
Cuckoo Hashing in Cryptography:
Optimal Parameters, Robustness
and Applications
Kevin Yeo

Outline What is Cuckoo Hashing?

New Cuckoo Hashing Constructions
- Quadratic Improvement
- Lower Bound

Robust Cuckoo Hashing
- Optimal Construction
- Lower Bound

Applications

What is Cuckoo Hashing?

Cuckoo Hashing [PR04]
Hash Functions: F, G

Cuckoo Hashing [PR04]

a

Hash Functions: F, G

F(a)

G(a)

Cuckoo Hashing [PR04]
Hash Functions: F, G

aF(a)

G(a)

Cuckoo Hashing [PR04]

b

Hash Functions: F, G

F(b)

G(b)

a

Cuckoo Hashing [PR04]
Hash Functions: F, G

F(b)

G(b)

a

b

Cuckoo Hashing [PR04]
Hash Functions: F, G

F(b)

G(b)

a

b

Cuckoo Hashing [PR04]
Theorem. For a cuckoo hashing table with O(N) entries and for any set of N items, the insertion process

fails at allocating the N items with probability 1/poly(N) over the random choice of the hash functions.

Query Time: O(1)

Failure Probability ε: 1/poly(N)

Cuckoo Hashing [PR04]
Theorem. For a cuckoo hashing table with O(N) entries and for any set of N items, the insertion process

fails at allocating the N items with probability 1/poly(N) over the random choice of the hash functions.

Query Time: O(1)

Failure Probability ε: 1/poly(N)

Failure only considers the
inability to construct a cuckoo

hashing table.

Perfect Construction Algorithms
Definition. A construction algorithm is perfect if it the algorithm always outputs an allocation assuming there

exists at least one successful allocation.

There exists several perfect construction algorithms running in time O(N * polylog(N)). See paper for details.

Goal. Construct cuckoo hashing schemes that emit at least one successful allocation for every set of N items.

Example Cryptographic Usage

(L
1

, V
1

)
(L

2
, V

2
)

…
(L

n
, V

n
)

Private Key: K

Example Cryptographic Usage

(L
1

, V
1

)
(L

2
, V

2
)

…
(L

n
, V

n
)

Private Key: K

Enc(K, V
1

)

Example Cryptographic Usage

(L
1

, V
1

)
(L

2
, V

2
)

…
(L

n
, V

n
)

Private Key: K

Enc(K, V
1

)

F(K, L
1

)

G(K, L
1

)

Example Cryptographic Usage

(L
1

, V
1

)
(L

2
, V

2
)

…
(L

n
, V

n
) Enc(K, V

1
)

Enc(K, V
4

)

Private Key: K

Enc(K, V
3

)

Enc(K, V
2

)

Enc(K, V
6

)

Example Cryptographic Usage

(L
1

, V
1

)
(L

2
, V

2
)

…
(L

n
, V

n
) Enc(K, V

1
)

Enc(K, V
4

)

Private Key: K

Enc(K, V
3

)

Enc(K, V
2

)

Enc(K, V
6

)

ORAM: [PR10, GM11, HFNO21]

Encrypted Search: [PPYY19, BBF+21]

PIR: [ACLS18, DRRT18, ALP+21]

Cuckoo Hashing [PR04]
Theorem. For a cuckoo hashing table with O(N) entries and for any set of N items, the insertion process

fails at allocating the N items with probability 1/poly(N) over the random choice of the hash functions.

Query Time: O(1)

Failure Probability ε: 1/poly(N)

Prior works [GM11, KLO12] showed that
1/poly(N) failure incurs privacy leaks.

Prior Extensions for Negligible Failure
● Cuckoo Hashing with an Overflow Stash [KMW08, ADW14, MP23]

● Larger Entries [DW07,MP23]

● More Hash Functions [FPSS05]

Overflow Stash (s)

s

Overflow Stash (s)

s

Overflow Stash (s)

s

Entry Size (L)

s

Entry Size (L)

s

L

Number of Entries (b)

s

L

b

Number of Hash Functions (k)

s

L

b

Number of Hash Functions (k)

s

k

L

b

Query Overhead

s

k

Query Overhead: kL + s

L

b

Generalized Cuckoo Hashing
● k: number of hash functions

● L: size of each entry

● s: size of stash

● b: number of entries

● Query Overhead: kL + s

Prior Works

Failure Probability: ε

Query Overhead: O(log(1/ε)/log(N))

New Cuckoo Hashing Constructions

Failed Recursive Construction
Theorem [GM11, ADW14]: Cuckoo hashing with the following parameters has failure probability ε:

● k = 2 hash functions

● b = O(n) entries

● L = 1 entry size

● s = O(log(1/ε)/log(N)) overflow stash size

Query Overhead: O(log(1/ε)/log(N))

Failed Recursive Construction

s = O(log(1/ε)/log(N))

Recursively apply
cuckoo hashing on

the stash.

Failed Recursive Construction

s = O(log(1/ε)/log(N))

s’

Failed Recursive Construction

s = O(log(1/ε)/log(N))

s’ What is the size of
the new stash?

Failed Recursive Construction

s = O(log(1/ε)/log(N))

s’
s’ = O(log(1/ε)/log(N))

s’ is nearly identical to s

Insights from Failed Construction
Insight 1: Failures in cuckoo hashing are localized to small sets of items. Allocating small sets of items is as

challenging as allocating large sets of items.

Insight 2: If a cuckoo hashing scheme can handle allocating small sets of items, it seems that they can

immediately scale towards handling much larger sets of items.

Handling Small Sets

Disjoint Tables and More Hash Functions

Disjoint Tables and More Hash Functions

Disjoint Tables and More Hash Functions

Small sets of items are
more well distributed.

Our New Construction
Theorem (Ours). Cuckoo hashing with the following parameters has failure probability ε:

● k = O((log(1/ε)/log(N))1/2) hash functions
● b = O(n) entries

● k disjoint tables of size b/k
● L = 1 entry sizes

● s = 0 (no overflow stash)

Query Overhead: O((log(1/ε)/log(N))1/2)

Our New Construction

Necessity of Disjoint Tables

Necessity of Joint Tables
Theorem (Ours). For cuckoo hashing with a single shared table, it must be that k = Ω(log(1/ε)/log(N))

when there are b = O(n) entries of size L = 1 and no overflow stash (s = 0).

Corollary. The construction in [FPSS05] with a single shared table is optimal.

Lower Bound from Insights
Insight 1: Failures in cuckoo hashing are localized to small sets of items. Allocating small sets of items is as

challenging as allocating large sets of items.

Insight 2: If a cuckoo hashing scheme can handle allocating small sets of items, it seems that they can

immediately scale towards handling much larger sets of items.

Our Lower Bound
Theorem (Ours). For any cuckoo hashing scheme with failure probability ε and b = O(N) entries,

(k2 * L) + (k * s) = Ω(log(1/ε)/log(N))

Our Lower Bound
Theorem (Ours). For any cuckoo hashing scheme with failure probability ε and b = O(N) entries,

(k2 * L) + (k * s) = Ω(log(1/ε)/log(N))

Corollary 1. The most efficient possible construction is ours with query overhead O((log(1/ε)/log(N))1/2).

Corollary 2. The most efficient approach is using many hash functions (large k).

Robust Cuckoo Hashing

Robust Cuckoo Hashing
Theorem. For a cuckoo hashing table with O(N) entries and for any set of N items, the insertion process

fails at allocating the N items with probability 1/poly(N) over the random choice of the hash functions.

Query Time: O(1)

Failure Probability ε: 1/poly(N)

Standard Cuckoo Hashing

Standard Cuckoo Hashing

Standard Cuckoo Hashing
Hash Functions: F, G

Standard Cuckoo Hashing
Hash Functions: F, G

Adversary wins if chosen
set of items causes

construction failure.

Robust Cuckoo Hashing
Hash Functions: F, G

Robust Cuckoo Hashing

Hash Functions: F, G

Robust Cuckoo Hashing

Hash Functions: F, G
Adversary wins if chosen

set of items causes
construction failure.

Our Robust Construction
Theorem (Ours). Cuckoo hashing with the following parameters is robust against poly(N) adversaries:

● k = f(N) * log N hash functions where f(N) = ⍵(1).
● b = O(n) entries

● k disjoint tables of size b/k
● L = 1 entry sizes

● s = 0 (no overflow stash)

Query Overhead: O(f(N) * log N)

Our Robust Lower Bound
Theorem (Ours). For any cuckoo hashing scheme that is robust against poly(N) adversaries with b = O(N)

entries, one of the following must hold:

1. k = ⍵(log N) hash functions
2. Query overhead must be Ω(N)

Applications: Batch Codes and Batch PIR

Applications: Re-usable Batch PIR

Applications: And More
● Private Set Intersection (PSI)

● Volume-Hiding Encrypted Search

● Vector Oblivious Linear Evaluation (VOLE)

● Batch PIR with Private Preprocessing (Batch Offline/Online PIR)

Thank You!

Email: kwlyeo@google.com

ePrint: ia.cr/2022/1455

mailto:kwlyeo@google.com
http://ia.cr/2022/1455

