neighborhood of $u$ as an invariant.


Very often these graphs are regular and have dihedral symmetry!

## Rank-4 points form a Torsor

## [Benedetti, Manivel, and Tanturri. 2019]

Chord-tangent group law on points of elliptic curve:

Given 2 generic points $P, Q$, there is a $3^{\text {rd }}$ point on the line $P Q$, say $P * Q$

Pick identity 0 , then group law is

$$
P+Q:=O *(P * Q)
$$

"Chord-tangent" group law on rank-4 projective points:

Given 2 generic points $\boldsymbol{u}, \boldsymbol{v}$, there is a $3^{\text {rd }}$ point $\boldsymbol{w}=\boldsymbol{u} * \boldsymbol{v}$ such that $\phi(\boldsymbol{u}, \boldsymbol{v},.) \sim \phi(\boldsymbol{u}, \boldsymbol{w},.) \sim \phi(\boldsymbol{v}, \boldsymbol{w},$.

Pick identity $\boldsymbol{o}$, then group law is

$$
\boldsymbol{u}+\boldsymbol{v}:=\boldsymbol{o} *(\boldsymbol{u} * \boldsymbol{v})
$$

Unfortunately we don't have an obvious point to use as identity.

## Canonically generating a $2^{\text {nd }}$ point



## Canonically generating a $2^{\text {nd }}$ point



## Canonically generating a $2^{\text {nd }}$ point



We have something analogous in the ATF world:

An efficiently computable function $H$ that maps the set of rank-4 projective points to itself.

Iterating the function $H$ gives a sequence of rank-4 points.

## Graphs for the H -function

- Nodes are points of rank 4
- $\boldsymbol{u} \rightarrow \boldsymbol{v}$ if $H(\boldsymbol{u})=\boldsymbol{v}$



## Attempt 2: Iterating H

Given $\phi, u$ compute:

$$
\boldsymbol{u}_{1}=\boldsymbol{u}, \boldsymbol{u}_{1}=H\left(\boldsymbol{u}_{0}\right), \ldots, \boldsymbol{u}_{11}=H\left(\boldsymbol{u}_{10}\right)
$$

## Generating a sequence of points



## Attempt 2: Iterating H

Given $\phi, u$ compute:

$$
\boldsymbol{u}_{1}=\boldsymbol{u}, \boldsymbol{u}_{1}=H\left(\boldsymbol{u}_{0}\right), \ldots, \boldsymbol{u}_{11}=H\left(\boldsymbol{u}_{10}\right)
$$

With high likelihood $\left[\boldsymbol{u}_{1}, \ldots, \boldsymbol{u}_{10}\right]$ forms a projective frame, so we can write $\boldsymbol{u}_{11}$ uniquely as a combination $u_{11}=\sum \alpha_{i} u_{i}$, with $\alpha_{i}$ unique up to multiplication by a scalar.

We define $F(\phi, u)=\left(\alpha_{i}\right)_{i \in[10]}$, such that $\boldsymbol{u}_{11}=\sum \alpha_{i} \boldsymbol{u}_{i}$.
Experiments suggest this is a perfect invariant i.e. $F\left(\phi_{1}, u\right)=F\left(\phi_{2}, v\right)$ if and only if there is $S \in G L(V)$ with

$$
\phi_{2}=\phi_{1} \circ S \text { and } u=S v
$$

## Algorithm for solving ATFE problem:

1) Sample $O(q)$ rank-4 points for $\phi_{1}$ and $\phi_{2}$ and compute the invariants.
2) When a collision $F\left(\phi_{1}, u\right)=F\left(\phi_{2}, v\right)$ recover $S$ from the canonical frames.

Heuristically, the complexity is $O(q)$.

In practice the algorithm takes between 30 minutes and 4 hours for the ( $n=9, q \approx 2^{19}$ ) parameters.

## Conclusion:

- Original parameters for ATFE problem are too small (NIST submission has 16KB sigs vs 5KB of earlier version)


## Open questions:

- Does the attack for $n=9$ generalize to higher $n$ ?
- Finding better attacks for large $n$
- Can we use the ATF torsors constructively?

