WEAK INSTANCES OF CLASS GROUP ACTION BASED CRYPTOGRAPHY VIA SELF-PAIRINGS

Crypto 2023, Santa Barbara

W. Castryck, M. Houben, S.-P. Merz, M. Mula, S. van Buuren, F. Vercauteren

Motivation

SIDH ATTACK + SELF-PAIRINGS: A DEADLY COMBINATION?

Consider a public-key cryptosystem where the secret key is an isogeny φ of known, smooth degree:

SIDH ATTACK + SELF-PAIRINGS: A DEADLY COMBINATION?

Consider a public-key cryptosystem where the secret key is an isogeny φ of known, smooth degree:

SIDH attack [CD23; Mai+23; Rob23]
Public key: E^{\prime} and $\varphi(P), \varphi(Q)$ (for suitable points P, Q on E)

SIDH ATTACK + SELF-PAIRINGS: A DEADLY COMBINATION?

Consider a public-key cryptosystem where the secret key is an isogeny φ of known, smooth degree:

SIDH attack + reduction by De Feo et al.
Public key: E^{\prime} and $\varphi(P)$ (for suitable point P on E)

SIDH ATTACK + SELF-PAIRINGS: A DEADLY COMBINATION?

Consider a public-key cryptosystem where the secret key is an isogeny φ of known, smooth degree:

The attack that would put us out of business
Public key: $E^{\prime} \xrightarrow{?} \begin{aligned} & \varphi(P)(\text { for suitable } \\ & \text { point } P \text { on } E)\end{aligned} \quad$ SIDH attack

SIDH ATTACK + SELF-PAIRINGS: A DEADLY COMBINATION?

Consider a public-key cryptosystem where the secret key is an isogeny φ of known, smooth degree:

The attack that would put us out of business

Our work: for which cryptosystems can we use self-pairings to fill this gap?

OUR ATtACK IDEA

Fact: in a class group action based cryptosystem, one can always find $\lambda \varphi(P)$ for some (unknown) $\lambda \in \mathbb{Z}$.

Goal of the attack: finding λ.

OUR ATtACK IDEA

Fact: in a class group action based cryptosystem, one can always find $\lambda \varphi(P)$ for some (unknown) $\lambda \in \mathbb{Z}$.

Goal of the attack: finding λ.

Naive approach:

- Compute the Weil (self-)pairing

$$
e(\lambda \varphi(P), \lambda \varphi(P))=e(P, P)^{\lambda^{2} \operatorname{deg}(\varphi)}
$$

- Recover λ using a dlog computation.

OUR ATtACK IDEA

Fact: in a class group action based cryptosystem, one can always find $\lambda \varphi(P)$ for some (unknown) $\lambda \in \mathbb{Z}$.

Goal of the attack: finding λ.

Naive approach:

- Compute the Weil (self-)pairing

$$
e(\lambda \varphi(P), \lambda \varphi(P))=e(P, P)^{\lambda^{2} \operatorname{deg}(\varphi)}
$$

- Recover λ using a dlog computation.

Problem: The Weil (self-)pairing $e(P, P)$ is always 1.

OUR Attack idea

Fact: in a class group action based cryptosystem, one can always find $\lambda \varphi(P)$ for some (unknown) $\lambda \in \mathbb{Z}$.

Goal of the attack: finding λ.

Naive approach:

- Compute the Weil (self-)pairing

$$
e(\lambda \varphi(P), \lambda \varphi(P))=e(P, P)^{\lambda^{2} \operatorname{deg}(\varphi)}
$$

- Recover λ using a dlog computation.

Problem: The Weil (self-)pairing $e(P, P)$ is always 1.

Can we construct non-trivial self-pairings to make this attack work?

CLASS GROUP ACTION BASED CRYPTOGRAPHY

Crypto 101: Diffie-Hellman key exchange

Let $X=\langle x\rangle$ be a cyclic group of order n.

Alice
$a \stackrel{\$ \mathbb{Z} / n \mathbb{Z}}{\leftarrow}$

Bob

$$
b \stackrel{\$ \mathbb{Z} / n \mathbb{Z}}{\leftarrow}
$$

Computes $\left(x^{b}\right)^{a}$

Crypto 101: Diffie-Hellman key exchange

Let $X=\langle x\rangle$ be a cyclic group of order n.
$\frac{\text { Alice }}{a \stackrel{\$}{\leftarrow} \mathbb{Z} / n \mathbb{Z}}$

Bob

$$
b \stackrel{\$ \mathbb{Z} / n \mathbb{Z}}{\leftarrow}
$$

Computes $\left(x^{b}\right)^{a}$
$x^{a b}$ is the shared key
Computes $\left(x^{a}\right)^{b}$

In [Cou06; RS06] this construction is generalized to group actions...

CRS: Diffie-Hellman with isogenies, 1

$E_{0}=$ an ordinary elliptic curve defined over \mathbb{F}_{q},

$$
\mathcal{O}=\mathbb{Z}[\sqrt{-d}] \cong \operatorname{End}\left(E_{0}\right)
$$

Alice

$$
\frac{\mathrm{Bob}}{[\mathfrak{b}] \stackrel{\$}{\stackrel{ }{2}} \mathrm{Cl}(\mathcal{O})}
$$

$$
\begin{array}{ll}
{[\mathfrak{a}] \stackrel{\$}{\stackrel{~}{4}} \mathrm{Cl}(\mathcal{O})} & {[\mathfrak{b}] \stackrel{\$}{\stackrel{ }{4} \mathrm{Cl}(\mathcal{O})}} \\
E_{0} \xrightarrow{\varphi_{\mathfrak{a}}}[\mathfrak{a}] E_{0} & E_{0} \stackrel{\varphi_{\varphi}}{\longrightarrow}[\mathfrak{b}] E_{0}
\end{array}
$$

Computes $[\mathfrak{a}]\left([\mathfrak{b}] E_{0}\right)$
Computes $[\mathfrak{b}]\left([\mathfrak{a}] E_{0}\right)$
$[\mathfrak{a b}] E_{0}$ is the shared key

CRS: Diffie-Hellman with isogenies, 2

$E_{0}=$ an ordinary elliptic curve defined over \mathbb{F}_{q},
$\mathcal{O}=\mathbb{Z}[\sqrt{-d}] \cong \operatorname{End}\left(E_{0}\right) \quad$ (some imaginary quadratic order) (also $\mathcal{O}=\mathbb{Z}[(1+\sqrt{-d}) / 2]$ is fine if $d \equiv 3 \bmod 4$).

CRS: Diffie-Hellman with isogenies, 2

$E_{0}=$ an ordinary elliptic curve defined over \mathbb{F}_{q},

$$
\begin{aligned}
& \mathcal{O}=\mathbb{Z}[\sqrt{-d}] \cong \operatorname{End}\left(E_{0}\right) \quad \text { (some imaginary quadratic order) } \\
& \text { (also } \mathcal{O}=\mathbb{Z}[(1+\sqrt{-d}) / 2] \text { is fine if } d \equiv 3 \bmod 4)
\end{aligned}
$$

Consider the set
$X=\left\{E\right.$ over \mathbb{F}_{q} which are \mathbb{F}_{q}-isogenous to E_{0} and s.t. $\left.\operatorname{End}(E) \cong \mathcal{O}\right\}$ and the group

$$
G=\text { class group of } \mathcal{O}
$$

CRS: Diffie-HeLlman with isogenies, 2

$E_{0}=$ an ordinary elliptic curve defined over \mathbb{F}_{q},

$$
\mathcal{O}=\mathbb{Z}[\sqrt{-d}] \cong \operatorname{End}\left(E_{0}\right) \quad \text { (some imaginary quadratic order) }
$$

$$
\text { (also } \mathcal{O}=\mathbb{Z}[(1+\sqrt{-d}) / 2] \text { is fine if } d \equiv 3 \bmod 4) .
$$

Consider the set
$X=\left\{E\right.$ over \mathbb{F}_{q} which are \mathbb{F}_{q}-isogenous to E_{0} and s.t. $\left.\operatorname{End}(E) \cong \mathcal{O}\right\}$ and the group

$$
G=\text { class group of } \mathcal{O}
$$

Action of \mathbf{G} over \boldsymbol{X}

$[\mathfrak{a}] E=$ codomain of the isogeny $\varphi_{\mathfrak{a}}$ with kernel $\operatorname{ker}\left(\varphi_{\mathfrak{a}}\right)=\bigcap_{\alpha \in \mathfrak{a}} \operatorname{ker}(\alpha)$.

CSIDH: Diffie-Hellman with (Frobenius-Oriented) isogenies

$E_{0}=$ a supersingular elliptic curve defined over \mathbb{F}_{p}, for $p \equiv 3 \bmod 4$. $\pi=$ the Frobenius endomorphism on E, i.e. $\pi:(x, y) \mapsto\left(x^{p}, y^{p}\right)$.
$\mathcal{O}=\mathbb{Z}[\sqrt{-p}]$.
$\iota_{0}=$ the map $\sqrt{-p} \mapsto \pi$.
The pair $\left(E_{0}, \iota_{0}\right)$ is called an \mathcal{O}-orientation. In particular, $\iota_{0}(\mathcal{O})=\operatorname{End}_{\mathbb{F}_{p}}\left(E_{0}\right)$.

CSIDH: Diffie-Hellman with (Frobenius-Oriented) isogenies

$E_{0}=$ a supersingular elliptic curve defined over \mathbb{F}_{p}, for $p \equiv 3 \bmod 4$.
$\pi=$ the Frobenius endomorphism on E, i.e. $\pi:(x, y) \mapsto\left(x^{p}, y^{p}\right)$.
$\mathcal{O}=\mathbb{Z}[\sqrt{-p}]$.
$\iota_{0}=$ the map $\sqrt{-p} \mapsto \pi$.
The pair $\left(E_{0}, \iota_{0}\right)$ is called an \mathcal{O}-orientation.
In particular, $\iota_{0}(\mathcal{O})=\operatorname{End}_{\mathbb{F}_{p}}\left(E_{0}\right)$.
Define the set

$$
X=\left\{(E, \iota) \text { over } \mathbb{F}_{p} \text { oriented by } \mathcal{O} \text { and } \mathbb{F}_{p} \text {-isogenous to } E_{0}\right\}
$$

The group G and its action over X are defined exactly as before.

OSIDH: Diffie-Hellman with (oriented) isogenies

More generally...
$E_{0}=$ an supersingular elliptic curve defined over \mathbb{F}_{q}.
$\mathcal{O}=\mathbb{Z}[\sqrt{-d}]$ for some positive integer d.
$\iota_{0}=$ an injective homomorphism $\mathcal{O} \hookrightarrow \operatorname{End}\left(E_{0}\right)$.

OSIDH: Diffie-Hellman with (oriented) isogenies

More generally...

$$
\begin{aligned}
E_{0} & =\text { an supersingular elliptic curve defined over } \mathbb{F}_{q} . \\
\mathcal{O} & =\mathbb{Z}[\sqrt{-d}] \text { for some positive integer } d . \\
\iota_{0} & =\text { an injective homomorphism } \mathcal{O} \hookrightarrow \operatorname{End}\left(E_{0}\right) .
\end{aligned}
$$

Define the set

$$
\begin{aligned}
& \qquad X=\left\{(E, \iota) \text { over } \mathbb{F}_{q} \text { oriented by } \mathcal{O}\right. \text { and s.t. there exists an } \\
& \underbrace{\mathcal{O} \text { oriented }}_{\text {satisfying } \iota(\sqrt{-d}) \circ \alpha=\alpha \circ \iota_{0}(\sqrt{-d})} \text { isogeny } \alpha: E_{0} \rightarrow E\} .
\end{aligned}
$$

The group G and its action over X are defined exactly as before.

Weak instances

Bottom line

Given p, there are lots of imaginary quadratic orders $\mathcal{O}=\mathbb{Z}[\sqrt{-d}]$ and orientations to choose from to build a class group action based cryptosystem.

Weak instances

Bottom line

Given p, there are lots of imaginary quadratic orders $\mathcal{O}=\mathbb{Z}[\sqrt{-d}]$ and orientations to choose from to build a class group action based cryptosystem.

Which choices are bad?

- Trivial: d small.
- Our work: d with a factor $\ell^{2 r}$ for some small ℓ.

Self-PAIRINGS

Self-Pairings

$$
\begin{aligned}
& E=\text { an elliptic curve } E \text { over } \mathbb{F}_{q} . \\
& G=\text { a finite subgroup of } E .
\end{aligned}
$$

A self-pairing on G is a map

$$
f: G \rightarrow{\overline{\mathbb{F}_{q}}}^{*}
$$

such that $f(\lambda P)=f(P)^{\lambda^{2}}$ for all $P \in G$ and $\lambda \in \mathbb{Z}$.

Self-Pairings

$$
\begin{aligned}
& E=\text { an elliptic curve } E \text { over } \mathbb{F}_{q} . \\
& G=\text { a finite subgroup of } E .
\end{aligned}
$$

A self-pairing on G is a map

$$
f: G \rightarrow{\overline{\mathbb{F}_{q}}}^{*}
$$

such that $f(\lambda P)=f(P)^{\lambda^{2}}$ for all $P \in G$ and $\lambda \in \mathbb{Z}$.
Given

- an isogeny $\varphi: E \rightarrow E^{\prime}$,
- a self-pairing $f: G \rightarrow{\overline{\mathbb{F}_{q}}}^{*}$ on E,
- a self-pairing $f^{\prime}: G^{\prime} \rightarrow{\overline{\mathbb{F}_{q}}}^{*}$ on E^{\prime},
f and f^{\prime} are compatible with φ if

$$
\varphi(G) \subseteq G^{\prime} \quad \text { and } \quad f^{\prime}(\varphi(P))=f(P)^{\operatorname{deg}(\varphi)}
$$

for all $P \in G$.

Attack idea for class group action based cryptosystems

$\mathcal{O}=\mathbb{Z}[\sqrt{-d}]$.
$E, E^{\prime}=\mathcal{O}$-oriented elliptic curves.
$[\mathfrak{a}]=\mathrm{a}($ secret $)$ ideal class of $\mathrm{Cl}(\mathcal{O})$ such that $E^{\prime}=[\mathfrak{a}] E$.
$\varphi_{\mathfrak{a}}=$ (secret) isogeny corresponding to \mathfrak{a}.
We assume that $\operatorname{deg}\left(\varphi_{\mathfrak{a}}\right)$ is smooth and known to the attacker.

Sketch of the attack

Attack idea for class group action based cryptosystems

More detailed sketch of the attack

$\ell=$ small prime not dividing $\operatorname{deg}\left(\varphi_{\mathfrak{a}}\right)$.
$G=$ (suitable) cyclic subgroup of E of order $\ell^{2 r}>\operatorname{deg}\left(\varphi_{\mathfrak{a}}\right)$.
$G^{\prime}=\varphi_{\mathfrak{a}}(G)$.
$P, P^{\prime}=$ generators of G, G^{\prime}.
In particular, $P^{\prime}=\lambda \varphi_{\mathfrak{a}}(P)$ for some λ.
$f, f^{\prime}=$ self-pairings on G, G^{\prime} compatible with all \mathcal{O}-oriented isogenies $\varphi: E \rightarrow E^{\prime}$.

- Compute $f^{\prime}\left(P^{\prime}\right)=f(P)^{\lambda^{2} \operatorname{deg}\left(\varphi_{\mathrm{a}}\right)}$.
- Deduce λ by comparing $f(P)$ and $f^{\prime}\left(P^{\prime}\right)$.

Attack idea for class group action based cryptosystems

More detailed sketch of the attack

$\ell=$ small prime not dividing $\operatorname{deg}\left(\varphi_{\mathfrak{a}}\right)$.
$G=$ (suitable) cyclic subgroup of E of order $\ell^{2 r}>\operatorname{deg}\left(\varphi_{\mathfrak{a}}\right)$.
$G^{\prime}=\varphi_{\mathfrak{a}}(G)$.
$P, P^{\prime}=$ generators of G, G^{\prime}.
In particular, $P^{\prime}=\lambda \varphi_{\mathfrak{a}}(P)$ for some λ.
$f, f^{\prime}=$ self-pairings on G, G^{\prime} compatible with all \mathcal{O}-oriented isogenies $\varphi: E \rightarrow E^{\prime}$.

- Compute $f^{\prime}\left(P^{\prime}\right)=f(P)^{\lambda^{2} \operatorname{deg}\left(\varphi_{a}\right)}$.
- Deduce λ by comparing $f(P)$ and $f^{\prime}\left(P^{\prime}\right)$.

Possible problems:

- f and f^{\prime} might not exist!
- Computing f and f^{\prime} might be inefficient.

OUR MAIN RESULT

From [Cas+23a, Prop. 4.8 and §5]:
Define $m=\ell^{2 r} \cdot \operatorname{gcd}(2, \ell)$ and $p=\operatorname{char}\left(\mathbb{F}_{q}\right)$.
Let $\Delta_{\mathcal{O}}$ be the discriminant of \mathcal{O}.
Then f and f^{\prime} exist if and only if

- $p \nmid m$,
- $m \mid \Delta_{\mathcal{O}}$,
- writing $\Delta_{\mathcal{O}}=-2^{r} n$ for n odd, we have:
- if $r=2$ then $m \mid \Delta_{\mathcal{O}} / 2$,
- if $r \geq 3$ then $m \mid \Delta_{\mathcal{O}} / 4$.

OUR MAIN RESULT

From [Cas+23a, Prop. 4.8 and §5]:
Define $m=\ell^{2 r} \cdot \operatorname{gcd}(2, \ell)$ and $p=\operatorname{char}\left(\mathbb{F}_{q}\right)$.
Let $\Delta_{\mathcal{O}}$ be the discriminant of \mathcal{O}.
Then f and f^{\prime} exist if and only if

- $p \nmid m$,
- $m \mid \Delta_{\mathcal{O}}$,
- writing $\Delta_{\mathcal{O}}=-2^{r} n$ for n odd, we have:
- if $r=2$ then $m \mid \Delta_{\mathcal{O}} / 2$,
- if $r \geq 3$ then $m \mid \Delta_{\mathcal{O}} / 4$.

Good news: CSIDH is not affected by our attack (since $\Delta_{\mathcal{O}}=-4 p$)

COMPUTING SELF-PAIRINGS (WHEN THEY EXIST!)

For the values of m allowed by our main result, $f(P)$ can be computed as follows...

Frobenius-oriented
Frey-Rück Tate pairing
Tool

Time complexity $\quad O\left(\log ^{2} m \log ^{1+\varepsilon} q\right) \quad$| $O\left(\Delta_{\mathcal{O}}^{2+\varepsilon} m^{2+\varepsilon} \log ^{1+\varepsilon} q\right)$ |
| :---: |
| often: $O\left(m^{4+\varepsilon} \log ^{1+\varepsilon} q\right)$ |

Affected protocols

Which choices of \mathcal{O} should be avoided?

For sure: $\Delta_{\mathcal{O}}$ with a factor $\ell^{2 r}$ for some small prime ℓ, in the Frobenius-oriented case.

Probably: $\Delta_{\mathcal{O}}$ with a factor $\ell^{2 r}$ for some smooth integer ℓ, in the Frobenius-oriented case.

To feel $\mathbf{1 0 0} \%$ safe from our attack: $\Delta_{\mathcal{O}}$ with many small factors.

Open problems

- Can we compute self-pairings more efficiently in the non-Frobenius-oriented case?

Open problems

- Can we compute self-pairings more efficiently in the non-Frobenius-oriented case?
- In the Frobenius-oriented case, our attack can be generalized to any smooth ℓ (not necessarily prime). The expected running time of the resulting attack is subexponential [Cas+23a, Prop. 6.5]. Is it possible to give a sharper estimate?

Open problems

- Can we compute self-pairings more efficiently in the non-Frobenius-oriented case?
- In the Frobenius-oriented case, our attack can be generalized to any smooth ℓ (not necessarily prime). The expected running time of the resulting attack is subexponential [Cas+23a, Prop. 6.5]. Is it possible to give a sharper estimate?
- Can we exploit self-pairings of order $<\operatorname{deg}\left(\varphi_{\mathfrak{a}}\right)$ to perform some attack?

Open problems

- Can we compute self-pairings more efficiently in the non-Frobenius-oriented case?
- In the Frobenius-oriented case, our attack can be generalized to any smooth ℓ (not necessarily prime). The expected running time of the resulting attack is subexponential [Cas+23a, Prop. 6.5]. Is it possible to give a sharper estimate?
- Can we exploit self-pairings of order $<\operatorname{deg}\left(\varphi_{\mathfrak{a}}\right)$ to perform some attack?
- A few extra values of m are allowed if we only require f to be compatible with \mathcal{O}-oriented isogenies of degree coprime with m [Cas+23b, Prop. A.1]. Is there an effective construction for these extra cases?

EsSENTIAL BIBLIOGRAPHYI

[CD23] W. Castryck and T. Decru. "An Efficient Key Recovery Attack on SIDH". In: Advances in Cryptology - EUROCRYPT 2023. Ed. by C. Hazay and M. Stam. Cham: Springer Nature Switzerland, 2023, pp. 423-447.
[Cas+23a] W. Castryck, M. Houben, S.-P. Merz, M. Mula, S. van Buuren, and F. Vercauteren. "Weak Instances of Class Group Action Based Cryptography via Self-pairings". In: Advances in Cryptology - CRYPTO 2023. Ed. by H. Handschuh and A. Lysyanskaya. Cham: Springer Nature Switzerland, 2023, pp. 762-792.
[Cas+23b] W. Castryck, M. Houben, S.-P. Merz, M. Mula, S. van Buuren, and F. Vercauteren. Weak instances of class group action based cryptography via self-pairings. Full version on ePrint Archive available at
https://eprint.iacr.org/2023/549. 2023.

EsSential bibliography II

[Cas+18] W. Castryck, T. Lange, C. Martindale, L. Panny, and J. Renes. CSIDH: An Efficient Post-Quantum Commutative Group Action. Ed. by T. Peyrin and S. Galbraith. Cham, 2018.
[CK20] L. Colò and D. Kohel. "Orienting supersingular isogeny graphs". In: J. Math. Cryptol. 14.1 (2020), pp. 414-437.
[Cou06] J.-M. Couveignes. Hard Homogeneous Spaces. Cryptology ePrint Archive, Report 2006/291. 2006. URL:
https://eprint.iacr.org/2006/291.
[Mai+23] L. Maino, C. Martindale, L. Panny, G. Pope, and
B. Wesolowski. "A Direct Key Recovery Attack on SIDH".

Advances in Cryptology - EUROCRYPT 2023. Ed. by C. Hazay
and M. Stam. Cham: Springer Nature Switzerland, 2023,
pp. 448-471.

Essential bibliography III

[Rob23] D. Robert. "Breaking SIDH in Polynomial Time". In:
Advances in Cryptology - EUROCRYPT 2023. Ed. by C. Hazay and M. Stam. Cham: Springer Nature Switzerland, 2023, pp. 472-503.
[RS06]
A. Rostovtsev and A. Stolbunov. Public-key cryptosystem based on isogenies. Cryptology ePrint Archive, Report 2006/145. https://eprint.iacr.org/2006/145. 2006.

APPENDIX 1: PAIRINGS

Weil pairing

$p=\mathrm{a}$ (large) prime.
$\mu_{n}=n$-th roots of unity in $\overline{\mathbb{F}_{p}}$.
$E=$ an EC defined over \mathbb{F}_{q}.
$n=$ positive integer coprime with p.
$\mathbb{F}_{q}=$ a finite field containing μ_{n}.
$E[n]=$ group of points of n-torsion of E

Weil pairing

$p=\mathrm{a}$ (large) prime. $n=$ positive integer coprime with p.
$\mu_{n}=n$-th roots of unity in $\overline{\mathbb{F}_{p}} . \quad \mathbb{F}_{q}=$ a finite field containing μ_{n}.
$E=$ an EC defined over $\mathbb{F}_{q} . \quad E[n]=$ group of points of n-torsion of E
The n-Weil pairing is a map

$$
e(\cdot, \cdot)=e_{E, n}(\cdot, \cdot): \quad E[n] \times E[n] \rightarrow \mu_{n}
$$

which is

- Bilinear: $\quad e(P+R, Q)=e(P, Q) e(R, Q)$ for all $P, Q, R \in E[n]$.
- Nondegenerate: if $e(P, Q)=1$ for all $Q \in E[n]$, then $P=0$.
- Alternating:

$$
e(P, Q)=e(Q, P)^{-1} \text { for all } P, Q \in E[n]
$$

- Compatible with every isogeny: if $\varphi: E \rightarrow E^{\prime}$ is an isogeny, then

$$
e(\varphi(P), \varphi(Q))=e(P, Q)^{\operatorname{deg}(\varphi)}
$$

The power of Pairings

Consider a (secret) isogeny

$$
\varphi: E \rightarrow E^{\prime}
$$

What can be done with pairings?

Let P, Q be generators of $E[n]$.

- Given $\varphi(P), \varphi(Q)$
$\rightsquigarrow \quad$ recover $\operatorname{deg}(\varphi) \bmod n$.

THE POWER OF PAIRINGS

Consider a (secret) isogeny

$$
\varphi: E \rightarrow E^{\prime}
$$

What can be done with pairings?

Let P, Q be generators of $E[n]$.

- Given $\varphi(P), \varphi(Q)$
- Given $\varphi(P)$ and $\operatorname{deg}(\varphi)$, if $n^{2}>\operatorname{deg}(\varphi) \rightsquigarrow \quad$ recover φ itself!
(using SIDH attack)

Appendix 2: ORIENTATIONS

Including the supersingular case

What happens if we use supersingular elliptic curves?

Problem: if E is supersingular, then $\operatorname{End}(E)$ is NOT an imaginary quadratic order!

Bad news

$\operatorname{End}(E)$ is non-commutative, $\mathrm{Cl}(\operatorname{End}(E))$ is not even a group.

Including the supersingular case

What happens if we use supersingular elliptic curves?

Problem: if E is supersingular, then $\operatorname{End}(E)$ is NOT an imaginary quadratic order!

Bad news

$\operatorname{End}(E)$ is non-commutative, $\mathrm{Cl}(\operatorname{End}(E))$ is not even a group.

Good news
For each non-scalar $\tau \in \operatorname{End}(E)$,
$\mathcal{O}_{\tau}=\{\sigma \in \operatorname{End}(E) \mid \sigma \circ \tau=\tau \circ \sigma\}$ is an imaginary quadratic order.

Including the supersingular case

What happens if we use supersingular elliptic curves?

Problem: if E is supersingular, then $\operatorname{End}(E)$ is NOT an imaginary quadratic order!

Bad news

Good news

$\operatorname{End}(E)$ is non-commutative, $\mathrm{Cl}(\operatorname{End}(E))$ is not even a group.

For each non-scalar $\tau \in \operatorname{End}(E)$,
$\mathcal{O}_{\tau}=\{\sigma \in \operatorname{End}(E) \mid \sigma \circ \tau=\tau \circ \sigma\}$ is an imaginary quadratic order.
Given $\mathcal{O}=\mathbb{Z}[\sqrt{-d}]$, we say that (E, ι) is an \mathcal{O}-oriented elliptic curve if there is an injective ring homomorphism

$$
\iota: \mathcal{O} \hookrightarrow \operatorname{End}(E) .
$$

Conclusion: given an \mathcal{O}-orientation (E, ι), the subring $\iota(\mathcal{O}) \subseteq \operatorname{End}(E)$ is an imaginary quadratic order.

ApPendix 3: Applications of self-PAIRINGS

The power of self-pairings

$S=\left\{\right.$ elliptic curves over \mathbb{F}_{q}, oriented by their Frobenius $\}$.
$\mathrm{Cl}(\mathcal{O})=$ class group corresponding to the Frobenius orientation.
Consider some orbit of the action of $\mathrm{Cl}(\mathcal{O})$ on S .

The power of self-Pairings

$$
\begin{aligned}
S & =\left\{\text { elliptic curves over } \mathbb{F}_{q}, \text { oriented by their Frobenius }\right\} . \\
\mathrm{Cl}(\mathcal{O}) & =\text { class group corresponding to the Frobenius orientation. }
\end{aligned}
$$

Consider some orbit of the action of $\mathrm{Cl}(\mathcal{O})$ on S .
What can be done with self-pairings?

- Given E and $[\mathfrak{a}] E$, recover \mathfrak{a} if $\Delta_{\mathcal{O}}$ has a factor $\ell^{2 r}$ and $N(\mathfrak{a})<\ell^{2 r}$. [1, Prop. 6.3]

The power of self-Pairings

$$
\begin{aligned}
S & =\left\{\text { elliptic curves over } \mathbb{F}_{q}, \text { oriented by their Frobenius }\right\} \\
\mathrm{Cl}(\mathcal{O}) & =\text { class group corresponding to the Frobenius orientation. }
\end{aligned}
$$

Consider some orbit of the action of $\mathrm{Cl}(\mathcal{O})$ on S .
What can be done with self-pairings?

- Given E and $[\mathfrak{a}] E$, recover \mathfrak{a} if $\Delta_{\mathcal{O}}$ has a factor $\ell^{2 r}$ and $N(\mathfrak{a})<\ell^{2 r}$. [1, Prop. 6.3]
- If q is $1 \bmod 4$ and trace of Frobenius is $0 \bmod 4$, breaking the DDH problem:

$$
\begin{array}{ll}
\text { Distinguish the tuple } & (E,[\mathfrak{a}] E,[\mathfrak{b}] E,[\mathfrak{a b}] E) \\
\text { from the tuple } & (E,[\mathfrak{a}] E,[\mathfrak{b}] E,[\mathfrak{c}] E) .
\end{array}
$$

The power of self-Pairings

$S=\left\{\right.$ elliptic curves over \mathbb{F}_{q}, oriented by their Frobenius $\}$.
$\mathrm{Cl}(\mathcal{O})=$ class group corresponding to the Frobenius orientation.
Consider some orbit of the action of $\mathrm{Cl}(\mathcal{O})$ on S .
What can be done with self-pairings?

- Given E and $[\mathfrak{a}] E$, recover \mathfrak{a} if $\Delta_{\mathcal{O}}$ has a factor $\ell^{2 r}$ and $N(\mathfrak{a})<\ell^{2 r}$. [1, Prop. 6.3]
- If q is $1 \bmod 4$ and trace of Frobenius is $0 \bmod 4$, breaking the DDH problem:

$$
\begin{array}{ll}
\text { Distinguish the tuple } & (E,[\mathfrak{a}] E,[\mathfrak{b}] E,[\mathfrak{a b}] E) \\
\text { from the tuple } & (E,[\mathfrak{a}] E,[\mathfrak{b}] E,[\mathfrak{c}] E) .
\end{array}
$$

- Walking the ℓ-isogeny volcano.

The hoped-FOR POWER OF SELF-PAIRINGS

$S=\left\{\right.$ elliptic curves over \mathbb{F}_{q}, oriented by their Frobenius some endomorphism $\}$.
 $\mathrm{Cl}(\mathcal{O})=$ class group corresponding to the Frobenius orientation.

Consider some orbit of the action of $\mathrm{Cl}(\mathcal{O})$ on S .

The hoped-for power of self-pairings

$S=\left\{\right.$ elliptic curves over \mathbb{F}_{q}, oriented by their Frobenius some endomorphism $\}$.
$\mathrm{Cl}(\mathcal{O})=$ class group corresponding to the Frobenius orientation.
Consider some orbit of the action of $\mathrm{Cl}(\mathcal{O})$ on S .

What ean might be done with self-pairings?

- Given E and $[\mathfrak{a}] E$, recover \mathfrak{a} if $\Delta_{\mathcal{O}}$ has a factor ℓ^{r} and $N(\mathfrak{a})<\ell^{r}$.

The hoped-for power of self-pairings

$S=\left\{\right.$ elliptic curves over \mathbb{F}_{q}, oriented by their Frobenius some endomorphism $\}$.
$\mathrm{Cl}(\mathcal{O})=$ class group corresponding to the Frobenius orientation.
Consider some orbit of the action of $\mathrm{Cl}(\mathcal{O})$ on S .

What ean might be done with self-pairings?

- Given E and $[\mathfrak{a}] E$, recover \mathfrak{a} if $\Delta_{\mathcal{O}}$ has a factor ℓ^{r} and $N(\mathfrak{a})<\ell^{r}$.
- Breaking the DDH problem, $i f q$ is $1 \bmod 4$ and trace of Frobenius is 0 mod 4, (under suitable assumptions on $\Delta_{\mathcal{O}}$).

The hoped-for power of self-pairings

$S=\left\{\right.$ elliptic curves over \mathbb{F}_{q}, oriented by their Frobenius some endomorphism $\}$.
$\mathrm{Cl}(\mathcal{O})=$ class group corresponding to the Frobenius orientation.
Consider some orbit of the action of $\mathrm{Cl}(\mathcal{O})$ on S .

What ean might be done with self-pairings?

- Given E and $[\mathfrak{a}] E$, recover \mathfrak{a} if $\Delta_{\mathcal{O}}$ has a factor ℓ^{r} and $N(\mathfrak{a})<\ell^{r}$.
- Breaking the DDH problem, $i f q$ is $1 \bmod 4$ and trace of Frobenius is 0 mod 4, (under suitable assumptions on $\Delta_{\mathcal{O}}$).
- Walking the ℓ-isogeny volcano.

APPENDIX 4: OUR MAIN RESULT (FULL VERSION)

Self-Pairings compatible with all oriented endomorphisms

From [Cas+23b, Prop. 4.8].

PROPOSITION 1

$$
\begin{aligned}
\mathcal{O} & =\text { imaginary quadratic order. } & \Delta_{\mathcal{O}} & =\text { discriminant of } \mathcal{O} . \\
E & =\mathcal{O} \text {-oriented } E C \text { over } \mathbb{F}_{q .} & G & =\text { cyclic subgroup of } E . \\
f & =\text { self-pairing } G \rightarrow \mathbb{F}_{q}^{*} . & m & =\#\langle f(G)\rangle .
\end{aligned}
$$

Assume that f is compatible with \mathcal{O}-oriented endomorphisms. Then

- $\operatorname{char}\left(\mathbb{F}_{q}\right) \nmid m$,
- $m \mid \Delta_{\mathcal{O}}$,
- Writing $\Delta_{\mathcal{O}}=-2^{r} n$ for n odd, we have:
- if $r=2$ then $m \mid \Delta_{\mathcal{O}} / 2$,
- if $r \geq 3$ then $m \mid \Delta_{\mathcal{O}} / 4$.

Self-pairings compatible with (most!) oriented endomorphisms

 From [Cas+23b, Prop. A.1].
Proposition 2

$\mathcal{O}=$ imaginary quadratic order. $\quad \Delta_{\mathcal{O}}=$ discriminant of \mathcal{O}.
$E=\mathcal{O}$-oriented $E C$ over \mathbb{F}_{q}. $G=$ cyclic subgroup of E.
$f=$ self-pairing $G \rightarrow \mathbb{F}_{q}^{*}$.

$$
m=\#\langle f(G)\rangle
$$

Assume that f is compatible with \mathcal{O}-oriented endomorphisms of norm coprime with m. Then

- $\operatorname{char}\left(\mathbb{F}_{q}\right) \nmid m$,
- m- Δ_{0},
- Writing $\Delta_{\mathcal{O}}=-2^{r} n$ for n odd, we have:
- if $r=0$ and $n \equiv 3 \bmod 8$ then $m \mid \Delta_{\mathcal{O}}$,
- if $r=2$ and $n \equiv 3 \bmod 4$ then $m \mid \Delta_{\mathcal{O}} / 2$,
- ifr $=3,4$ then $m \mid \Delta_{\mathcal{O}} / 4$,
- ifr $=0$ and $n \equiv 7 \bmod 8$ then $m \mid 2 \Delta_{\mathcal{O}}$,
- if $r=2$ and $n \equiv 1 \bmod 4$ then $m \mid \Delta_{\mathcal{O}}$,
- ifr ≥ 5 then $m \mid \Delta_{\mathcal{O}} / 2$.

