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Hash Functions: F, G



Cuckoo Hashing [PR04]

a

Hash Functions: F, G

F(a)

G(a)



Cuckoo Hashing [PR04]
Hash Functions: F, G

aF(a)

G(a)



Cuckoo Hashing [PR04]

b

Hash Functions: F, G

F(b)

G(b)

a



Cuckoo Hashing [PR04]
Hash Functions: F, G

F(b)

G(b)

a

b



Cuckoo Hashing [PR04]
Hash Functions: F, G

F(b)

G(b)

a

b



Cuckoo Hashing [PR04]
Theorem. For a cuckoo hashing table with O(N) entries and for any set of N items, the insertion process 

fails at allocating the N items with probability 1/poly(N) over the random choice of the hash functions.

Query Time: O(1)

Failure Probability ε: 1/poly(N)



Cuckoo Hashing [PR04]
Theorem. For a cuckoo hashing table with O(N) entries and for any set of N items, the insertion process 

fails at allocating the N items with probability 1/poly(N) over the random choice of the hash functions.

Query Time: O(1)

Failure Probability ε: 1/poly(N)

Failure only considers the 
inability to construct a cuckoo 

hashing table.



Perfect Construction Algorithms
Definition. A construction algorithm is perfect if it the algorithm always outputs an allocation assuming there 

exists at least one successful allocation.

There exists several perfect construction algorithms running in time O(N * polylog(N)). See paper for details.

Goal. Construct cuckoo hashing schemes that emit at least one successful allocation for every set of N items.
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ORAM: [PR10, GM11, HFNO21]

Encrypted Search: [PPYY19, BBF+21]

PIR: [ACLS18, DRRT18, ALP+21]



Cuckoo Hashing [PR04]
Theorem. For a cuckoo hashing table with O(N) entries and for any set of N items, the insertion process 

fails at allocating the N items with probability 1/poly(N) over the random choice of the hash functions.

Query Time: O(1)

Failure Probability ε: 1/poly(N)

Prior works [GM11, KLO12] showed that 
1/poly(N) failure incurs privacy leaks.



Prior Extensions for Negligible Failure
● Cuckoo Hashing with an Overflow Stash [KMW08, ADW14, MP23]

● Larger Entries [DW07,MP23]

● More Hash Functions [FPSS05]
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Generalized Cuckoo Hashing
● k: number of hash functions

● L: size of each entry

● s: size of stash

● b: number of entries

● Query Overhead: kL + s



Prior Works

Failure Probability: ε

Query Overhead: O(log(1/ε)/log(N))



New Cuckoo Hashing Constructions



Failed Recursive Construction
Theorem [GM11, ADW14]: Cuckoo hashing with the following parameters has failure probability ε:

● k = 2 hash functions

● b = O(n) entries

● L = 1 entry size

● s = O(log(1/ε)/log(N)) overflow stash size

Query Overhead: O(log(1/ε)/log(N))



Failed Recursive Construction

s  = O(log(1/ε)/log(N))

Recursively apply 
cuckoo hashing on 

the stash.
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Failed Recursive Construction

s  = O(log(1/ε)/log(N))

s’ What is the size of 
the new stash?



Failed Recursive Construction

s  = O(log(1/ε)/log(N))

s’ 
s’ = O(log(1/ε)/log(N))

s’ is nearly identical to s



Insights from Failed Construction
Insight 1: Failures in cuckoo hashing are localized to small sets of items. Allocating small sets of items is as 

challenging as allocating large sets of items.

Insight 2: If a cuckoo hashing scheme can handle allocating small sets of items, it seems that they can 

immediately scale towards handling much larger sets of items.



Handling Small Sets



Disjoint Tables and More Hash Functions
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Disjoint Tables and More Hash Functions

Small sets of items are 
more well distributed.



Our New Construction
Theorem (Ours). Cuckoo hashing with the following parameters has failure probability ε:

● k = O((log(1/ε)/log(N))1/2) hash functions
● b = O(n) entries

● k disjoint tables of size b/k
● L  = 1 entry sizes

● s = 0 (no overflow stash)

Query Overhead: O((log(1/ε)/log(N))1/2) 



Our New Construction



Necessity of Disjoint Tables



Necessity of Joint Tables
Theorem (Ours). For cuckoo hashing with a single shared table, it must be that k = Ω(log(1/ε)/log(N)) 

when there are b = O(n) entries of size L = 1 and no overflow stash (s = 0).

Corollary. The construction in [FPSS05] with a single shared table is optimal.



Lower Bound from Insights
Insight 1: Failures in cuckoo hashing are localized to small sets of items. Allocating small sets of items is as 

challenging as allocating large sets of items.

Insight 2: If a cuckoo hashing scheme can handle allocating small sets of items, it seems that they can 

immediately scale towards handling much larger sets of items.



Our Lower Bound
Theorem (Ours). For any cuckoo hashing scheme with failure probability ε and b = O(N) entries,

(k2 * L) + (k * s) = Ω(log(1/ε)/log(N))



Our Lower Bound
Theorem (Ours). For any cuckoo hashing scheme with failure probability ε and b = O(N) entries,

(k2 * L) + (k * s) = Ω(log(1/ε)/log(N))

Corollary 1. The most efficient possible construction is ours with query overhead O((log(1/ε)/log(N))1/2).

Corollary 2. The most efficient approach is using many hash functions (large k).



Robust Cuckoo Hashing



Robust Cuckoo Hashing
Theorem. For a cuckoo hashing table with O(N) entries and for any set of N items, the insertion process 

fails at allocating the N items with probability 1/poly(N) over the random choice of the hash functions.

Query Time: O(1)

Failure Probability ε: 1/poly(N)



Standard Cuckoo Hashing
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Standard Cuckoo Hashing
Hash Functions: F, G



Standard Cuckoo Hashing
Hash Functions: F, G

Adversary wins if chosen 
set of items causes 

construction failure.
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Robust Cuckoo Hashing

Hash Functions: F, G
Adversary wins if chosen 

set of items causes 
construction failure.



Our Robust Construction
Theorem (Ours). Cuckoo hashing with the following parameters is robust against poly(N) adversaries:

● k = f(N) * log N hash functions where f(N) = ⍵(1).
● b = O(n) entries

● k disjoint tables of size b/k
● L  = 1 entry sizes

● s = 0 (no overflow stash)

Query Overhead: O(f(N) * log N) 



Our Robust Lower Bound
Theorem (Ours). For any cuckoo hashing scheme that is robust against poly(N) adversaries with b = O(N) 

entries, one of the following must hold:

1. k = ⍵(log N) hash functions
2. Query overhead must be Ω(N)



Applications: Batch Codes and Batch PIR



Applications: Re-usable Batch PIR



Applications: And More
● Private Set Intersection (PSI)

● Volume-Hiding Encrypted Search

● Vector Oblivious Linear Evaluation (VOLE)

● Batch PIR with Private Preprocessing (Batch Offline/Online PIR)



Thank You!

Email: kwlyeo@google.com
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