

Prouff & Rivain's Security Proof of Masking, Revisited Tight Bounds in the Noisy Leakage Model

Loïc Masure François-Xavier Standaert CRYPTO 2023, Santa Barbara, August 21st https://eprint.iacr.org/2023/883

European Research Counce Established by the European Correction Loic Masure

UCLouvain

Prouff & Rivain's Security Proof of Masking, Revisited

Table of Contents

Context : Side-Channel Analysis (SCA)

Context : Side-Channel Analysis (SCA)

"Cryptographic algorithms don't run on paper,

Context : Side-Channel Analysis (SCA)

"Cryptographic algorithms don't run on paper, they run on physical devices"

Context : Side-Channel Analysis (SCA)

"Cryptographic algorithms don't run on paper, they run on physical devices"

Trace : power, EM, acoustics, runtime, ...

Loïc Masure

Context : Side-Channel Analysis (SCA)

"Cryptographic algorithms don't run on paper, they run on physical devices"

Trace : power, EM, acoustics, runtime, ...

Loïc Masure

The Counter-Measure: Masking

Masking, aka *MPC on silicon*: linear secret sharing over a finite field $(\mathbb{F}, \star, \cdot)$ Y(secret)

The Counter-Measure: Masking

Masking, aka *MPC on silicon*: linear secret sharing over a finite field $(\mathbb{F}, \star, \cdot)$ Y(secret) Y_1 Y_2 Y_d

The Counter-Measure: Masking

Masking, aka *MPC on silicon*: linear secret sharing over a finite field $(\mathbb{F}, \star, \cdot)$ Y(secret) Y_1 Y_2 Y_2 Y_d Y_d

Masking amplifies noise 1

hw = Hamming weight

¹Chari et al., "Towards Sound Approaches to Counteract Power-Analysis Attacks" Loïc Masure Prouff & Rivain's Security Proof of Masking, Revisited

Cst gap between each curve (log scale) \iff exponential security w.r.t. #shares d

Masking amplifies noise 1

¹Chari et al., "Towards Sound Approaches to Counteract Power-Analysis Attacks" Loïc Masure Prouff & Rivain's Security Proof of Masking, Revisited

Masking amplifies noise 1

Simulation: $L(Y_i) = hw(Y_i) + \mathcal{N}(0; \sigma^2)$, hw = Hamming weight

> ¹Chari et al., "Towards Sound Approaches to Counteract Power-Analysis Attacks" Loïc Masure Prouff & Rivain's Security Proof of Masking, Revisited

Masking amplifies noise 1

Simulation: $L(Y_i) = hw(Y_i) + \mathcal{N}(0; \sigma^2)$, hw = Hamming weight

> ¹Chari et al., "Towards Sound Approaches to Counteract Power-Analysis Attacks" Loïc Masure Prouff & Rivain's Security Proof of Masking, Revisited

So far we have considered one secret leaking from one encoding

²Ishai, Sahai, and Wagner, "Private Circuits: Securing Hardware against Probing Attacks"; Rivain and Prouff, "Provably Secure Higher-Order Masking of AES"

So far we have considered one secret leaking from one encoding ... Actually, secrets processed by (leaky) computations \implies masking scheme

²Ishai, Sahai, and Wagner, "Private Circuits: Securing Hardware against Probing Attacks"; Rivain and Prouff, "Provably Secure Higher-Order Masking of AES"

So far we have considered one secret leaking from one encoding ... Actually, secrets processed by (leaky) computations \implies masking scheme

RIVAIN-PROUFF / I.S.W. SCHEME 2

²Ishai, Sahai, and Wagner, "Private Circuits: Securing Hardware against Probing Attacks"; Rivain and Prouff, "Provably Secure Higher-Order Masking of AES"

So far we have considered one secret leaking from one encoding \dots Actually, secrets processed by (leaky) computations \implies masking scheme

RIVAIN-PROUFF / I.S.W. SCHEME 2

· Linear operations: trivial shared computation

²Ishai, Sahai, and Wagner, "Private Circuits: Securing Hardware against Probing Attacks"; Rivain and Prouff, "Provably Secure Higher-Order Masking of AES"

So far we have considered one secret leaking from one encoding ... Actually, secrets processed by (leaky) computations \implies masking scheme

RIVAIN-PROUFF / I.S.W. SCHEME 2

- · Linear operations: trivial shared computation
- \cdot Non-linear (Sbox): polynomial interpolation

²Ishai, Sahai, and Wagner, "Private Circuits: Securing Hardware against Probing Attacks"; Rivain and Prouff, "Provably Secure Higher-Order Masking of AES"

So far we have considered one secret leaking from one encoding ... Actually, secrets processed by (leaky) computations \implies masking scheme

RIVAIN-PROUFF / I.S.W. SCHEME 2

- · Linear operations: trivial shared computation
- · Non-linear (Sbox): polynomial interpolation
- \rightarrow Sequence of (linear) additions and multiplications

²Ishai, Sahai, and Wagner, "Private Circuits: Securing Hardware against Probing Attacks"; Rivain and Prouff, "Provably Secure Higher-Order Masking of AES"

Multiplication over secret sharing

Α

Multiplication over secret sharing

Multiplication over secret sharing

1.Cross-products

Multiplication over secret sharing

Multiplication over secret sharing

$$\mathbf{B} \begin{bmatrix}
 A_{0} & A_{1} & \dots & A_{d} \\
 B_{0} & A_{0} \cdot B_{0} & A_{1} \cdot B_{0} - R_{0,1} & \dots & A_{d} \cdot B_{0} - R_{0,d} \\
 B_{1} & A_{0} \cdot B_{1} + R_{0,1} & A_{1} \cdot B_{1} & \dots & A_{d} \cdot B_{1} - R_{1,d} \\
 \vdots & \vdots & \vdots & \ddots & \vdots \\
 B_{d} & A_{0} \cdot B_{d} + R_{0,d} & A_{1} \cdot B_{d} + R_{1,d} & \dots & A_{d} \cdot B_{d} \\
 \sum_{0} & \Sigma_{1} & \dots & \Sigma_{d}
 \end{bmatrix}$$
3. Compression

Multiplication over secret sharing

The \sum_i form a secure sharing of $A \cdot B$ against a *d*-probing adversary

Multiplication over secret sharing

The \sum_i form a secure sharing of $A \cdot B$ against a *d*-probing adversary PROBING MODEL

A t-probing adversary can reveal a subset of t intermediate calculations. The target is secure if the subset is independent of the secret.

Loïc Masure

Very practical to verify (using formal verification tools), but unrealistic adversary

Loïc Masure

The Noisy Leakage Model

In this model, for each intermediate computation, the adversary gets a probability distribution about its operands:

$$I \longrightarrow Pr(Y | L) \rightarrow y$$

 $^{^{3}}D$: Kullbacke- Leibler (KL) divergeogevatotal variation of Euclidean variation of Euclidean variation of the set of

The Noisy Leakage Model

In this model, for each intermediate computation, the adversary gets a probability distribution about its operands:

If, the adversary gets:

³D: KL divergence, total variation, Euclidean norm, ... Loic Masure Prouff & Rivain's Security Proof of Masking, Revisited

The Noisy Leakage Model

In this model, for each intermediate computation, the adversary gets a probability distribution about its operands:

If, the adversary gets:

Very noisy Sensitive computation unpredictable

³D: Kaic divergence, total variation of Euclidease not provide the state of Masking, Revisited

The Noisy Leakage Model

In this model, for each intermediate computation, the adversary gets a probability distribution about its operands:

If, the adversary gets:

³D: KL divergence, total variation, Euclidean norm, ... Loic Masure Prouff & Rivain's Security Proof of Masking, Revisited

The Noisy Leakage Model

In this model, for each intermediate computation, the adversary gets a probability distribution about its operands:

$$I \quad M_{W} M_{W} - \Pr(Y \mid L) \rightarrow \boxed{y}$$

If, the adversary gets:

Low-noise

Exact prediction of the sensitive computation

³D: Kaic divergence, total variation of Euclidease not provide the state of Masking, Revisited

The Noisy Leakage Model

In this model, for each intermediate computation, the adversary gets a probability distribution about its operands:

δ -noisy adversary

All the p.m.f.s accessed by the adversary are δ -close³ to the uniform:

³D: KL divergence, total variation, Euclidean norm, ...

Prouff & Rivain's Security Proof of Masking, Revisited

"Any attack requires ${\mathcal S}$ queries "

Prouff & Rivain's Security Proof of Masking, Revisited

The Link between both Models

The Link between both Models

"Any successful adversary requires $S = \Omega\left(\left(\frac{1}{\delta d|\mathbb{F}|}\right)^d\right)$ queries" \rightarrow Direct proof, with significant artifacts, with restricting assumptions⁴

⁴Prouff and Rivain, "Masking against Side-Channel Attacks: A Formal Security Proof".

Prouff & Rivain's Security Proof of Masking, Revisited

The Link between both Models

"Any successful adversary requires $S = \Omega\left(\left(\frac{1}{\delta d|\mathbb{F}|}\right)^d\right)$ queries" \rightarrow Direct proof, with significant artifacts, with restricting assumptions⁴

⁴Prouff and Rivain, "Masking against Side-Channel Attacks: A Formal Security Proof".

Loïc Masure

Prouff & Rivain's Security Proof of Masking, Revisited

The Link between both Models

"Any successful adversary requires $S = \Omega\left(\left(\frac{1}{\delta d|\mathbb{F}|}\right)^d\right)$ queries" \rightarrow Reduction, with significant artifacts, without restricting assumptions⁴

⁴Duc, Dziembowski, and Faust, "Unifying Leakage Models: From Probing Attacks to Noisy Leakage". Loïc Masure Prouff & Rivain's Security Proof of Masking, Revisited

Our Work

"Any successful adversary requires $S = \Omega\left(\left(\frac{1}{\delta d}\right)^d\right)$ queries" Direct proof, without significant artifacts, with restricting assumptions⁵

⁵Almost identical to the ones of Prouff & Rivain

First Improvement: the Noise Amplification Bound

One bottleneck in P&R's proof is the bound over *one* encoding

First Improvement: the Noise Amplification Bound

One bottleneck in P&R's proof is the bound over one encoding

 \rightarrow

First Improvement: the Noise Amplification Bound

One bottleneck in P&R's proof is the bound over one encoding

$$\mathsf{SD}\left(\mathit{Secret}; \mathit{Leaky} \ \mathit{Encoding}
ight) \leq \left(\delta \cdot 2
ight)^d$$

One issue with SD: ⁶

- \rightarrow Not Field-size dependent
- \rightarrow Does not extend well to leakage over computations

⁶Dziembowski, Faust, and Skórski, "Optimal Amplification of Noisy Leakages"

Prouff & Rivain's Security Proof of Masking, Revisited

First Improvement: the Noise Amplification Bound

C

One bottleneck in P&R's proof is the bound over one encoding

$$\begin{array}{c} \mathsf{MI}\left(\mathsf{Secret};\mathsf{Leaky}\ \mathsf{Encoding}\right) \leq 0.72 \cdot \left(\frac{\delta}{0.72}\right)^d \\ \mathsf{New \ bounds \ for \ MI:} \ ^6 \\ \rightarrow \ \mathsf{Not \ Field-size \ dependent} \\ \rightarrow \ \mathbf{This \ paper:} \ \mathsf{Extends \ well \ to} \\ \mathsf{leakage \ over \ computations} \\ \rightarrow \end{array}$$

⁶Béguinot *et al.*, COSADE 2023, following Masure *et al.* at CARDIS'23 and Ito *et al.* at CCS'23) Loïc Masure Prouff & Rivain's Security Proof of Masking. Revisited

The noise amplification bound only holds if the underlying secret is *uniform* Required to get independent shares \rightarrow reduction to random walks

The noise amplification bound only holds if the underlying secret is *uniform* Required to get independent shares \rightarrow reduction to random walks

In some non-linear computations, secret is not uniform, *e.g.*, $Y \mapsto Y^3$ How to deal with it?

The noise amplification bound only holds if the underlying secret is *uniform* Required to get independent shares \rightarrow reduction to random walks

In some non-linear computations, secret is not uniform, e.g., $Y\mapsto Y^3$ How to deal with it?

In previous works: generic (crude) reduction "non-uniform \rightarrow uniform" (×| \mathbb{F} |)

The noise amplification bound only holds if the underlying secret is *uniform* Required to get independent shares \rightarrow reduction to random walks

In some non-linear computations, secret is not uniform, e.g., $Y\mapsto Y^3$ How to deal with it?

In previous works: generic (crude) reduction "non-uniform \rightarrow uniform" (×| \mathbb{F} |) Our observation: If Y =

The noise amplification bound only holds if the underlying secret is *uniform* Required to get independent shares \rightarrow reduction to random walks

In some non-linear computations, secret is not uniform, e.g., $Y\mapsto Y^3$ How to deal with it?

In previous works: generic (crude) reduction "non-uniform \rightarrow uniform" (×|F|) Our observation: If $Y = \square$, then $Y^3 \approx \square$ Y^3 not that far from uniform \implies specific (refined) reduction

The noise amplification bound only holds if the underlying secret is *uniform* Required to get independent shares \rightarrow reduction to random walks

In some non-linear computations, secret is not uniform, e.g., $Y\mapsto Y^3$ How to deal with it?

In previous works: generic (crude) reduction "non-uniform \rightarrow uniform" (×|F|) Our observation: If $Y = \square$, then $Y^3 \approx \square$ Y^3 not that far from uniform \implies specific (refined) reduction

Pros: reasonable quasi-constant factor overhead **Cons**: requires monomial SBoxes (ok for AES, not for DES)

 \rightarrow We improve previous amplification-based bounds (EC'13, EC'15, C'19) in complementary directions

- \rightarrow We improve previous amplification-based bounds (EC'13, EC'15, C'19) in complementary directions
- \rightarrow We do not claim that the superiority of proofs by reductions is over

Conclusion

- \rightarrow We improve previous amplification-based bounds (EC'13, EC'15, C'19) in complementary directions
- \rightarrow We do not claim that the superiority of proofs by reductions is over
- \rightarrow We also confirm that some (field-size) factors coming from proof reductions are indeed artifacts (see some bonus in the paper)

- \rightarrow We improve previous amplification-based bounds (EC'13, EC'15, C'19) in complementary directions
- \rightarrow We do not claim that the superiority of proofs by reductions is over
- \rightarrow We also confirm that some (field-size) factors coming from proof reductions are indeed artifacts (see some bonus in the paper)

Future works:

- \cdot Relaxing the assumptions of direct proofs?
- · Direct proofs for other masking schemes, e.g. table-based?

📔 Chari, S. et al. "Towards Sound Approaches to Counteract Power-Analysis Attacks". In: Advances in Cryptology - CRYPTO '99, 19th Annual International Cryptology Conference, Santa Barbara, California, USA. August 15-19, 1999, Proceedings. Ed. by M. J. Wiener. Vol. 1666. Lecture Notes in Computer Science. Springer, 1999, pp. 398–412. ISBN: 3-540-66347-9. DOI: 10.1007/3-540-48405-1\ 26. URL: https://doi.org/10.1007/3-540-48405-1\ 26. Duc. A., S. Dziembowski, and S. Faust. "Unifying Leakage Models: From Probing Attacks to Noisy Leakage". In: J. Cryptology 32.1 (2019). pp. 151–177. DOI: 10.1007/s00145-018-9284-1. URL: https://doi.org/10.1007/s00145-018-9284-1.

References II

 Dziembowski, S., S. Faust, and M. Skórski. "Optimal Amplification of Noisy Leakages". In: Theory of Cryptography - 13th International Conference, TCC 2016-A, Tel Aviv, Israel, January 10-13, 2016, Proceedings, Part II. Ed. by
 E. Kushilevitz and T. Malkin. Vol. 9563. Lecture Notes in Computer Science. Springer, 2016, pp. 291–318. DOI: 10.1007/978-3-662-49099-0_11. URL: https://doi.org/10.1007/978-3-662-49099-0_11.

References III

Ishai, Y., A. Sahai, and D. A. Wagner. "Private Circuits: Securing Hardware against Probing Attacks". In: Advances in Cryptology - CRYPTO 2003, 23rd Annual International Cryptology Conference, Santa Barbara, California, USA, August 17-21, 2003, Proceedings. Ed. by D. Boneh. Vol. 2729. Lecture Notes in Computer Science. Springer, 2003, pp. 463–481. DOI: 10.1007/978-3-540-45146-4_27. URL: https://doi.org/10.1007/978-3-540-45146-4_27.

References IV

Prouff, E. and M. Rivain. "Masking against Side-Channel Attacks: A Formal Security Proof". In: Advances in Cryptology - EUROCRYPT 2013, 32nd Annual International Conference on the Theory and Applications of Cryptographic Techniques, Athens, Greece, May 26-30, 2013. Proceedings. Ed. by T. Johansson and P. Q. Nguyen. Vol. 7881. Lecture Notes in Computer Science. Springer, 2013, pp. 142–159. ISBN: 978-3-642-38347-2. DOI: 10.1007/978-3-642-38348-9_9. URL: https://doi.org/10.1007/978-3-642-38348-9_9.

 Rivain, M. and E. Prouff. "Provably Secure Higher-Order Masking of AES". In: Cryptographic Hardware and Embedded Systems, CHES 2010, 12th International Workshop, Santa Barbara, CA, USA, August 17-20, 2010. Proceedings. Ed. by S. Mangard and F. Standaert. Vol. 6225. Lecture Notes in Computer Science. Springer, 2010, pp. 413–427. DOI: 10.1007/978-3-642-15031-9_28. URL: https://doi.org/10.1007/978-3-642-15031-9_28.