A Framework for Statistically Sender Private OT with Optimal Rate

Pedro Branco Max-Planck Institute for Security and Privacy Nico Döttling Helmholtz Center for Information Security (CISPA) Akshayaram Srinivasan Tata Institute of Fundamental Research

Oblivious Transfer

Oblivious Transfer

$m_0, m_1 \in \{0, 1\}$

Receiver security: b is hidden from the sender

Sender security: m_{1-b} hidden from the receiver

Oblivious Transfer

$m_0, m_1 \in \{0, 1\}$

Receiver security: b is hidden from the sender

Sender security: m_{1-b} hidden from the receiver

Main Application: OT is complete for 2PC/MPC

What is the communication complexity of OT?

What is the communication complexity of OT?

What is the communication complexity of OT?

Lower bound: k OTs need at least 2k bits of communication

*Excluding trivial FHE-based solutions

OT with optimal rate?*

• Optimal-rate OT: [BBDP22] from DDH+LPN.

*Excluding trivial FHE-based solutions

OT with optimal rate?*

 Optimal-rate OT: [BBDP22] from DDH+LPN. **Security:** Semi-honest and computationally bounded.

*Excluding trivial FHE-based solutions

OT with optimal rate?*

 Optimal-rate OT: [BBDP22] from DDH+LPN. **Security:** Semi-honest and computationally bounded.

*Excluding trivial FHE-based solutions

OT with optimal rate?*

Strongest security possible for OT with optimal rate?*

 $m_0, m_1 \in \{0, 1\}$

Computationally bounded Semi-honest

 $m_0, m_1 \in \{0, 1\}$

Computationally bounded Semi-honest

Computationally unbounded Malicious

 $m_0, m_1 \in \{0, 1\}$

Computationally bounded Semi-honest

 $m_0, m_1 \in \{0, 1\}$

Computationally bounded Semi-honest

Why SSP?

Theory:

Best security in two rounds in plain model

Why SSP?

Theory:

Best security in two rounds in plain model

Applications:

- Statistical zaps
- Circuit-private FHE
- Non-malleable commitments

•

Our Results

Our Result: A two-round SSP OT with optimal rate in the plain model assuming DDH+LPN.

Our Results

Our Result: A two-round SSP OT with optimal rate in the plain model assuming DDH+LPN.

- Sender security: Statistical against malicious receivers \bullet
- **Receiver security:** DDH and LPN assumptions against semi-honest senders

Our Results

Our Result: A two-round SSP OT with optimal rate in the plain model assuming DDH+LPN.

- Sender security: Statistical against malicious receivers
- **Receiver security:** DDH and LPN assumptions against semi-honest senders \bullet
- **Communication Complexity:** 2k(1 + o(1)) for k independent OT executions \bullet

[BBDP22] building blocks:

- LPN
- Rate-1 LHE w/ circuit privacy
- PIR
- Co-PIR

[BBDP22] building blocks:

- LPN
- Rate-1 LHE w/ circuit privacy
- PIR
- Co-PIR

OT with optimal rate

semi-honest

[BBDP22] building blocks:

- LPN
- Rate-1 LHE w/ circuit privacy
- PIR
- Co-PIR

OT with optimal rate

semi-honest

[BBDP22] building blocks:

- LPN
- Rate-1 LHE w/ circuit privacy
- PIR
- Co-PIR

OT with optimal rate

semi-honest

Download rate-1 OT [DGI+19]

Re-encryption step Upload rate-1 using LPN

Download rate-1 OT [DGI+19]

Correct the LPN errors PIR + Co-PIR

Re-encryption step Upload rate-1 using LPN

[BBDP22] building blocks:

- LPN
- Rate-1 LHE w/ circuit privacy
- PIR
- Co-PIR ↓

OT with optimal rate

Our Construction:

• LPN

[BBDP22] building blocks:

- | PN
- Rate-1 LHE w/ circuit privacy
- PIR
- Co-PIR

OT with optimal rate

Our Construction:

- LPN
- Malicious Rate-1 LHE w/ circuit privacy
- SSP PIR
- SSP Co-PIR

[BBDP22] building blocks:

- | PN
- Rate-1 LHE w/ circuit privacy
- PIR
- Co-PIR

OT with optimal rate

Our Construction:

- LPN
- Malicious Rate-1 LHE w/ circuit privacy
- SSP PIR
- SSP Co-PIR
- SSP OT with optimal rate

- LPN
- Malicious Rate-1 LHE w/ circuit privacy
- SSP PIR
- SSP Co-PIR

- LPN
- Malicious Rate-1 LHE w/ circuit privacy
- SSP PIR
- SSP Co-PIR

- LPN
- Malicious Rate-1 LHE w/ circuit privacy
- SSP PIR
- SSP Co-PIR

- LPN
- Malicious Rate-1 LHE w/ circuit privacy
- SSP PIR
- SSP Co-PIR

Our Construction: Assumptions

- LPN
- Malicious Rate-1 LHE w/ circuit privacy
- SSP PIR
- SSP Co-PIR

SSP Co-PIR from DDH

Receiver's message of size $|S| \cdot \text{poly}(\lambda)$ Sender's message of size $\approx |\mathbf{D}|$

Receiver's message of size $|S| \cdot \text{poly}(\lambda)$ Sender's message of size $\approx |\mathbf{D}|$ \mathbf{D}_j for $j \in S$ is hidden from the receiver S is hidden from the sender

Statistical Co-PIR

Problems:

- Previous constructions from PPRF
- PPRF only have computational security.

Statistical Co-PIR

Problems:

- Previous constructions from PPRF
- PPRF only have computational security.

New co-PIR constructions providing SSP from DDH:

- From rate-1 SSP PIR with computational complexity of $|\mathbf{D}|^2$.
- From All-but-One Lossy Functions with computational complexity of $|\mathbf{D}|^{1+\epsilon}$

Statistical Co-PIR

Problems:

- Previous constructions from PPRF
- PPRF only have computational security.

New co-PIR constructions providing SSP from DDH:

- From rate-1 SSP PIR with computational complexity of $|\mathbf{D}|^2$.
- From All-but-One Lossy Functions with computational complexity of $\mid D$

$|1+\varepsilon|$

Rate-1 SSP PIR

q = Enc(i)

D

Ext that extracts is.t. PIR.Send(q, \mathbf{D}) \approx_s PIR.Send(q, (\mathbf{D}_i , ..., \mathbf{D}_i))

Ext that extracts is.t. PIR . Send(q, \mathbf{D}) \approx_s PIR . Send(q, (\mathbf{D}_i , ..., \mathbf{D}_i))

From DDH [ADD+22]

Statistical 1-Query Co-PIR

Statistical 1-Query Co-PIR

Statistical 1-Query Co-PIR

. . .

 \mathbf{D}_m

Given queries $q_1, q_2, ..., q_t$ and 1QCoPIR

D

Given queries $q_1, q_2, ..., q_t$ and 1QCoPIR

Given queries $q_1, q_2, ..., q_t$ and 1QCoPIR

Given queries $q_1, q_2, ..., q_t$ and 1QCoPIR

. . .

- Final sender's message

Given queries $q_1, q_2, ..., q_t$ and 1QCoPIR

. . .

 \mathbf{D}_t

Rate-1 if $t = o(|\mathbf{D}|)$

Final sender's message

Bootstrapping into Multiple Queries Rate-1 if $t = o(|\mathbf{D}|)$

Given queries $q_1, q_2, ..., q_t$ and 1QCoPIR

SSP

 \mathbf{D}_t

. . .

Final sender's message

Recap

- Main Result: two-round SSP OT with optimal rate from DDH + LPN.
- Main building block: SSP Co-PIR from DDH

th optimal rate from DDH + LPN. om DDH

Recap

- Main Result: two-round SSP OT with optimal rate from DDH + LPN.
- Main building block: SSP Co-PIR from DDH

Thanks!

A Framework for Statistically Sender Private OT with Optimal Rate

Pedro Branco Max-Planck Institute for Security and Privacy Nico Döttling Helmholtz Center for Information Security (CISPA) Akshayaram Srinivasan Tata Institute of Fundamental Research