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MOTIVATION



SIDH ATTACK + SELF-PAIRINGS: A DEADLY COMBINATION?

Consider a public-key cryptosystem where the secret key is an
isogeny φ of known, smooth degree:
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OUR ATTACK IDEA

Fact: in a class group action based cryptosystem, one can always find
λφ(P) for some (unknown) λ ∈ Z.

Goal of the attack: finding λ.

Naive approach:

• Compute the Weil (self-)pairing
e(λφ(P), λφ(P)) = e(P, P)λ2 deg(φ).

• Recover λ using a dlog computation.

φ(P) SIDH
attack

φ

Problem: The Weil (self-)pairing e(P, P) is always 1.

Can we construct non-trivial self-pairings
to make this attack work?
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CLASS GROUP ACTION BASED CRYPTOGRAPHY



CRYPTO 101: DIFFIE-HELLMAN KEY EXCHANGE

Let X = ⟨x⟩ be a cyclic group of order n.

Alice Bob

a $← Z⧸nZ b $← Z⧸nZ
xa

xb

Computes (xb)a Computes (xa)b

xab is the shared key

In [Cou06; RS06] this construction is generalized to group actions...
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CRS: DIFFIE-HELLMAN WITH ISOGENIES, 1

E0 = an ordinary elliptic curve defined over Fq,

O = Z[
√
−d] ∼= End(E0).

Alice Bob

[a]
$← Cl(O) [b]

$← Cl(O)
E0

φa−→ [a]E0 E0
φb→ [b]E0

[a]E0

[b]E0

Computes [a]([b]E0) Computes [b]([a]E0)

[ab]E0 is the shared key
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CRS: DIFFIE-HELLMAN WITH ISOGENIES, 2

E0 = an ordinary elliptic curve defined over Fq,

O = Z[
√
−d] ∼= End(E0) (some imaginary quadratic order)

(alsoO = Z
[
(1 +

√
−d)/2

]
is fine if d ≡ 3 mod 4 ).

Consider the set

X = { E over Fq which are Fq-isogenous to E0 and s.t. End(E) ∼= O }
and the group

G = class group ofO.

Action of G over X

[a] ∈ G

E ∈ X

[a]E = codomain of the isogeny φa

with kernel ker(φa) =
⋂

α∈a ker(α).
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CSIDH: DIFFIE-HELLMAN WITH (FROBENIUS-ORIENTED) ISOGENIES

E0 = a supersingular elliptic curve defined over Fp, for p ≡ 3 mod 4.
π = the Frobenius endomorphism on E, i.e. π : (x, y) 7→ (xp, yp).
O = Z

[√
−p

]
.

ι0 = the map
√
−p 7→ π.

The pair (E0, ι0) is called anO-orientation.
In particular, ι0(O) = EndFp(E0).

Define the set

X = { (E, ι) over Fp oriented byO and Fp-isogenous to E0 }.

The group G and its action over X are defined exactly as before.
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OSIDH: DIFFIE-HELLMAN WITH (ORIENTED) ISOGENIES

More generally...

E0 = an supersingular elliptic curve defined over Fq.

O = Z
[√
−d

]
for some positive integer d.

ι0 = an injective homomorphismO ↪→ End(E0).

Define the set

X = { (E, ι) over Fq oriented byO and s.t. there exists an
O-oriented︸ ︷︷ ︸

satisfying ι(
√
−d) ◦ α = α ◦ ι0

(√
−d

)isogeny α : E0 → E }.

The group G and its action over X are defined exactly as before.
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WEAK INSTANCES

Bottom line
Given p, there are lots of imaginary quadratic ordersO = Z[

√
−d]

and orientations to choose from to build a class group action based
cryptosystem.

Which choices are bad?

Trivial: d small.

Our work: d with a factor ℓ2r for some small ℓ.
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SELF-PAIRINGS



SELF-PAIRINGS

E = an elliptic curve E over Fq.
G = a finite subgroup of E.

A self-pairing on G is a map

f : G→ Fq
∗

such that f(λP) = f(P)λ2 for all P ∈ G and λ ∈ Z.

Given
an isogeny φ : E → E′,
a self-pairing f : G→ Fq

∗ on E,
a self-pairing f ′ : G′ → Fq

∗ on E′,
f and f ′ are compatible with φ if

φ(G) ⊆ G′ and f ′(φ(P)) = f(P)deg(φ)

for all P ∈ G.
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ATTACK IDEA FOR CLASS GROUP ACTION BASED CRYPTOSYSTEMS

P

E

φa φ(P)

E′

O = Z[
√
−d].

E, E′ = O-oriented elliptic curves.
[a] = a (secret) ideal class of Cl(O) such that E′ = [a]E.
φa = (secret) isogeny corresponding to a.

We assume that deg(φa) is smooth and known to the attacker.

Sketch of the attack

Self-pairings compatible with all
O-oriented isogenies φ : E → E′ φa(P) SIDH

attack
φa

Possible problems:
f and f ′ might not exist!
Computing f and f ′ might be inefficient.
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ATTACK IDEA FOR CLASS GROUP ACTION BASED CRYPTOSYSTEMS

More detailed sketch of the attack

ℓ = small prime not dividing deg(φa).
G = (suitable) cyclic subgroup of E

of order ℓ2r > deg(φa).
G′ = φa(G).
P, P′ = generators of G,G′.

In particular, P′ = λφa(P) for some λ.
f , f ′ = self-pairings on G,G′ compatible

with allO-oriented isogenies φ : E → E′.
• Compute f ′(P′) = f(P)λ2 deg(φa).
• Deduce λ by comparing f(P) and f ′(P′).
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OUR MAIN RESULT

From [Cas+23a, Prop. 4.8 and §5]:

Define m = ℓ2r · gcd(2, ℓ) and p = char(Fq).
Let ∆O be the discriminant ofO.
Then f and f ′ exist if and only if

p ∤ m,
m | ∆O,
writing ∆O = −2rn for n odd, we have:

if r = 2 then m | ∆O/2,
if r ≥ 3 then m | ∆O/4.

Good news: CSIDH is not affected by our attack
(since ∆O = −4p)
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COMPUTING SELF-PAIRINGS (WHEN THEY EXIST!)

For the values of m allowed by our main result, f(P) can be computed
as follows...

Frobenius-oriented General case

Tool Frey–Rück Tate pairing Weil pairing on
large extension of Fq

Time complexity O(log2 m log1+ε q) O(∆2+ε
O m2+ε log1+ε q)

often: O(m4+ε log1+ε q)
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AFFECTED PROTOCOLS

Which choices of O should be avoided?

For sure: ∆O with a factor ℓ2r for some small prime ℓ, in the
Frobenius-oriented case.

Probably: ∆O with a factor ℓ2r for some smooth integer ℓ, in the
Frobenius-oriented case.

To feel 100% safe from our attack: ∆O with many small factors.
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OPEN PROBLEMS

Can we compute self-pairings more efficiently in the
non-Frobenius-oriented case?

In the Frobenius-oriented case, our attack can be generalized to
any smooth ℓ (not necessarily prime). The expected running time
of the resulting attack is subexponential [Cas+23a, Prop. 6.5]. Is it
possible to give a sharper estimate?

Can we exploit self-pairings of order < deg(φa) to perform some
attack?

A few extra values of m are allowed if we only require f to be
compatible withO-oriented isogenies of degree coprime with
m [Cas+23b, Prop. A.1]. Is there an effective construction for these
extra cases?
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THANK YOU FOR YOUR ATTENTION!
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APPENDIX 1: PAIRINGS



WEIL PAIRING

p = a (large) prime. n = positive integer coprime with p.
µn = n-th roots of unity in Fp. Fq = a finite field containing µn.

E = an EC defined over Fq. E[n] = group of points of n-torsion of E

The n-Weil pairing is a map

e( · , · ) = eE,n( · , · ) : E[n]× E[n]→ µn

which is
Bilinear: e(P + R,Q) = e(P,Q)e(R,Q) for all P,Q,R ∈ E[n].
Nondegenerate: if e(P,Q) = 1 for all Q ∈ E[n], then P = O.
Alternating: e(P,Q) = e(Q, P)−1 for all P,Q ∈ E[n].
Compatible with every isogeny: if φ : E → E′ is an isogeny, then

e
(
φ(P), φ(Q)

)
= e(P,Q)deg(φ).
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THE POWER OF PAIRINGS

Consider a (secret) isogeny

φ : E → E′.

What can be done with pairings?

Let P,Q be generators of E[n].

Given φ(P), φ(Q) ⇝ recover deg(φ) mod n.

Given φ(P) and deg(φ), if n2 > deg(φ) ⇝ recover φ itself!
(using SIDH attack)
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APPENDIX 2: ORIENTATIONS



INCLUDING THE SUPERSINGULAR CASE

What happens if we use supersingular elliptic curves?

Problem: if E is supersingular, then End(E) is NOT an imaginary
quadratic order!

Bad news
End(E) is non-commutative,
Cl(End(E)) is not even a
group.

Good news
For each non-scalar τ ∈ End(E),
Oτ = {σ ∈ End(E) | σ ◦ τ = τ ◦ σ}
is an imaginary quadratic order.

GivenO = Z[
√
−d], we say that (E, ι) is anO-oriented elliptic curve if

there is an injective ring homomorphism

ι : O ↪→ End(E).

Conclusion: given an O-orientation (E, ι), the subring
ι(O) ⊆ End(E) is an imaginary quadratic order.
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APPENDIX 3: APPLICATIONS OF SELF-PAIRINGS



THE POWER OF SELF-PAIRINGS

S = {elliptic curves over Fq, oriented by their Frobenius}.
Cl(O) = class group corresponding to the Frobenius orientation.

Consider some orbit of the action of Cl(O) on S.

What can be done with self-pairings?

Given E and [a]E, recover a if ∆O has a factor ℓ2r and N(a) < ℓ2r.
[1, Prop. 6.3]

If q is 1 mod 4 and trace of Frobenius is 0 mod 4, breaking the DDH
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THE HOPED-FOR POWER OF SELF-PAIRINGS
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Given E and [a]E, recover a if ∆O has a factor ℓr and N(a) < ℓr.

Breaking the DDH problem,if q is 1 mod 4 and trace of Frobenius is
0 mod 4, (under suitable assumptions on ∆O).
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APPENDIX 4: OUR MAIN RESULT (FULL VERSION)



SELF-PAIRINGS COMPATIBLE WITH ALL ORIENTED ENDOMORPHISMS

From [Cas+23b, Prop. 4.8].

PROPOSITION 1
O = imaginary quadratic order. ∆O = discriminant ofO.
E = O-oriented EC over Fq. G = cyclic subgroup of E.
f = self-pairing G→ F∗

q. m = #⟨f(G)⟩.
Assume that f is compatible withO-oriented endomorphisms. Then

char(Fq) ∤ m,
m | ∆O,
Writing ∆O = −2rn for n odd, we have:

if r = 2 then m | ∆O/2,
if r ≥ 3 then m | ∆O/4.



SELF-PAIRINGS COMPATIBLE WITH (MOST!) ORIENTED ENDOMORPHISMS
From [Cas+23b, Prop. A.1].

PROPOSITION 2
O = imaginary quadratic order. ∆O = discriminant ofO.
E = O-oriented EC over Fq. G = cyclic subgroup of E.
f = self-pairing G→ F∗

q. m = #⟨f(G)⟩.
Assume that f is compatible withO-oriented endomorphisms of norm
coprime with m. Then

char(Fq) ∤ m,
m | ∆O,
Writing ∆O = −2rn for n odd, we have:

if r = 0 and n ≡ 3 mod 8 then m | ∆O,
if r = 2 and n ≡ 3 mod 4 then m | ∆O/2,
if r = 3, 4 then m | ∆O/4,
if r = 0 and n ≡ 7 mod 8 then m | 2∆O,
if r = 2 and n ≡ 1 mod 4 then m | ∆O,
if r ≥ 5 then m | ∆O/2.
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