Algorithms for the Alternating Trilinear Form Equivalence Problem

Ward Beullens

IBM Research Europe

Crypto '23

Alternating Trilinear Form Equivalence

Let V be a vector space of dimension n over a finite field K with q elements.

Definition (alternating trilinear form): $\phi: V^3 \to K$ is an alternating trilinear form if: 1) ϕ is *K*-linear in each of its 3 arguments (trilinear) e.g., $\phi(\alpha u + \beta u', v, w) = \alpha \phi(u, v, w) + \beta \phi(u', v, w)$

2) $\phi(u, v, w) = 0$ if u = v, u = w, or v = w (alternating)

Definition (equivalence): We say two alternating trilinear forms ϕ_1, ϕ_2 are equivalent if there exists $S \in GL(V)$ such that for all $u, v, w \in V$

$$\phi_2(u, v, w) = \phi_1(Su, Sv, Sw) \, .$$

Given equivalent alternating trilinear forms ϕ_1, ϕ_2 , how to find an equivalence S?

This problem was recently used to construct cryptography, in particular, for $n = \dim(V) \in \{9,10,11\}$

Practical Post-Quantum Signat Isomorphism Problems of T Gang Tang ^{1[0000-0002-1135-406,X]} , Dung Hoang I Antoine Joux ^{3[0000-0003-2082-6508]} , Thomas Pla Youming Qiao ^{1[0000-0003-2082-6508]} , Thomas Pla	ure Schemes from frilinear Forms $\frac{1}{10000-0001-8057-4050}$, $\frac{1}{10000-0003-2521-2520}$, $\frac{1}{10000-0002-1562-5105}$	On digitai problems: O ^{Markus Bläser¹, _{Nguyen³, Thomas}}	l signatures based on isomorphism QROM security, ring signatures, and applications Zhili Chen ² , Dung Hoang Duong ³ , Antoine Joux ⁴ , Tuong Plantard ⁵ , Youming Qiao ² , Willy Susilo ³ , and Gang Tang ²	
 ¹ Centre for Quantum Software a Faculty of Engineering and Informati NS Youming.Qiao@uts.edu.au ² Institute of Cybersecurity and Cr Technology, University of Wollongor ³ CISPA Helmholtz Center for I J⁶ ⁴ Emerging Technology Re tplan Abstract. In this paper, we p on the alternating trilinear for 	TRIFORS: LINKable Trilinear	· Forms Ring Signature	er Science, Saarland University, Saarland mpus, Saarbrücken, Germany. Laeserfes. uni-asarland.de ftware and Information, School of Comp formation Technology, University of Tec Ultimo, NSW, Australia. nt.uts.edu.au, Youming, QlacOuts.edh g.tang-10student.uts.edu.au and Cryptology, School of Computing a of Wollongong, Wollongong, NSW 2522, ntn807@uowmail.edu.au, vsusilo@uow ter for Information Security, Saarbrücken joux@cispa.de bs, Murray Hill, New Jersey, United Stat .plantard@nokia-bell-labs.com	Updatable Encryption from Group Actions Antonin Leroux ^{1,2} and Maxime Roméas ¹ ¹ LIX, CNRS, École polytechnique, INRIA, Institut Polytechnique de Paris, 91120 Palaiseau, France ² DGA antonin.leroux@Polytechnique.org romeas@lix.polytechnique.fr
for the attentioning trainfer to inspired by the Goldreich-Mi for graph isomorphism, and c for the NIST's post-quantum First, we present theoretical e in the post-quantum cryptog from several research lines, in variate cryptography, cryptogr random oracle model, and reco	Giuseppe D'Alconzo [*] and Andrea Gangemi [†] Department of Mathematical Sciences, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino, Italy		phism problem asks whether two comb are essentially the same. Based on the phism problem, there is a well-known di n the Goldreich-Micali-Widgerson (GM r graph isomorphism and the Fiat-Sha tly, there is a revival of activities on thi themes SeaSign (Eurocrypt 2019), CSI-F	Abstract. Updatable Encryption (UE) allows to rotate the encryption key in the outsourced storage setting while minimizing the bandwith used. The server can update ciphertexts to the new key using a token provided by the client. UE schemes should provide strong confidentiality guarantees against an adversary that can corrupt keys and tokens. This paper studies the problem of building UE in the group action framework. We introduce a new notion of Mappable Effective Group Action (MEGA) and show that we can build CCA secure UE from a MEGA by generalizing the SHINE construction of Boyd <i>et al.</i> at Crypto 2020. Unfortunately, we do

Summary of results:

New algorithms for the ATFE problem for small n

dim(V)	Tang et al.	This work	Thia
9	$\tilde{O}(q^7)$	$ ilde{O}(q)$	
10	$\tilde{O}(q^7)$	$ ilde{O}(q^6)$	
11	$\tilde{O}(q^9)$	$\tilde{O}(q^4)$	

For n = 10 we have an algorithm that runs in O(1) field operations but that only works with probability $\sim 1/q$ over the choice of (ϕ_1, ϕ_2) (~ 1 hour of laptop time and probability 2^{-17} for proposed parameters)

We use a black box [Bouillaguet et al., 2011]

Guessing Su gives an algorithm with complexity $O(q^n \cdot poly(n))$.

Invariants

We say an invariant is a function

 $F(\phi, u): ATF(V) \times V \to X$

such that

$$\forall S \in GL(V) \ F(\phi, u) = F(\phi \circ S, S^{-1}u)$$

The dream is to find a "perfect" invariant i.e.

$$F(\phi_1, u) = F(\phi_2, v) \iff \exists S: \phi_2 = \phi_1 \circ S \text{ and } v = S^{-1}u$$

We then only need to find u, v such that $F(\phi_1, u) = F(\phi_2, v)$, and use

Attempt 0: rank

Given ϕ, u it is natural to look at the bilinear form $\phi_u(.,.) \coloneqq \phi(u,.,.)$

Any invariant of ϕ_u is an invariant of (ϕ, u) . E.g., the rank. $F(\phi, u) \coloneqq rank(\phi_u)$

Attempt 1: Graph-based invariants

We can define a graph G_4 whose vertices are the projective points of rank 4.

 $\{u \in P(V) | \phi_u \text{ has rank } 4\}$

and where two vertices u, v share an edge if $\phi(u, v, .) = 0$

Lemma: For random ϕ in dimension 9 this graph has on average $q^2 + O(q)$ vertices, and $q^3/2 + O(q^2)$ edges.

An isomorphism of forms induces an isomorphism of the graphs, so we can use the neighborhood of u as an invariant.

Very often these graphs are regular and have dihedral symmetry!

Rank-4 points form a Torsor

[Benedetti, Manivel, and Tanturri. 2019]

Chord-tangent group law on points of elliptic curve:

Given 2 generic points P, Q, there is a 3rd point on the line PQ, say P * Q

Pick identity *O*, then group law is

$$P + Q \coloneqq O * (P * Q)$$

"Chord-tangent" group law on rank-4 projective points:

Given 2 generic points $\boldsymbol{u}, \boldsymbol{v}$, there is a 3rd point $\boldsymbol{w} = \boldsymbol{u} * \boldsymbol{v}$ such that $\phi(\boldsymbol{u}, \boldsymbol{v}, .) \sim \phi(\boldsymbol{u}, \boldsymbol{w}, .) \sim \phi(\boldsymbol{v}, \boldsymbol{w}, .)$

Pick identity *o*, then group law is

$$u + v \coloneqq o * (u * v)$$

Unfortunately we don't have an obvious point to use as identity.

Canonically generating a 2nd point

Canonically generating a 2nd point

We have something analogous in the ATF world:

An efficiently computable function *H* that maps the set of rank-4 projective points to itself.

Iterating the function *H* gives a sequence of rank-4 points.

Graphs for the H-function

- Nodes are points of rank 4
- $\boldsymbol{u} \rightarrow \boldsymbol{v}$ if $H(\boldsymbol{u}) = \boldsymbol{v}$

Attempt 2: Iterating H

Given ϕ , *u* compute:

$$u_1 = u, u_1 = H(u_0), ..., u_{11} = H(u_{10})$$

Attempt 2: Iterating H

Given ϕ , *u* compute:

$$u_1 = u, u_1 = H(u_0), ..., u_{11} = H(u_{10})$$

With high likelihood $[u_1, ..., u_{10}]$ forms a projective frame, so we can write u_{11} uniquely as a combination $u_{11} = \sum \alpha_i u_i$, with α_i unique up to multiplication by a scalar.

We define
$$F(\phi, u) = (\alpha_i)_{i \in [10]}$$
, such that $u_{11} = \sum \alpha_i u_i$.

Experiments suggest this is a perfect invariant i.e. $F(\phi_1, u) = F(\phi_2, v)$ if and only if there is $S \in GL(V)$ with $\phi_2 = \phi_1 \circ S$ and u = Sv.

Algorithm for solving ATFE problem:

- 1) Sample O(q) rank-4 points for ϕ_1 and ϕ_2 and compute the invariants.
- 2) When a collision $F(\phi_1, u) = F(\phi_2, v)$ recover S from the canonical frames.

Heuristically, the complexity is O(q).

In practice the algorithm takes between 30 minutes and 4 hours for the $(n = 9, q \approx 2^{19})$ parameters.

Conclusion:

• Original parameters for ATFE problem are too small (NIST submission has 16KB sigs vs 5KB of earlier version)

Open questions:

- Does the attack for n = 9 generalize to higher n?
- Finding better attacks for large n
- Can we use the ATF torsors constructively?

