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Context : Side-Channel Analysis (SCA)
“Cryptographic algorithms don’t run on paper, they run on physical
devices”

Enc

Ctx

Msg

: N bits

Black-box cryptanalysis: 2N

Side-Channel Analysis: 2n · N
n , n� N

Trace : power, EM, acoustics, runtime, . . .
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Context : Side-Channel Analysis (SCA)
“Cryptographic algorithms don’t run on paper, they run on physical
devices”

CtxTrace(Msg, )

Msg

: N bits

Black-box cryptanalysis: 2N

Side-Channel Analysis: 2n · N
n , n� N

Trace : power, EM, acoustics, runtime, . . .
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The Counter-Measure: Masking

Masking, aka MPC on silicon: linear secret sharing over a finite field (F, ?, ·)
Y (secret)
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Masking amplifies noise 1
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Figure: MI (Y ; Trace) vs. σ2, 2 ≤ d ≤ 6

Simulation: L(Yi) = hw(Yi) +N (0;σ2),
hw = Hamming weight

Cst gap between each curve (log scale)
⇐⇒

exponential security w.r.t. #shares d

1Chari et al., “Towards Sound Approaches to Counteract Power-Analysis Attacks”
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Leakage from encoding −→ leakage from computations

So far we have considered one secret leaking from one encoding . . .

Actually, secrets processed by (leaky) computations =⇒ masking scheme

Rivain-Prouff / Ishai-Sahai-Wagner (I.S.W.)
scheme 2

· Linear operations: trivial shared computation
· Non-linear (Sbox): polynomial interpolation
→ Sequence of (linear) additions and multiplications

2Ishai, Sahai, and Wagner, “Private Circuits: Securing Hardware against Probing Attacks”; Rivain and
Prouff, “Provably Secure Higher-Order Masking of AES”
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Multiplication over secret sharing

y

A

A0 A1 . . . Ad

B

B0 A0 · B0 A1 · B0 − R0,1 . . . Ad · B0 − R0,d
B1 A0 · B1 + R0,1 A1 · B1 . . . Ad · B1 − R1,d
... ... ... . . . ...
Bd A0 · Bd + R0,d A1 · Bd + R1,d . . . Ad · Bd∑

0
∑

1 . . .
∑

d

y
3. Compression

The ∑i form a secure sharing of A · B against a d-probing adversary
Probing model
A t-probing adversary can reveal a subset of t intermediate calculations. The
target is secure if the subset is independent of the secret.
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but unrealistic adversary
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The Noisy Leakage Model

In this model, for each intermediate computation, the adversary gets a
probability distribution about its operands:

l Pr (Y | L)
y

If, the adversary gets:

δ-noisy adversary
All the Probability Mass Functions (p.m.f.s) accessed by the adversary are
δ-close3 to the uniform:

D
(

,
)
≤ δ

3D: Kullback - Leibler (KL) divergence, total variation, Euclidean norm, ...Loïc Masure Prouff & Rivain’s Security Proof of Masking, Revisited 9 / 20
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In this model, for each intermediate computation, the adversary gets a
probability distribution about its operands:

l Pr (Y | L)
y

If, the adversary gets: Low-noise
Exact prediction of the sensitive computation

δ-noisy adversary
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The Link between both Models

“Any successful adversary requires S = Ω
((

1
δ

)d)
queries”

→ , significant artifacts, restricting assumptions

Realistic adversary
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Particular case
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Second Improvement: Refined Reduction to Uniform

The noise amplification bound only holds if the underlying secret is uniform
Required to get independent shares → reduction to random walks

In some non-linear computations, secret is not uniform, e.g., Y 7→ Y3

How to deal with it?

In previous works: generic (crude) reduction “non-uniform → uniform” (×|F|)
Our observation: If Y = , then Y3 ≈
Y3 not that far from uniform =⇒ specific (refined) reduction

Pros: reasonable quasi-constant factor overhead
Cons: requires monomial SBoxes (ok for AES, not for DES)
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Conclusion

→ We improve previous amplification-based bounds (EC’13, EC’15, C’19) in
complementary directions

→ We do not claim that the superiority of proofs by reductions is over
→ We also confirm that some (field-size) factors coming from proof

reductions are indeed artifacts (see some bonus in the paper)
Future works:
· Relaxing the assumptions of direct proofs?
· Direct proofs for other masking schemes, e.g. table-based?

Thanks!
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