A Framework for Statistically Sender Private OT with Optimal Rate

Pedro Branco Max-Planck Institute for Security and Privacy
Nico Döttling Helmholtz Center for Information Security (CISPA)
Akshayaram Srinivasan Tata Institute of Fundamental Research

Oblivious Transfer

相

Oblivious Transfer

Receiver security: b is hidden from the sender
Sender security: m_{1-b} hidden from the receiver

Oblivious Transfer

Receiver security: b is hidden from the sender
Sender security: m_{1-b} hidden from the receiver

Main Application: OT is complete for 2PC/MPC

What is the communication complexity of OT?

What is the communication complexity of OT?

What is the communication complexity of OT?

Lower bound: k OTs need at least $2 k$ bits of communication

OT schemes with Optimal Rate

OT with optimal rate?

OT schemes with Optimal Rate

OT with optimal rate?

- Optimal-rate OT: [BBDP22] from DDH+LPN.

OT schemes with Optimal Rate

OT with optimal rate?

- Optimal-rate OT: [BBDP22] from DDH+LPN.

Security: Semi-honest and computationally bounded.

OT schemes with Optimal Rate

OT with optimal rate?

- Optimal-rate OT: [BBDP22] from DDH+LPN.

Security: Semi-honest and computationally bounded.

Strongest security possible for OT with optimal rate?

What is Statistical Sender Privacy?

What is Statistical Sender Privacy?

Computationally bounded
Semi-honest

What is Statistical Sender Privacy?

Computationally bounded
Semi-honest

Computationally unbounded
Malicious

What is Statistical Sender Privacy?

Computationally bounded
Semi-honest

Computationally unbounded
Malicious
\downarrow
Existence of extractor that extracts
b

What is Statistical Sender Privacy?

Computationally bounded
Semi-honest

Computationally unbounded
Malicious
\downarrow
Existence of extractor that extracts
b
\downarrow
$\operatorname{Send}\left(m_{0}, m_{1}\right) \approx_{s} \operatorname{Send}\left(m_{b}, m_{b}\right)$

Why SSP?

Theory:

Best security in two rounds in plain model

Why SSP?

Theory:
Best security in two rounds in plain model

Applications:

- Statistical zaps
- Circuit-private FHE
- Non-malleable commitments

Our Results

Our Result: A two-round SSP OT with optimal rate in the plain model assuming DDH+LPN.

Our Results

Our Result: A two-round SSP OT with optimal rate in the plain model assuming DDH+LPN.

- Sender security: Statistical against malicious receivers
- Receiver security: DDH and LPN assumptions against semi-honest senders

Our Results

Our Result: A two-round SSP OT with optimal rate in the plain model assuming DDH+LPN.

- Sender security: Statistical against malicious receivers
- Receiver security: DDH and LPN assumptions against semi-honest senders
- Communication Complexity: $2 k(1+o(1))$ for k independent OT executions

Blueprint [BBDP22]

[BBDP22] building blocks:

- LPN
- Rate-1 LHE w/ circuit privacy
- PIR
- Co-PIR

Blueprint [BBDP22]

[BBDP22] building blocks:

- LPN
- Rate-1 LHE w/ circuit privacy
- PIR
- Co-PIR
\downarrow
OT with optimal rate
semi-honest

Blueprint [BBDP22]

[BBDP22] building blocks:

- LPN
- Rate-1 LHE w/ circuit privacy

- PIR

DDH

- Co-PIR

DDH

OT with optimal rate
semi-honest

Blueprint [BBDP22]

[BBDP22] building blocks:

- LPN
- Rate-1 LHE w/ circuit privacy
- PIR

DDH

- Co-PIR

OT with optimal rate

semi-honest

Blueprint [BBDP22]

Download rate-1 OT
[DGI+19]

Blueprint [BBDP22]

Download rate-1 OT
 [DGI+19]
 Re-encryption step
 Upload rate-1 using LPN

Blueprint [BBDP22]

Our construction: Blueprint

[BBDP22] building blocks:

- LPN
- Rate-1 LHE w/ circuit privacy
- PIR
- Co-PIR
\downarrow
OT with optimal rate

Our Construction:

- LPN

Our construction: Blueprint

[BBDP22] building blocks:

- LPN
- Rate-1 LHE w/ circuit privacy
- PIR
- Co-PIR
\downarrow
OT with optimal rate

Our Construction:

- LPN
- Malicious Rate-1 LHE w/ circuit privacy
- SSP PIR
- SSP Co-PIR

Our construction: Blueprint

[BBDP22] building blocks:

- LPN
- Rate-1 LHE w/ circuit privacy
- PIR
- Co-PIR

OT with optimal rate

Our Construction:

- LPN
- Malicious Rate-1 LHE w/ circuit privacy
- SSP PIR
- SSP Co-PIR
\square
SSP OT with optimal rate

Our Construction: Blueprint

Our Construction: Assumptions

- LPN
- Malicious Rate-1 LHE w/ circuit privacy
- SSP PIR
- SSP Co-PIR

Our Construction: Blueprint

Our Construction: Assumptions

- LPN
- Malicious Rate-1 LHE w/ circuit privacy

DDH [BBDP22] + [ADD+22]

- SSP PIR
- SSP Co-PIR

Our Construction: Blueprint

Our Construction: Assumptions

- LPN
- Malicious Rate-1 LHE w/ circuit privacy

DDH [BBDP22] + [ADD+22]

- SSP PIR \qquad DDH [ADD+22]
- SSP Co-PIR

Our Construction: Blueprint

Our Construction: Assumptions

- LPN
- Malicious Rate-1 LHE w/ circuit privacy

DDH [BBDP22] + [ADD+22]

- SSP PIR

DDH [ADD+22]

- SSP Co-PIR

Our Construction: Blueprint

Our Construction: Assumptions

- LPN
- Malicious Rate-1 LHE w/ circuit privacy

DDH [BBDP22] + [ADD+22]

- SSP PIR

DDH [ADD+22]

- SSP Co-PIR

?

SSP Co-PIR from DDH

Co-Private Information Retrieval

Co-Private Information Retrieval

Co-Private Information Retrieval

Receiver's message of size $|S| \cdot \operatorname{poly}(\lambda)$
Sender's message of size $\approx|\mathbf{D}|$

Co-Private Information Retrieval

Receiver's message of size $|S| \cdot \operatorname{poly}(\lambda)$ Sender's message of size $\approx|\mathbf{D}|$
\mathbf{D}_{j} for $j \in S$ is hidden from the receiver
S is hidden from the sender

Statistical Co-PIR

Problems:

- Previous constructions from PPRF
- PPRF only have computational security.

Statistical Co-PIR

Problems:

- Previous constructions from PPRF
- PPRF only have computational security.

New co-PIR constructions providing SSP from DDH:

- From rate-1 SSP PIR with computational complexity of $|\mathbf{D}|^{2}$.
- From All-but-One Lossy Functions with computational complexity of $|\mathbf{D}|^{1+\varepsilon}$

Statistical Co-PIR

Problems:

- Previous constructions from PPRF
- PPRF only have computational security.

New co-PIR constructions providing SSP from DDH:

- From rate-1 SSP PIR with computational complexity of $|\mathbf{D}|^{2}$.
- From All-but-One Lossy Functions with computational complexity of $|\mathbf{D}|^{1+\varepsilon}$

Rate-1 SSP PIR

$$
\mathrm{q}=\operatorname{Enc}(i)
$$

Rate-1 SSP PIR

Rate-1 SSP PIR

Rate-1 SSP PIR

Efficiency: Size of $\quad=$ Size of \mathbf{D}_{i}

Rate-1 SSP PIR

$\begin{aligned} \text { Efficiency: } \quad \text { Size of } & =\text { Size of } \mathbf{D}_{i} \\ \text { Size of } h \quad & =\operatorname{poly}(\lambda)\end{aligned}$

Rate-1 SSP PIR

Ext that extracts i
s.t.
$\operatorname{PIR} . \operatorname{Send}(q, \mathbf{D}) \approx_{s} \operatorname{PIR} . \operatorname{Send}\left(q,\left(\mathbf{D}_{i}, \ldots, \mathbf{D}_{i}\right)\right)$

Rate-1 SSP PIR

Ext that extracts i

s.t.

$\operatorname{PIR} \cdot \operatorname{Send}(q, \mathbf{D}) \approx_{s} \operatorname{PIR} \cdot \operatorname{Send}\left(q,\left(\mathbf{D}_{i}, \ldots, \mathbf{D}_{i}\right)\right)$

From DDH [ADD+22]
Efficiency: $\begin{aligned} \text { Size of } & =\text { Size of } \mathbf{D}_{i} \\ \text { Size of } \quad \mathbf{h} & =\operatorname{poly}(\lambda)\end{aligned}$

Statistical 1-Query Co-PIR

Statistical 1-Query Co-PIR

Statistical 1-Query Co-PIR

Statistical 1-Query Co-PIR

Rate-1 and SSP

Bootstrapping into Multiple Queries

Bootstrapping into Multiple Queries

Bootstrapping into Multiple Queries

Bootstrapping into Multiple Queries

Bootstrapping into Multiple Queries

Given queries $\mathrm{q}_{1}, \mathrm{q}_{2}, \ldots, \mathrm{q}_{t}$ and 1 QCoPIR

1QCoPIR. $\operatorname{Send}\left(q_{3}, \mathbf{D}_{2}\right)$

Rate-1 if $t=o(|\mathbf{D}|)$

Bootstrapping into Multiple Queries

Given queries $\mathrm{q}_{1}, \mathrm{q}_{2}, \ldots, \mathrm{q}_{t}$ and 1 QCoPIR

1QCoPIR. Send $\left(q_{3}, \mathbf{D}_{2}\right)$

Rate-1 if $t=o(|\mathbf{D}|)$

SSP

Recap

- Main Result: two-round SSP OT with optimal rate from DDH + LPN.
- Main building block: SSP Co-PIR from DDH

Recap

- Main Result: two-round SSP OT with optimal rate from DDH + LPN.
- Main building block: SSP Co-PIR from DDH

Thanks!

A Framework for Statistically Sender Private OT with Optimal Rate

Pedro Branco Max-Planck Institute for Security and Privacy
Nico Döttling Helmholtz Center for Information Security (CISPA)
Akshayaram Srinivasan Tata Institute of Fundamental Research

