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Main Application: OT is complete for 2PC/MPC
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Lower bound: k OTs need at least 2k bits of communication
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OT schemes with Optimal Rate

OT with optimal rate?

» Optimal-rate OT: [BBDP22] from DDH+LPN.

Security: Semi-honest and computationally bounded.

Strongest security possible for OT with optimal rate?

“Excluding trivial FHE-based solutions
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Theory: Applications:
Best security in two rounds in plain model o Statistical zaps
e Circuit-private FHE

e Non-malleable commitments
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Our Results

Our Result: A two-round SSP OT with optimal rate in the plain model
assuming DDH+LPN.

* Sender security: Statistical against malicious receivers

* Receiver security: DDH and LPN assumptions against semi-honest senders

« Communication Complexity: 2k(1 + o(1)) for k independent OT executions
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Blueprint [BBDP22]

[BBDP22] building blocks:

 LPN

 Rate-1 LHE w/ circuit privacy —_ DDH

¢ PIR —_ DDH

« Co-PIR _— DDH
OT with optimal rate — > DDH + LPN

semi-honest
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Blueprint [BBDP22]

Download rate-1 OT
[DGI+19]

v

Re-encryption step
Upload rate-1 using LPN

v

Correct the LPN errors
PIR + Co-PIR
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Our Construction: Blueprint

Our Construction: Assumptions

PN
* Malicious Rate-1 LHE w/ circuit privacy ——  DDH [BBDP22] + [ADD+22]
« SSP PIR —— XXX >  DDH [ADD+22]

+ SSP Co-PIR N ?

SSP Co-PIR from DDH



Co-Private Information Retrieval

— {ll
Co-PIR



Co-Private Information Retrieval

— {ll
Co-PIR 1



Co-Private Information Retrieval

— {ll
Co-PIR 1

Receiver’s message of size | S| - poly(4)
Sender’s message of size ~ |D|



Co-Private Information Retrieval
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Co-PIR I

Receiver's message of size | S| - poly(4) Dj for j € § is hidden from the receiver
Sender’s message of size =~ |D| S is hidden from the sender
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Statistical Co-PIR

Problems:
e Previous constructions from PPRF

 PPRF only have computational security.

New co-PIR constructions providing SSP from DDH:

» From rate-1 SSP PIR with computational complexity of | D \2.

 From All-but-One Lossy Functions with computational complexity of | D \1+8



Statistical Co-PIR

» From rate-1 SSP PIR with computational complexity of | D \2.
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Rate-1 SSP PIR

| Ext that extracts i
= Enc(i) —_— s.t.

PIR . Send(g, D) ~, PIR.Send(gq, (D, ..., D))

l

PIR Send(@.D) o PIR. Decode

From DDH [ADD+22]

EﬁiCiency: Size of I = Size of I

Size of [l = poly(1)
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Statistical 1-Query Co-PIR
Rate-1 and SSP

PIR.Send(q,DB = (D, ...,D,))
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Bootstrapping into Multiple Queries

ST — = LR L P ER (DD

l 1QCoPIR. Send(q;, D)
T SSP

l 1QCoPIR . Send(q,, D)

l 1QCoPIR . Send(qs, D,)

Final sender’s message
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