

Almost Tight Multi-User Security under Adaptive Corruptions from LWE in the Standard Model

Shuai Han, Shengli Liu, Zhedong Wang, Dawu Gu

Shanghai Jiao Tong University

Crypto 2023, Santa Barbara, USA

Overview of Our PKE and SIG Constructions

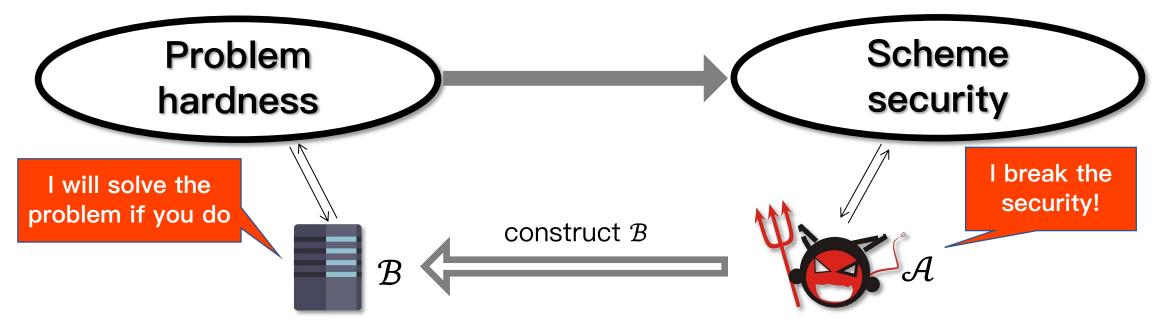
Almost Tight MU^c Security & Our Contributions

Technical Tool: Probabilistic Hash Proof System

Overview of Our PKE and SIG Constructions

Almost Tight Security

Security of a cryptographic Scheme based on a hard Problem.



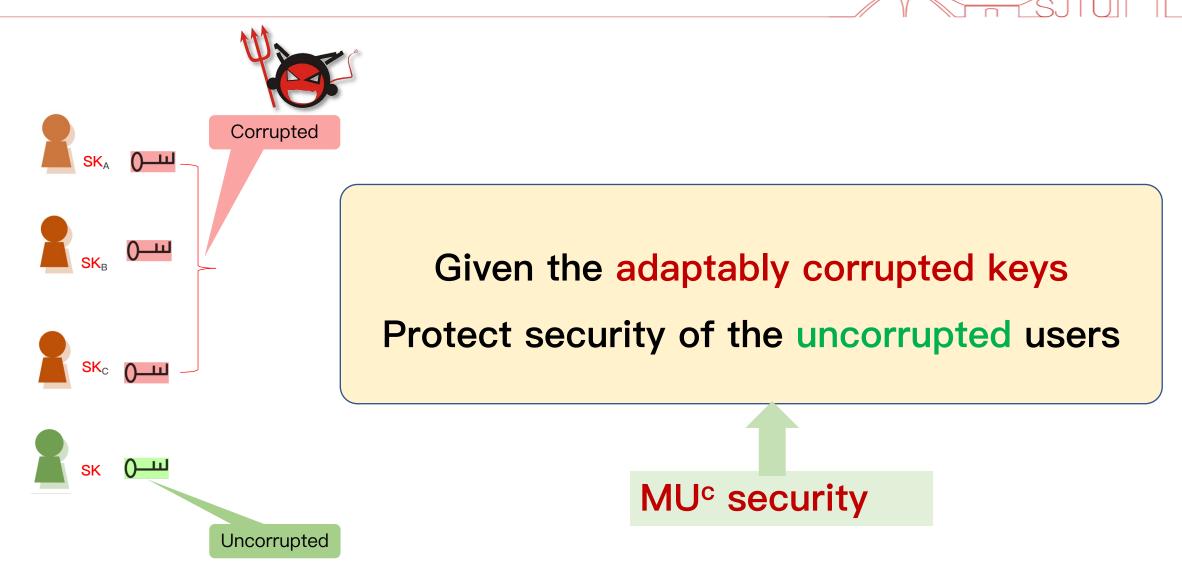
solving **Problem** in time $t_{\mathcal{B}}$ with advantage $\epsilon_{\mathcal{B}}$

attacking Scheme in time $\mathsf{t}_{\mathcal{A}}$ with advantage $\epsilon_{\mathcal{A}}$

$$\frac{t_{\mathcal{B}}}{\epsilon_{\mathcal{B}}} \leq \frac{t_{\mathcal{A}}}{\epsilon_{\mathcal{A}}} \cdot \ell$$

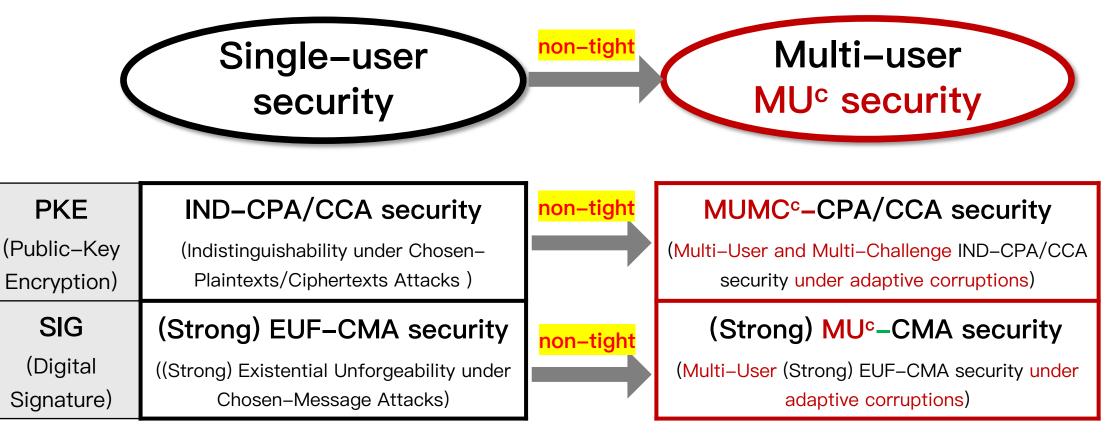
(Almost) Tight Security: $\ell = O(1)$ or poly(λ), where λ = security parameter

Multi–User Security under Adaptive Corruptions (MU^c Security)



On Achieving Tight MU^c Security

M THESUTUN



Non-tight reduction!

 $\boldsymbol{\ell} \geq$ #users, #ciphertexts, or #signatures

On Achieving Tight MU^c Security: Impossibility Results

Impossible !

• Public-Key Encryption (PKE): Tight MUMC^c-CPA/CCA security

the relation (pk, sk) is "unique"

◆ the relation (pk, sk) is "re-ran

Digital Signature (SIG): Tight (Strong) MU^c-CMA securit Impossible !

the signing algorithm is deterministic

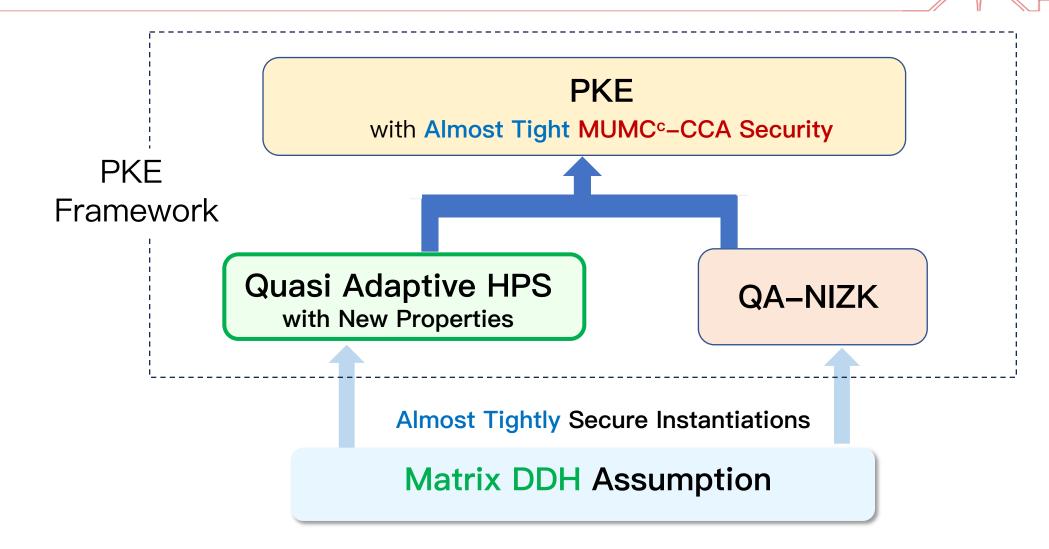
On Achieving Tight MU^c Security: Possibility Results

PKE	Std/RO model?	MU ^c Security?	Security Loss	Assumption	Post– Quantum?	
[LLP20, DCC]	classical RO	\checkmark	O(1)	CDH	×	• based on number-theoretic
[HLG23, EC]	Std	\checkmark	O(log λ)	MDDH	×	assumptions.

SIG	Std/RO model?	MU⁰ Security?	Security Loss	Assumption	Post– Quantum?
[BHJKL15, TCC]	Std	\checkmark	O(1)	MDDH	×
[GJ18, C]	classical RO	\checkmark	O(1)	DDH	×
[DGJL21, PKC]	classical RO	\checkmark	O(1)	DDH/Φ-hiding	×
[HJKLPRS21, C]	Std	\checkmark	Ο(λ)	MDDH	×
[PW22, PKC]	classical RO	\checkmark	O(1)	LWE	\checkmark
[HLG23, EC]	Std	\checkmark	O(log λ)	MDDH	×

- either based on number– theoretic assumptions,
- or in classical RO model.

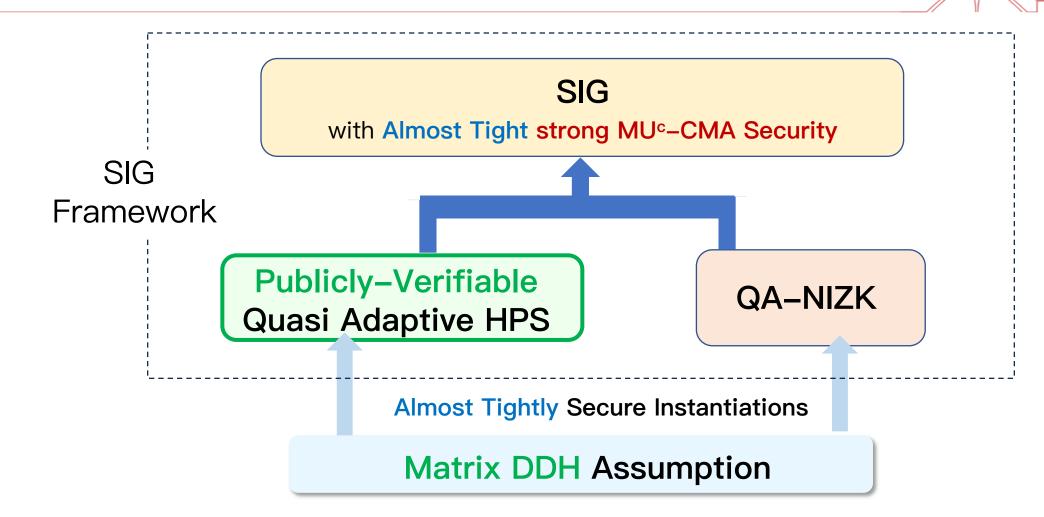
Can we achieve (almost) tight MU^c security based on LWE in the standard model? [HLG23]: PKE with Almost Tight MU^c Security from MDDH in the Std Model



PKE with Almost Tight MU^c Security from LWE in the Std Model ?



[HLG23]: SIG with Almost Tight MU^c Security from MDDH in the Std Model



SIG with Almost Tight MU^c Security from LWE in the Std Model ?



Can we achieve (almost) tight MU^c security based on LWE in the standard model?

Contribution: Almost Tight MU^c Security from LWE in the Std Model

PKE	Std/RO model?	MU° Security?	Security Loss	Assumption	Post– Quantum?
[LLP20, DCC]	classical RO	\checkmark	O(1)	CDH	×
[HLG23, EC]	Std	\checkmark	O(log λ)	MDDH	×
Ours	Std	\checkmark	Ο(λ²)	LWE	1 4

 The *first* LWE-based PKE scheme with almost tight MUMC^c-CCA security in the standard model

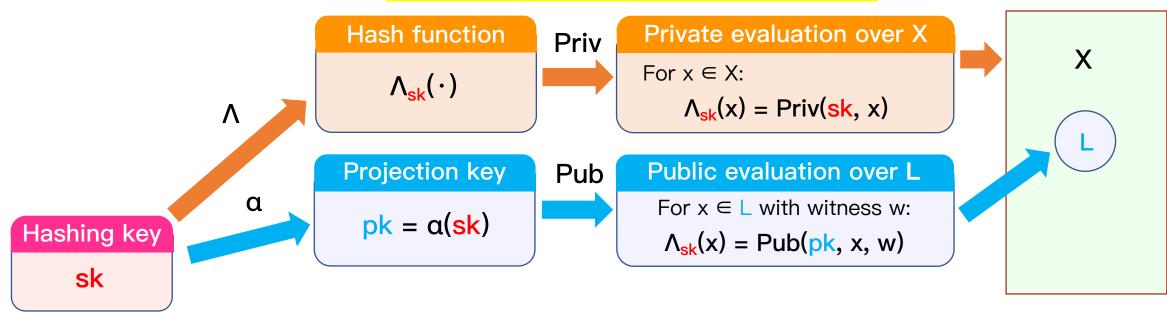
SIG	Std/RO model?	MU° Security?	Security Loss	Assumption	Post– Quantum?
[BHJKL15, TCC]	Std	\checkmark	O(1)	MDDH	×
[GJ18, C]	classical RO	\checkmark	O(1)	DDH	×
[DGJL21, PKC]	classical RO	\checkmark	O(1)	DDH/Φ-hiding	×
[HJKLPRS21, C]	Std	\checkmark	Ο(λ)	MDDH	×
[PW22, PKC]	classical RO	\checkmark	O(1)	LWE	\checkmark
[HLG23, EC]	Std	\checkmark	O(log λ)	MDDH	×
Ours	Std	\checkmark	Ο(λ²)	LWE	1 /

The *first* **LWE–based** SIG scheme with **almost tight MU°–**CMA security in the standard model

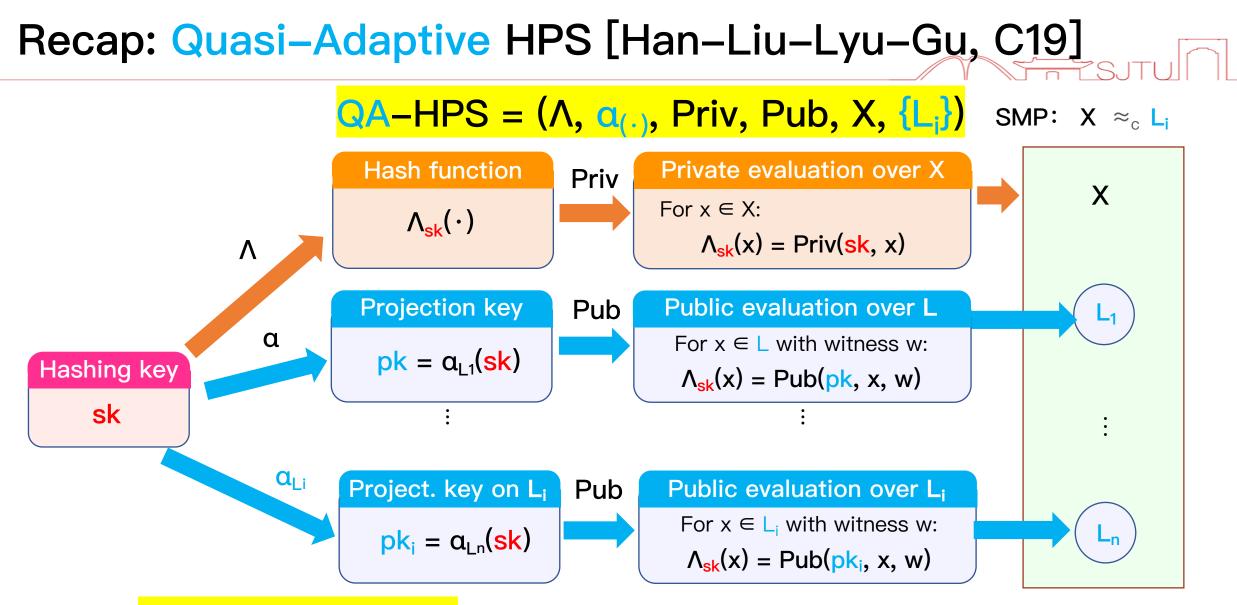
Overview of Our PKE and SIG Constructions

Recap: Hash Proof System [Cramer–Shoup, EC02]

SMP: X \approx_{c} L



• (Exact) Correctness: requires Priv(sk, x) = Pub(pk, x, w) for $x \in L$.



- (Exact) Correctness: requires Priv(sk, x) = Pub(pk, x, s) for $x \in L$.
- Key Switching: $(\alpha_{L0}(sk), \alpha_{L1}(sk)) \approx_{s} (\alpha_{L0}(sk), \alpha_{L1}(sk'))$

Obstacle: No LWE-based HPS with Exact Correctness

$$\mathcal{X} = \{ \mathbf{c} \mid \mathbf{c} \in \mathbb{Z}_{q}^{m} \}$$
anguages are LWE samples:

$$\mathcal{L}_{\mathbf{A}} := \{ \mathbf{c} = \mathbf{A}^{\top}_{1}\mathbf{s} + \mathbf{e} \mid \mathbf{s} \in \mathbb{Z}_{q}^{n}, \mathbf{e} \in [-B, B]^{m} \}.$$

$$\mathcal{L}_{\mathbf{A}_{1}} := \{ \mathbf{c} = \mathbf{A}_{1}^{\top}_{1}\mathbf{s} + \mathbf{e} \mid \mathbf{s} \in \mathbb{Z}_{q}^{n}, \mathbf{e} \in [-B, B]^{m} \}.$$

$$\mathcal{L}_{\mathbf{A}_{2}} := \{ \mathbf{c} = \mathbf{A}_{2}^{\top}_{1}\mathbf{s} + \mathbf{e} \mid \mathbf{s} \in \mathbb{Z}_{q}^{n}, \mathbf{e} \in [-B, B]^{m} \}.$$
Secret&Projection Key:
Private evaluation:

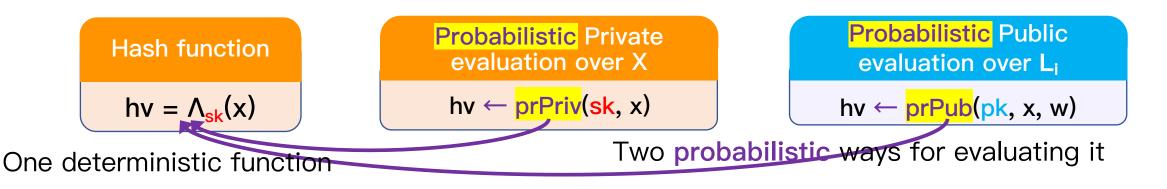
$$kk = \mathbf{k} \in \{0, 1\}^{m}, \quad pk_{\mathbf{A}} := \alpha_{\mathbf{A}}(\mathbf{k}) = \mathbf{A}^{\top}_{\mathbf{k}} k.$$
Priv(\mathbf{k}, \mathbf{c}) $= A_{\mathbf{k}}(\mathbf{c}) := \mathbf{c}^{\top}_{\mathbf{k}} \in \mathbb{Z}_{q}$

$$= (\mathbf{s}^{\top}_{\mathbf{A}} + \mathbf{e}^{\top}_{\mathbf{k}})\mathbf{k} = \begin{bmatrix} \mathbf{s}^{\top}_{\mathbf{A}} \mathbf{T}^{\top}_{\mathbf{k}} \mathbf{k} \end{bmatrix} + \begin{bmatrix} \mathbf{e}^{\top}_{\mathbf{k}} \text{ for } \mathbf{c} \in \mathcal{L}_{\mathbf{A}} \end{bmatrix}$$
Public evaluation:
Pub($pk_{\mathbf{A}}, \mathbf{c}, \mathbf{s}, \mathbf{e}$) $= \mathbf{s}^{\top} \cdot pk_{\mathbf{A}} = \begin{bmatrix} \mathbf{s}^{\top}_{\mathbf{A}} \mathbf{T}^{\top}_{\mathbf{k}} \mathbf{k} \end{bmatrix}$
Priv(\mathbf{sk}, \mathbf{x}) $\approx \mathbb{Pub}(\mathbf{pk}, \mathbf{x}, \mathbf{s})$
but
Priv(\mathbf{sk}, \mathbf{x}) $\neq \mathbb{Pub}(\mathbf{pk}, \mathbf{x}, \mathbf{s})$!

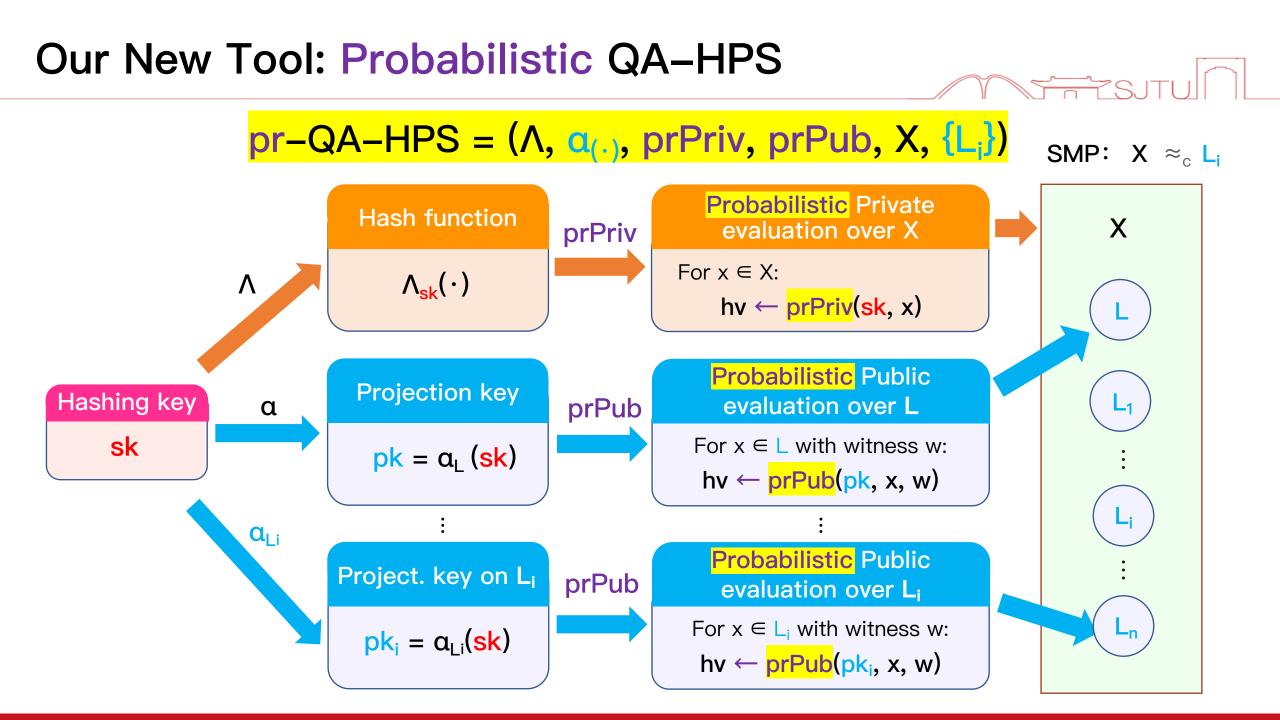
Our Solution to the Obstacle: pr-QA-HPS

Probabilistic QA–HPS:

- Probabilistic public evaluation: prPriv(sk, x)
- Probabilistic private evaluation: prPub(pk, x, s)



Approximate Correctness: prPriv(sk, x) ≈ Λ_{sk}(x) ≈ prPub(pk x, w)
Evaluation st. Indistinguishability: prPriv(sk, x) ≈_s prPub(pk, x, w) given sk
Key Switching: (α_{L0}(sk), α_{L1}(sk)) ≈_s (α_{L0}(sk), α_{L1}(sk'))



pr–QA–HPS from LWE

L

Languages are LWE samples: with Subset Mempership Problem $x \leftarrow * \mathcal{L}_{\mathbf{A}_1} \approx_c x \leftarrow * \mathcal{X} \approx_c x \leftarrow * \mathcal{L}_{\mathbf{A}_2}$ $\mathcal{L}_{\mathbf{A}_1} \coloneqq \{\mathbf{c} = \mathbf{A}_1^\top \mathbf{s} + \mathbf{e} \mid \mathbf{s} \in \mathbb{Z}_q^n, \mathbf{e} \in [-B, B]^m\}.$

pr–QA–HPS from LWE

Languages are LWE samples: with Subset Mempership Problem

$$\mathcal{L}_{\mathbf{A}} := \{ \mathbf{c} = \mathbf{A}^{\top} \mathbf{s} + \mathbf{e} \mid \mathbf{s} \in \mathbb{Z}_{q}^{n}, \mathbf{e} \in [-B, B]^{m} \}.$$
$$\mathcal{L}_{\mathbf{A}_{1}} := \{ \mathbf{c} = \mathbf{A}_{1}^{\top} \mathbf{s} + \mathbf{e} \mid \mathbf{s} \in \mathbb{Z}_{q}^{n}, \mathbf{e} \in [-B, B]^{m} \}.$$
$$\mathcal{L}_{\mathbf{A}_{2}} := \{ \mathbf{c} = \mathbf{A}_{2}^{\top} \mathbf{s} + \mathbf{e} \mid \mathbf{s} \in \mathbb{Z}_{q}^{n}, \mathbf{e} \in [-B, B]^{m} \}.$$

Secret&Projection Key:
$$sk = \mathbf{k} \in \{0, 1\}^m$$
, $pk_{\mathbf{A}} := \alpha_{\mathbf{A}}(\mathbf{k}) = \mathbf{A}^\top \mathbf{k}$. $\Lambda_{\mathbf{k}}(\mathbf{c}) := \mathbf{c}^\top \mathbf{k} = \begin{bmatrix} \mathbf{s}^\top \mathbf{A}^\top \mathbf{k} \end{bmatrix}$ Error smugingPrivate evaluation: $\operatorname{Priv}(\mathbf{k}, \mathbf{c}) = \mathbf{c}^\top \mathbf{k} + \begin{bmatrix} e' \end{bmatrix} = \begin{bmatrix} \mathbf{s}^\top \mathbf{A}^\top \mathbf{k} \end{bmatrix} + \begin{bmatrix} \mathbf{e}^\top \mathbf{k} + \begin{bmatrix} e' \end{bmatrix} = \begin{bmatrix} \mathbf{s}^\top \mathbf{A}^\top \mathbf{k} \end{bmatrix} + \begin{bmatrix} \mathbf{e}^\top \mathbf{k} + \begin{bmatrix} e' \end{bmatrix} = \begin{bmatrix} \mathbf{s}^\top \mathbf{A}^\top \mathbf{k} \end{bmatrix} + \begin{bmatrix} e^\top \mathbf{k} + \begin{bmatrix} e' \end{bmatrix} = \begin{bmatrix} \mathbf{s}^\top \mathbf{A}^\top \mathbf{k} \end{bmatrix} + \begin{bmatrix} e^\top \mathbf{k} + \begin{bmatrix} e' \end{bmatrix} = \begin{bmatrix} \mathbf{s}^\top \mathbf{A}^\top \mathbf{k} \end{bmatrix} + \begin{bmatrix} e^\top \mathbf{k} + \begin{bmatrix} e' \end{bmatrix} = \begin{bmatrix} \mathbf{s}^\top \mathbf{A}^\top \mathbf{k} \end{bmatrix} + \begin{bmatrix} e^\top \mathbf{k} \end{bmatrix} = \begin{bmatrix} \mathbf{s}^\top \mathbf{A}^\top \mathbf{k} \end{bmatrix} + \begin{bmatrix} e^\top \mathbf{k} \end{bmatrix} = \begin{bmatrix} \mathbf{s}^\top \mathbf{A}^\top \mathbf{k} \end{bmatrix} + \begin{bmatrix} e^\top \mathbf{k} \end{bmatrix} = \begin{bmatrix} \mathbf{s}^\top \mathbf{A}^\top \mathbf{k} \end{bmatrix} + \begin{bmatrix} e^\top \mathbf{k} \end{bmatrix} = \begin{bmatrix} \mathbf{s}^\top \mathbf{A}^\top \mathbf{k} \end{bmatrix} = \begin{bmatrix} \mathbf{s}^\top \mathbf{A}^\top \mathbf{k} \end{bmatrix} + \begin{bmatrix} e^\top \mathbf{k} \end{bmatrix} = \begin{bmatrix} \mathbf{s}^\top \mathbf{A}^\top \mathbf{K} \end{bmatrix} = \begin{bmatrix}$

Close & Evaluation Indistinguishability

pr–QA–HPS from LWE

Languages are LWE samples: with Subset Mempership Problem

$$\mathcal{L}_{\mathbf{A}} := \{ \mathbf{c} = \mathbf{A}^{\top} \mathbf{s} + \mathbf{e} \mid \mathbf{s} \in \mathbb{Z}_{q}^{n}, \mathbf{e} \in [-B, B]^{m} \}.$$
$$\mathcal{L}_{\mathbf{A}_{1}} := \{ \mathbf{c} = \mathbf{A}_{1}^{\top} \mathbf{s} + \mathbf{e} \mid \mathbf{s} \in \mathbb{Z}_{q}^{n}, \mathbf{e} \in [-B, B]^{m} \}.$$
$$\mathcal{L}_{\mathbf{A}_{2}} := \{ \mathbf{c} = \mathbf{A}_{2}^{\top} \mathbf{s} + \mathbf{e} \mid \mathbf{s} \in \mathbb{Z}_{q}^{n}, \mathbf{e} \in [-B, B]^{m} \}.$$

Secret&Projection Key:

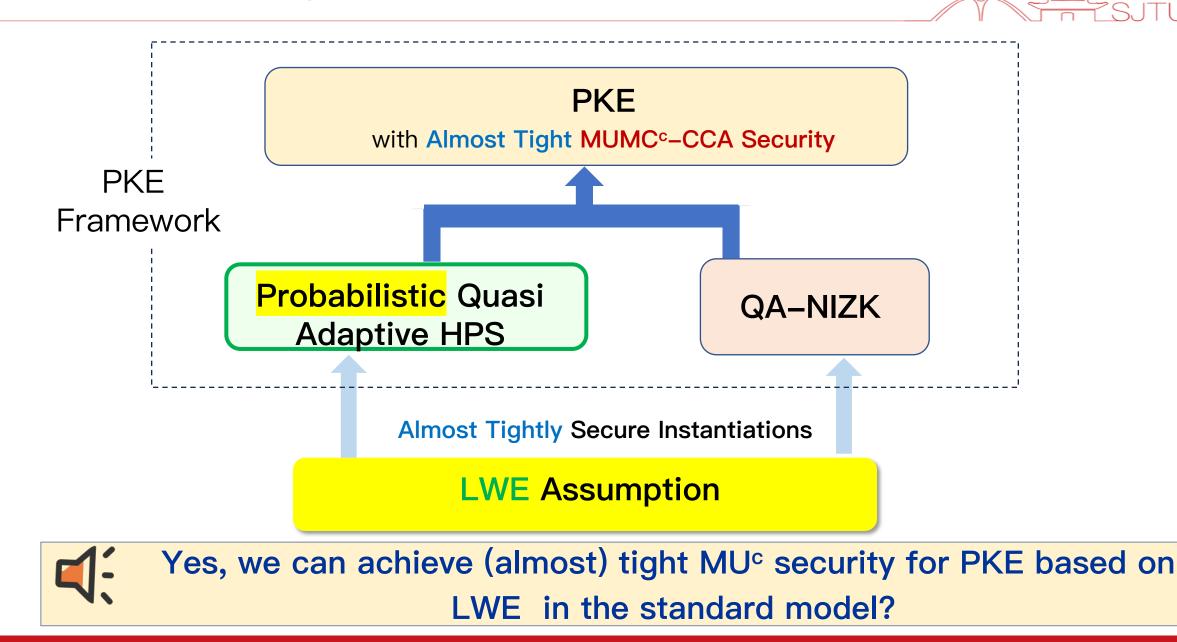
$$sk = \mathbf{k} \in \{0, 1\}^m$$
, $pk_{\mathbf{A}} := \alpha_{\mathbf{A}}(\mathbf{k}) = \mathbf{A}^\top \mathbf{k}$.
 $\Lambda_{\mathbf{k}}(\mathbf{c}) := \mathbf{c}^\top \mathbf{k} = \begin{bmatrix} \mathbf{s}^\top \mathbf{A}^\top \mathbf{k} \end{bmatrix}$
Private evaluation:
 $Priv(\mathbf{k}, \mathbf{c}) = \mathbf{c}^\top \mathbf{k} + \begin{bmatrix} e' \end{bmatrix} = \begin{bmatrix} \mathbf{s}^\top \mathbf{A}^\top \mathbf{k} \end{bmatrix} + \begin{bmatrix} \mathbf{e}^\top \mathbf{k} \end{bmatrix} + \begin{bmatrix} e' \end{bmatrix}$
Public evaluation:
 $Pub(pk_{\mathbf{A}}, \mathbf{c}, \mathbf{s}, \mathbf{e}) = \mathbf{s}^\top \cdot pk_{\mathbf{A}} + \begin{bmatrix} e' \end{bmatrix} = \begin{bmatrix} \mathbf{s}^\top \mathbf{A}^\top \mathbf{k} \end{bmatrix} + \begin{bmatrix} e' \end{bmatrix}$
Key Switching:

 $(\alpha_{\mathbf{A}_1}(\mathbf{k}), \alpha_{\mathbf{A}_2}(\mathbf{k})) = (\mathbf{A}_1^\top \mathbf{k}, \mathbf{A}_2^\top \mathbf{k}) \approx_s (\mathbf{A}_1^\top \mathbf{k}, \$) \approx_s (\mathbf{A}_1^\top \mathbf{k}, \mathbf{A}_2^\top \mathbf{k'}) = (\alpha_{\mathbf{A}_1}(\mathbf{k}), \alpha_{\mathbf{A}_2}(\mathbf{k'}))$

Technical Tool: Probabilistic Hash Proof System

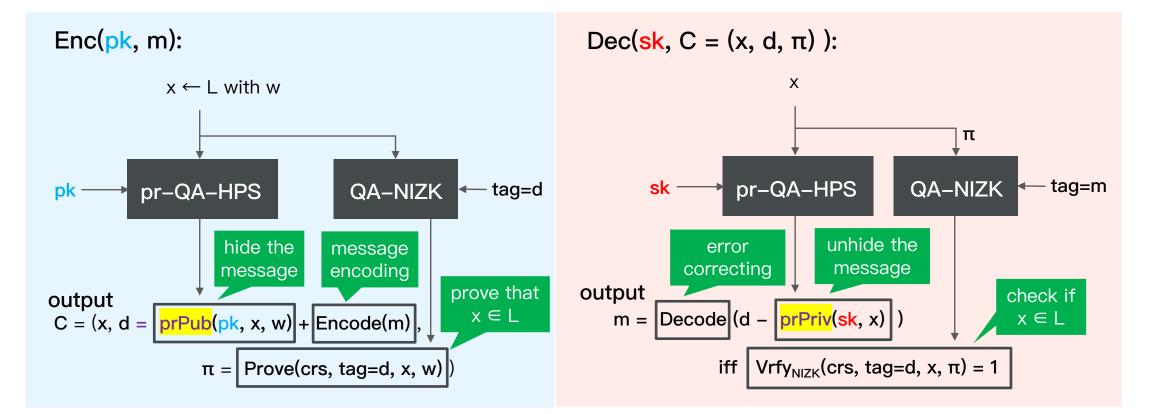
Overview of Our PKE and SIG Constructions

PKE with Almost Tight MU^c Security from LWE in the Std Model

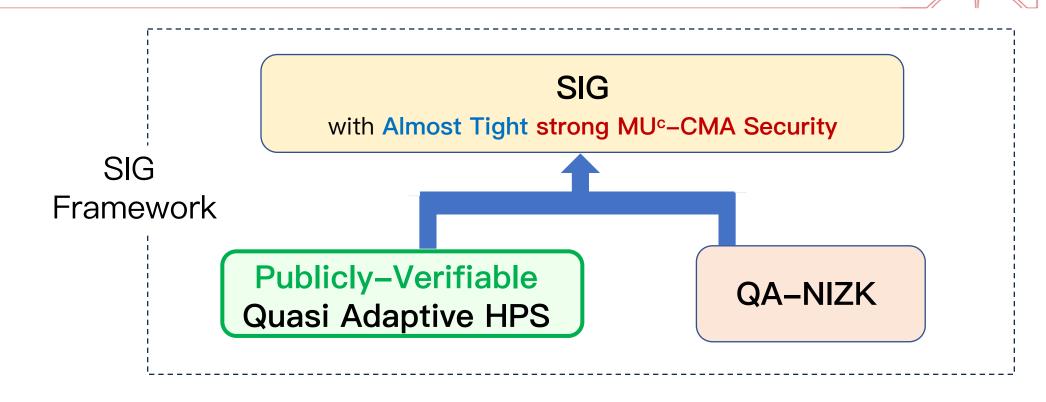


Our PKE with Almost Tight MUMC^{c&l}–CCA security

Gen \rightarrow (pk = $\alpha_L(sk)$, sk) : Projection key on L and Hashing key of QA–HPS

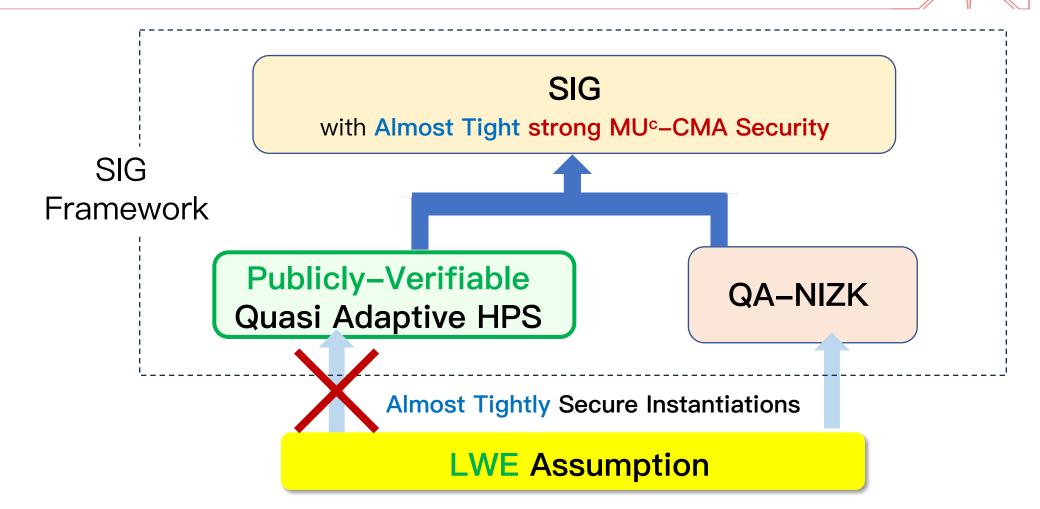


[HLG23]: SIG with Almost Tight MU^c Security from MDDH in the Std Model



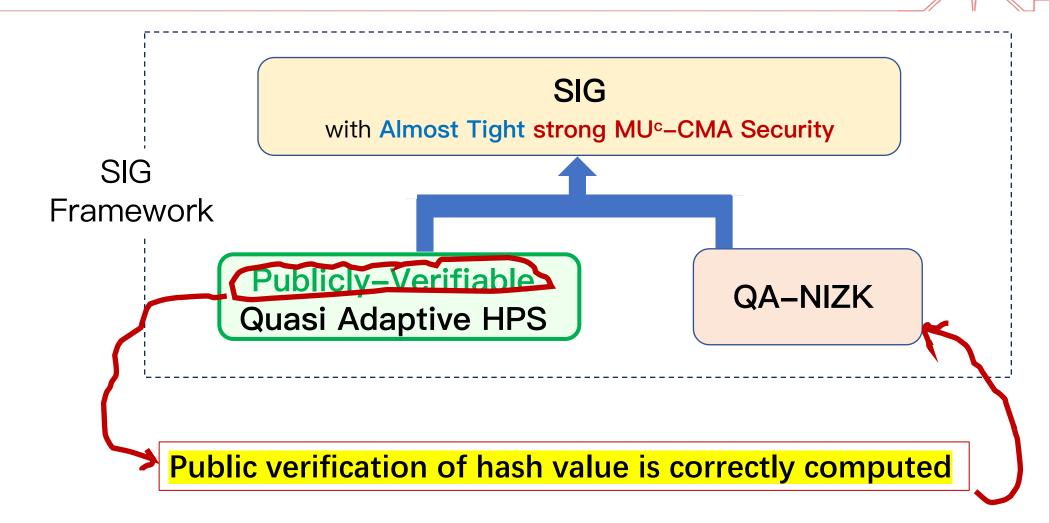
Can we achieve (almost) tight MU^c security based on LWE in the standard model?

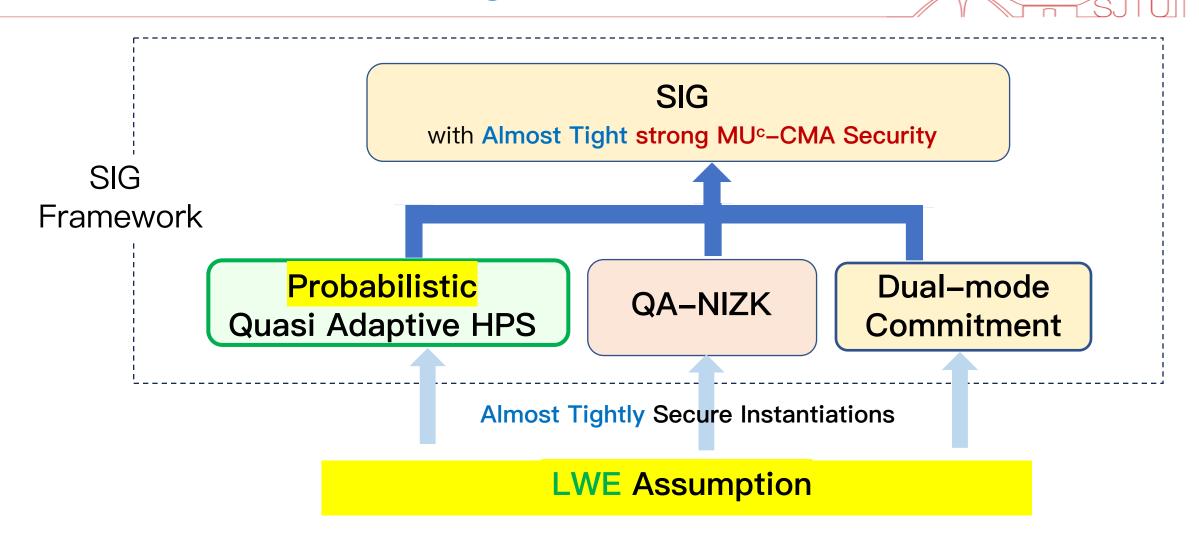
Obstacle: No LWE-based HPS with Public Verification



Can we achieve (almost) tight MU^c security based on LWE in the standard model?

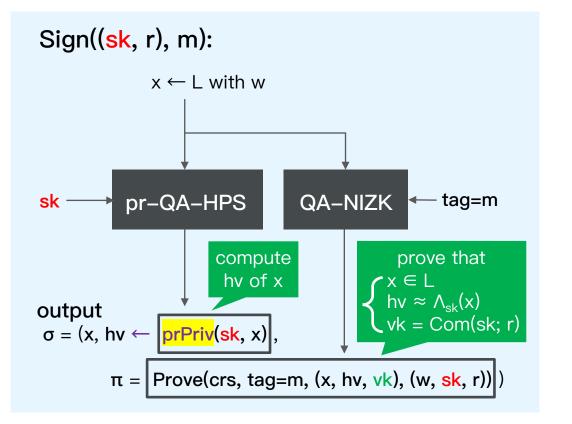
Our Solution: New Framework for Constructing SIG

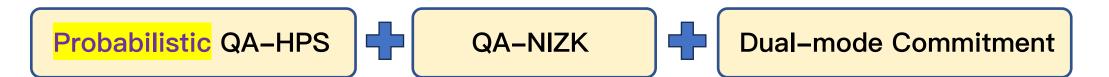




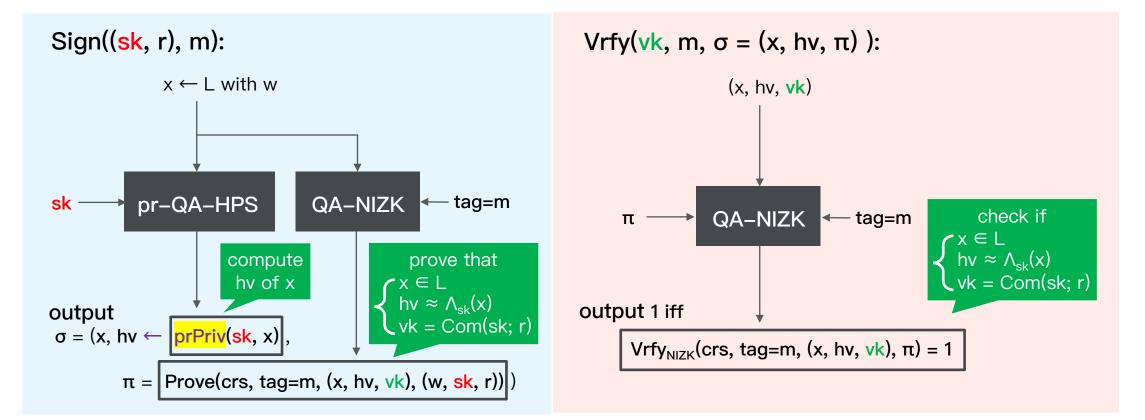
Gen \rightarrow (vk = Com(sk; r), (sk, r)) : Verification key is a commitment of Hashing key

Gen \rightarrow (vk = Com(sk; r), (sk, r)) : Verification key is a commitment of Hashing key





Gen \rightarrow (vk = Com(sk; r), (sk, r)) : Verification key is a commitment of Hashing key



Signing Oracle (m):

$$\sigma := (\mathbf{c} \leftarrow \mathcal{L}_{\mathbf{A}}, d := \mathsf{prPriv}(\mathbf{k}, \mathbf{c}), \pi := \mathsf{Prove}(\mathsf{tag} = m, (\mathbf{c}, vk, d), (\mathbf{k}, r, e')))$$

Successful forgery (m^* , $\sigma^* = (x^*, d^*, \pi^*)$):

 $\mathsf{Vrfy}_{\mathsf{NIZK}}(\mathsf{crs},\tau,(x^*,vk,d^*),\pi^*)=1$

Almost Tight (strong) MU^c–CMA security of SIG **Evaluation IND** ZK of NIZK Signing Oracle (m): $\sigma := (\mathbf{c} \leftarrow \mathcal{L}_{\mathbf{A}}, d := \mathsf{prPriv}(\mathbf{k}, \mathbf{c}), \pi := \mathsf{Prove}(\mathsf{tag} = m, (\mathbf{c}, vk, d), (\mathbf{k}, r, e')))$ $\sigma := (\mathbf{c} \leftarrow \mathcal{L}_{\mathbf{A}}, d := [\mathsf{prPub}(\alpha_{\mathbf{A}}(\mathbf{k}), \mathbf{c}, \mathbf{s})], \pi := [\mathsf{Sim}(\mathsf{tag} = m, (\mathbf{c}, vk, d)))]$

Successful forgery ($m^*, \sigma^*=(x^*, d^*, \pi^*)$):

 $Vrfy_{NIZK}(crs, \tau, (x^*, vk, d^*), \pi^*) = 1$

Signing Oracle (m): $\sigma := (\mathbf{c} \leftarrow \mathcal{L}_{\mathbf{A}}, d := \operatorname{prPriv}(\mathbf{k}, \mathbf{c}), \pi := \operatorname{Prove}(\operatorname{tag} = m, (\mathbf{c}, vk, d), (\mathbf{k}, r, e')))$ $\sigma := (\mathbf{c} \leftarrow \mathcal{L}_{\mathbf{A}}, d := [\operatorname{prPub}(\alpha_{\mathbf{A}}(\mathbf{k}), \mathbf{c}, \mathbf{s})], \pi := \operatorname{Sim}(\operatorname{tag} = m, (\mathbf{c}, vk, d)))$ $\sigma := ([\mathbf{c} \leftarrow \mathcal{L}_{\mathbf{A}}, \mathbf{c}], d := \operatorname{prPub}(\alpha_{\mathbf{A}}(\mathbf{k}), \mathbf{c}, \mathbf{s}), \pi := \operatorname{Sim}(\operatorname{tag} = m, (\mathbf{c}, vk, d), (\mathbf{k}, r, e')))$

Successful forgery (m*, $\sigma^*=(c^*, d^*, \pi^*)$):

 $\operatorname{Vrfy}_{\operatorname{NIZK}}(\operatorname{crs}, \tau, (\mathbf{c}^*, vk, d^*), \pi^*) = 1$

Signing Oracle (m):

$$\sigma := (\mathbf{c} \leftarrow \mathcal{L}_{\mathbf{A}}, d := \operatorname{prPriv}(\mathbf{k}, \mathbf{c}), \pi := \operatorname{Prove}(\operatorname{tag} = m, (\mathbf{c}, vk, d), (\mathbf{k}, r, e')))$$

$$\sigma := (\mathbf{c} \leftarrow \mathcal{L}_{\mathbf{A}}, d := [\operatorname{prPub}(\alpha_{\mathbf{A}}(\mathbf{k}), \mathbf{c}, \mathbf{s})], \pi := \operatorname{Sim}(\operatorname{tag} = m, (\mathbf{c}, vk, d)))$$

$$\sigma := ([\mathbf{c} \leftarrow \mathcal{L}_{\mathbf{A}_0}], d := \operatorname{prPub}(\alpha_{\mathbf{A}_0}(\mathbf{k}), \mathbf{c}, \mathbf{s}), \pi := \operatorname{Sim}(\operatorname{tag} = m, (\mathbf{c}, vk, d))))$$

Successful forgery (m*, $\sigma^*=(x^*, d^*, \pi^*)$): $Vrfy_{NIZK}(crs, \tau, (\mathbf{c}^*, vk, d^*), \pi^*) = 1$ $\left[\wedge \mathbf{c}^* \in \mathcal{L}_{\mathbf{A}} \wedge d^* \approx prPriv(\mathbf{k}, x^*) \approx prPub(\alpha_{\mathbf{A}}(\mathbf{k}), x^*, w) \right]$

Signing Oracle (m):

$$\sigma := (\mathbf{c} \leftarrow \mathcal{L}_{\mathbf{A}}, d := \operatorname{prPriv}(\mathbf{k}, \mathbf{c}), \pi := \operatorname{Prove}(\operatorname{tag} = m, (\mathbf{c}, vk, d), (\mathbf{k}, r, e')))$$

$$\sigma := (\mathbf{c} \leftarrow \mathcal{L}_{\mathbf{A}}, d := [\operatorname{prPub}(\alpha_{\mathbf{A}}(\mathbf{k}), \mathbf{c}, \mathbf{s})], \pi := \operatorname{Sim}(\operatorname{tag} = m, (\mathbf{c}, vk, d)))$$

$$\sigma := ([\mathbf{c} \leftarrow \mathcal{L}_{\mathbf{A}}], d := \operatorname{prPub}(\alpha_{\mathbf{A}_{0}}(\mathbf{k}), \mathbf{c}, \mathbf{s}), \pi := \operatorname{Sim}(\operatorname{tag} = m, (\mathbf{c}, vk, d)))$$

$$\sigma := (\mathbf{c} \leftarrow \mathcal{L}_{\mathbf{A}_{0}}, d := \operatorname{prPub}([\alpha_{\mathbf{A}_{0}}(\mathbf{k}')], \mathbf{c}, \mathbf{s}), \pi := \operatorname{Sim}(\operatorname{tag} = m, (\mathbf{c}, vk, d)))$$
Successful forgery (m*, σ^{*} = (c*, d*, π^{*})):

 $\mathsf{Vrty}_{\mathsf{NIZK}}(\mathsf{crs},\tau,(\mathbf{c}^*,vk,d^*),\pi^*) = 1$ $\left[\wedge \mathbf{c}^* \in \mathcal{L}_{\mathbf{A}} \wedge d^* \approx \mathsf{prPriv}(\mathbf{k},x^*) \approx \mathsf{prPub}(\alpha_{\mathbf{A}}(\mathbf{k}),x^*,w) \right]$

Signing Oracle (m):

$$\sigma := (\mathbf{c} \leftarrow_{\$} \mathcal{L}_{\mathbf{A}}, d := \operatorname{prPriv}(\mathbf{k}, \mathbf{c}), \pi := \operatorname{Prove}(\operatorname{tag} = m, (\mathbf{c}, vk, d), (\mathbf{k}, r, e')))$$

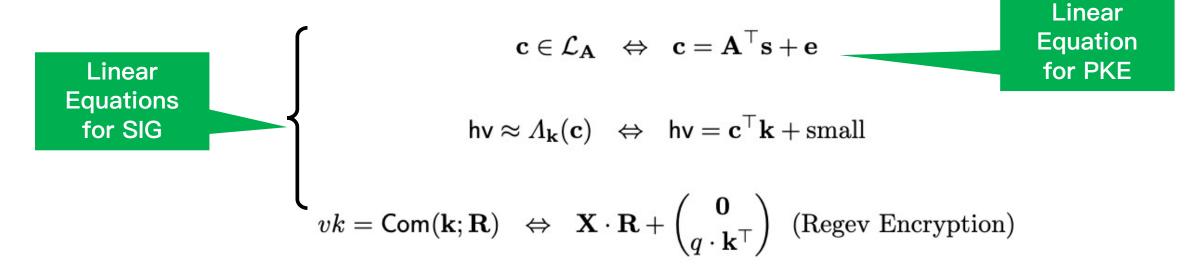
$$\sigma := (\mathbf{c} \leftarrow_{\$} \mathcal{L}_{\mathbf{A}}, d := \operatorname{prPub}(\alpha_{\mathbf{A}}(\mathbf{k}), \mathbf{c}, \mathbf{s}), \pi := \operatorname{Sim}(\operatorname{tag} = m, (\mathbf{c}, vk, d)))$$

$$\sigma := (\operatorname{c} \leftarrow_{\$} \mathcal{L}_{\mathbf{A}_{0}}, d := \operatorname{prPub}(\alpha_{\mathbf{A}_{0}}(\mathbf{k}), \mathbf{c}, \mathbf{s}), \pi := \operatorname{Sim}(\operatorname{tag} = m, (\mathbf{c}, vk, d)))$$

$$\sigma := (\mathbf{c} \leftarrow_{\$} \mathcal{L}_{\mathbf{A}_{0}}, d := \operatorname{prPub}((\alpha_{\mathbf{A}_{0}}(\mathbf{k}), \mathbf{c}, \mathbf{s}), \pi := \operatorname{Sim}(\operatorname{tag} = m, (\mathbf{c}, vk, d))))$$

Successful forgery (m*, $\sigma^{*}=(c^{*}, d^{*}, \pi^{*})$): Vrfy_{NIZK}(crs, τ , ($\mathbf{c}^{*}, vk, d^{*}$), π^{*}) = 1 $\wedge \mathbf{c}^{*} \in \mathcal{L}_{\mathbf{A}} \wedge d^{*} \approx \operatorname{prPriv}(\mathbf{k}, x^{*}) \approx \operatorname{prPub}(\alpha_{\mathbf{A}}(\mathbf{k}), x^{*}, w)$

Subtlety 1: QA-NIZK with Tight Security from LWE In our SIG and PKE constructions, we need QA-NIZKs proving that



• We build **QA-NIZKs** for such languages

Subtlety 2: Almost Tight Reduction from LWE to Multi-Secret LWE

 In the MU^c security proof, we require the hardness of Multi-fold Subset Membership Problem (SMP) of Probabilistic QA-HPS

SMP:
$$(\mathbf{A}, \mathbf{s}^{\top}\mathbf{A} + \mathbf{e}^{\top}) \approx_c (\mathbf{A}, \$)$$

 $\mathbf{s} \leftarrow_{\$} \mathbb{Z}_q^{\times n}, \mathbf{e} \leftarrow_{\$} \chi^m$

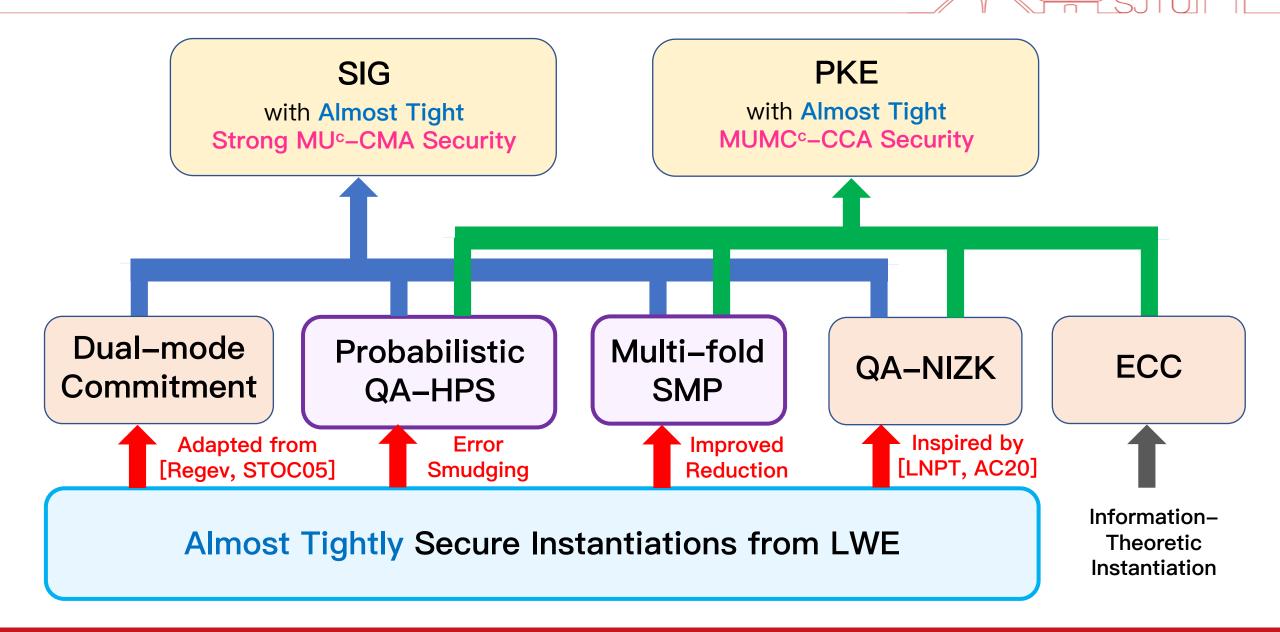
Multi-fold SMP: $(\mathbf{A}, \mathbf{SA} + \mathbf{E}) \approx_c (\mathbf{A}, \$)$

$$\mathbf{A} \leftarrow \hspace{-0.15cm} \ast \mathbb{Z}_q^{n \times m}, \mathbf{S} \leftarrow \hspace{-0.15cm} \ast \mathbb{Z}_q^{Q \times n}, \mathbf{E} \leftarrow \hspace{-0.15cm} \ast \chi^{Q \times m}$$

Improved Almost Tight Reduction

- The reduction implicit in [Alwen–Krenn–Pietrzak–Wichs, C13] has $\ell = \lambda^3$
- ✓ Our fine–grained reduction has $\ell = \lambda^2$
- by applying the noise lossiness approach in [Brakerski–Döttling, EC20]

Summary of Our SIG and PKE



• The first SIG and PKE schemes

✓ with almost tight MU^c security from LWE in the standard model.

- Generic constructions of SIG and PKE by using
 - New technical tool: Probabilistic QA-HPS.
- Improved almost tight reductions from LWE to Multi-Secret LWE.

https://eprint.iacr.org/2023/1230

