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Alternating Trilinear Form Equivalence

Let V be a vector space of dimension n over a finite field K with q elements.

Definition (alternating trilinear form):
¢:V3 - K is an alternating trilinear form if:
1) ¢ is K-linear in each of its 3 arguments (trilinear)

e.g., p(au+ pu',v,w) = ap(u,v,w) + Bop(u',v,w)
2) p(u,v,w) =0ifu=v,u=w,orv=w (alternating)

Definition (equivalence): We say two alternating trilinear forms ¢, ¢, are
equivalent if there exists S € GL(V) such that forallu,v,w €V

¢, (u,v,w) = ¢p,(Su, Sv, Sw) .



Given equivalent alternating trilinear forms
¢4, P, how to find an equivalence S?

This problem was recently used to construct cryptography,

in particular, forn = dim(V) € {9,10,11}

Practical Post-Quantum Signature Schemes from
Isomorphism Problems of Trilinear Forms

1ang Tang! [0000—0002—1135—-466.X
Gang Tang ]
3[0000—0003—

Dung Hoang Duong?[0000—0001 —8057—4060]

%1, Thomas Plantard?!0000-0003
—1449] e Q] -2(0000—0002— 15
1449] and Willy Susilo?(0000-0002-1

21

Antoine Joux
Youming Qiao* 0000—0003—

On digital signatures based on isomorphism
problems: QROM security, ring signatures, and
applications

Markus Bliser!, Zhili Chen?, Dung Hoang Duong®, Antoine Joux!, Tuong

Nguyen®, Thomas Plantard®, Youming Qiao®, Willy Susilo®, and Gang Tang?

! Centre for Quantum Software

Faculty of Engineering and Inforr l

Youming.QiaoCuts.edu. a
2 Institute of Cybersecurity and Cr|
Technology, University of Wollongor

{hduong,
% CISPA Helmholtz Center for Il

! Emerging Technology Re
tplan|

Abstract. In this paper, we ||
on the alternating trilinear f@
inspired by the Goldreich-Mij
for graph isomorphism, and ¢
for the NIST’s post-quantum
First, we present theoretical e|
in the post-quantum cryptog|
from several research lines, in

variate cryptography, cryptogy
dom oracle model, and rece
aloahra;

aftrnctnres in alonritBl

TRIFORS: LINKable Trilinear Forms Ring Signature

Giuseppe D'Alconzo” and Andrea Gangemi’

Department of Mathematical Sciences, Politecnico di Torino, Corse Duca degh
Abruzzi 24, 10129 Torino, Italy

or Science, Saarland University, Saarlanc

mpus, Saarbriicken, Germany.
laeser@cs.uni-saarland.de

tware and Information, School of Comp)
formation Technology, University of Tec|
Ultimo, NSW. Australia.
nt.uts.edu.au, Youming.Qiaouts.ed
.tang-1@student.uts.edu.au

and Cryptology, School of Computing a
of Wollongong, Wollongong, NSW 2522,
ntn807Quowmail.edu.au, wsusilo@uo
er for Information Security, Saarbriicker]

joux@cispa.de
bs, Murray Hill, New Jersey, United Sta
.plantard@nokia-bell-labs.com

Fphism problem asks whether two coml

are essentially the same. Based on the

phism problem, there is a well-known dj
n the Goldreich-M

¢ graph isomorphism and the Fiat-Sha

tly, there is a revival of activities on thi
‘hemes SeaSign (Eurocrypt 2019), CSI-F|

Updatable Encryption from Group Actions

Antonin Leroux!? and Maxime Roméas!
! LIX, CNRS, Ecole polytechnigue, INRIA, Institut Polytechnique de Paris. 91120 Palaiseau, France
DGA
antenin.lerour@pelytechnique.org
romeas@liz.polytechnique. fr

Abstract. Updatable Encryption (UE) allows to rotate the encryption key in the outsourced storage
setting while minimizing the bandwith used. The server can update ciphertexts to the new key using a
token provided by the client. UE schemes should provide strong confidentiality guarantees against an
adversary that can corrupt keys and tokens.

This paper studies the problem of building UE in the group action framework. We introduce a new
notion of Mappable Effective Group Action (MEGA) and show that we can build CCA secure UE from
by generalizing the SHINE construction of Boyd et al. at Crypto 2020. Unfortunately, we do




Summary of results:

New algorithms for the ATFE problem for small n

dim(V) Tang et al. This work

9 0(q) 0() tThl'lf
10 0(q") 0(q®) 4
11 0(q°) 0(q*)

Forn = 10 we have an algorithm that runs in 0(1) field operations but
that only works with probability ~1/q over the choice of (¢4, ¢,)
(~1 hour of laptop time and probability 2717 for proposed parameters)



We use a black boX ouitaguet et at, 2011

G, P2 = P15
wv=S5u ) s
u+0

Guessing Su gives an algorithm with complexity 0(q" - poly(n)).



Invariants

We say an invariant is a function

F(p,u): ATF(V) XV > X
such that
VS € GL(V) F(¢,u) =F(¢poS,S )

The dream is to find a “perfect” invariant i.e.

F(¢p,u) = F(¢,,v) ©3S:¢p, =, oSandv =S"1u

We then only need to find u, v such that F(¢,,u) = F(¢,, v),
and use .”



Attempt O: rank

Given ¢, u it Is natural to look at the bilinear form

¢u(.,.) = ou,.,.)

Any invariant of ¢, is an invariant of (¢, u). E.g., the rank.

F(¢,u) = rank(¢y)



Attempt 1: Graph-based invariants

We can define a graph G, whose vertices are the
projective points of rank 4.

{fue P(V) |¢p, has rank 4}

and where two vertices u, v share an edge if

dp(u,v,.)=0

Lemma: For random ¢ in dimension 9 this graph has on
average g% + 0(q) vertices, and g3/2 + 0(g?) edges.

An isomorphism of forms induces an isomorphism of
the graphs, so we can use the neighborhood of u as an
invariant.

Very often these graphs are regular and have
dihedral symmetry!



Rank-4 points form a Torsor

[Benedetti, Manivel, and Tanturri. 2019]

Chord-tangent group law on
points of elliptic curve:

Given 2 generic points P, Q, there
is a 3 point on the line PQ, say
PxQ

Pick identity 0, then group law Is

P+Q=0x(P*Q)

“Chord-tangent” group law on
rank-4 projective points:

Given 2 generic points u, v, there
is a 3 point w = u * v such that

d(uw,v,.) ~p(uw,.) ~p(v,w,.)
Pick identity o, then group law Is

u+v=o0x*U*v)

Unfortunately we don’t have an obvious point to use
as identity.



Canonically generating a 2" point



Canonically generating a 2" point




Canonically generating a 2" point

We have something
analogous in the ATF
world:

An efficiently
computable function H
that maps the set of
rank-4 projective
points to itself.

[terating the function H
gives a sequence of
rank-4 points.



Graphs for the H-function R
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Attempt 2: Iterating H

Given ¢, u compute:
u1 = Uu, u1 — H(uo), ...,u11 —_ H(ulo)



Generating a sequence of points



Generating a sequence of points




Generating a sequence of points



Generating a sequence of points




Generating a sequence of points




Generating a sequence of points




Generating a sequence of points




Attempt 2: Iterating H

Given ¢, u compute:
u1 = Uu, u1 — H(uo), ...,u11 — H(ulo)

With high likelihood [u4, ..., u] forms a projective frame, so we can
write u;; uniquely as a combination uy; = E{aiui, with a; unique up to
multiplication by a scalar.

We define F(¢,u) = (a;);e[10p, sUch that uy; = Y a;u;.
Experiments suggest this is a perfect invariant I.e.

F(¢,,u) = F(¢p,,v) ifand only if thereis S € GL(V) with
¢2 — ¢105andu=SU.



Algorithm for solving ATFE problem:

1) Sample 0(q) rank-4 points for ¢, and ¢, and compute the
Invariants.

2) When a collision F(¢{,u) = F(¢,, v) recover S from the
canonical frames.

Heuristically, the complexity is 0(q).

In practice the algorithm takes between 30 minutes and 4 hours
for the (n = 9, q =~ 2'°) parameters.



Conclusion:

* Original parameters for ATFE problem are too small
(NIST submission has 16KB sigs vs 5KB of earlier version)

Open questions:

- Does the attack for n = 9 generalize to higher n? "
* Finding better attacks for large n
« Can we use the ATF torsors constructively?
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