WEAK INSTANCES OF CLASS GROUP ACTION BASED CRYPTOGRAPHY VIA SELF-PAIRINGS

Crypto 2023, Santa Barbara

W. Castryck, M. Houben, S.-P. Merz, <u>M. Mula</u>, S. van Buuren, F. Vercauteren

ΜοτινατιοΝ

Consider a public-key cryptosystem where the **secret key** is an isogeny φ of known, smooth degree:

SIDH attack

Public key: E' and $\varphi(P)$, $\varphi(Q)$ (for suitable points P, Q on E)

The attack that would put us out of business

Public key:
$$E'$$
 $\varphi(P)$ (for suitable
point P on E)SIDH attack φ

Fact: in a class group action based cryptosystem, one can always find $\lambda \varphi(P)$ for some (unknown) $\lambda \in \mathbb{Z}$.

Goal of the attack: finding λ .

Fact: in a class group action based cryptosystem, one can always find $\lambda \varphi(P)$ for some (unknown) $\lambda \in \mathbb{Z}$.

Goal of the attack: finding λ .

Naive approach:

• Compute the Weil (self-)pairing

 $e(\lambda \varphi(P), \lambda \varphi(P)) = e(P, P)^{\lambda^2 \deg(\varphi)}.$

• Recover λ using a dlog computation.

Fact: in a class group action based cryptosystem, one can always find $\lambda \varphi(P)$ for some (unknown) $\lambda \in \mathbb{Z}$.

Goal of the attack: finding λ .

Naive approach:

• Compute the Weil (self-)pairing

$$e(\lambda \varphi(P), \lambda \varphi(P)) = e(P, P)^{\lambda^2 \operatorname{deg}(\varphi)}.$$

• Recover λ using a dlog computation.

Problem: The Weil (self-)pairing e(P, P) is always 1.

Fact: in a class group action based cryptosystem, one can always find $\lambda \varphi(P)$ for some (unknown) $\lambda \in \mathbb{Z}$.

Goal of the attack: finding λ .

Naive approach:

• Compute the Weil (self-)pairing

$$e(\lambda \varphi(P), \lambda \varphi(P)) = e(P, P)^{\lambda^2 \deg(\varphi)}.$$

• Recover λ using a dlog computation.

Problem: The Weil (self-)pairing e(P, P) is always 1.

Can we construct non-trivial self-pairings to make this attack work?

CLASS GROUP ACTION BASED CRYPTOGRAPHY

CRYPTO 101: DIFFIE-HELLMAN KEY EXCHANGE

Let $X = \langle x \rangle$ be a cyclic group of order *n*.

CRYPTO 101: DIFFIE-HELLMAN KEY EXCHANGE

Let $X = \langle x \rangle$ be a cyclic group of order *n*.

In [Cou06; RS06] this construction is generalized to group actions...

 $E_0 =$ an ordinary elliptic curve defined over \mathbb{F}_q , $\mathcal{O} = \mathbb{Z}[\sqrt{-d}] \cong \operatorname{End}(E_0).$

$$\begin{split} E_0 &= \text{ an ordinary elliptic curve defined over } \mathbb{F}_q, \\ \mathcal{O} &= \mathbb{Z}[\sqrt{-d}] \cong \operatorname{End}(E_0) \qquad \text{(some imaginary quadratic order)} \\ & (\text{also } \mathcal{O} = \mathbb{Z}\left[(1+\sqrt{-d})/2\right] \text{ is fine if } d \equiv 3 \mod 4 \text{).} \end{split}$$

$$\begin{split} E_0 &= \text{ an ordinary elliptic curve defined over } \mathbb{F}_q, \\ \mathcal{O} &= \mathbb{Z}[\sqrt{-d}] \cong \operatorname{End}(E_0) \qquad \text{(some imaginary quadratic order)} \\ & (\text{also } \mathcal{O} = \mathbb{Z}\left[(1+\sqrt{-d})/2\right] \text{ is fine if } d \equiv 3 \mod 4 \text{).} \end{split}$$

Consider the set

 $X = \{ E \text{ over } \mathbb{F}_q \text{ which are } \mathbb{F}_q \text{-isogenous to } E_0 \text{ and s.t. } \operatorname{End}(E) \cong \mathcal{O} \}$ and the group

G = class group of O.

$$\begin{split} & E_0 = \text{an ordinary elliptic curve defined over } \mathbb{F}_q, \\ & \mathcal{O} = \mathbb{Z}[\sqrt{-d}] \cong \operatorname{End}(E_0) \qquad \text{(some imaginary quadratic order)} \\ & \text{(also } \mathcal{O} = \mathbb{Z}\left[(1 + \sqrt{-d})/2\right] \text{ is fine if } d \equiv 3 \mod 4 \text{).} \end{split}$$

Consider the set

1

 $X = \{ E \text{ over } \mathbb{F}_q \text{ which are } \mathbb{F}_q \text{-isogenous to } E_0 \text{ and s.t. } \operatorname{End}(E) \cong \mathcal{O} \}$ and the group

G = class group of O.

CSIDH: DIFFIE-HELLMAN WITH (FROBENIUS-ORIENTED) ISOGENIES

- E_0 = a supersingular elliptic curve defined over \mathbb{F}_p , for $p \equiv 3 \mod 4$.
- π = the Frobenius endomorphism on *E*, i.e. π : $(x, y) \mapsto (x^p, y^p)$.
- $\mathcal{O} = \mathbb{Z}\left[\sqrt{-p}\right].$
- $\iota_0 = \operatorname{the map} \sqrt{-p} \mapsto \pi.$

The pair (E_0, ι_0) is called an \mathcal{O} -orientation. In particular, $\iota_0(\mathcal{O}) = \operatorname{End}_{\mathbb{F}_p}(E_0)$.

CSIDH: DIFFIE-HELLMAN WITH (FROBENIUS-ORIENTED) ISOGENIES

- $E_0 =$ a supersingular elliptic curve defined over \mathbb{F}_p , for $p \equiv 3 \mod 4$. $\pi =$ the Frobenius endomorphism on E, i.e. $\pi : (x, y) \mapsto (x^p, y^p)$. $\mathcal{O} = \mathbb{Z} \left[\sqrt{-p} \right]$. $\iota_0 =$ the map $\sqrt{-p} \mapsto \pi$.
- The pair (E_0, ι_0) is called an \mathcal{O} -orientation. In particular, $\iota_0(\mathcal{O}) = \operatorname{End}_{\mathbb{F}_p}(E_0)$.

Define the set

 $X = \{ (E, \iota) \text{ over } \mathbb{F}_p \text{ oriented by } \mathcal{O} \text{ and } \mathbb{F}_p \text{-isogenous to } E_0 \}.$

The group G and its action over X are defined exactly as before.

OSIDH: DIFFIE-HELLMAN WITH (ORIENTED) ISOGENIES

More generally...

 $E_0 = \text{an supersingular elliptic curve defined over } \mathbb{F}_q.$ $\mathcal{O} = \mathbb{Z} \left[\sqrt{-d} \right] \text{ for some positive integer } d.$ $\iota_0 = \text{an injective homomorphism } \mathcal{O} \hookrightarrow \text{End}(E_0).$

OSIDH: DIFFIE-HELLMAN WITH (ORIENTED) ISOGENIES

More generally...

 $E_0 = \text{an supersingular elliptic curve defined over } \mathbb{F}_q.$ $\mathcal{O} = \mathbb{Z}\left[\sqrt{-d}\right] \text{ for some positive integer } d.$ $\iota_0 = \text{an injective homomorphism } \mathcal{O} \hookrightarrow \operatorname{End}(E_0).$

Define the set

 $X = \{ (E, \iota) \text{ over } \mathbb{F}_q \text{ oriented by } \mathcal{O} \text{ and s.t. there exists an} \\ \underbrace{\mathcal{O}\text{-oriented isogeny } \alpha \colon E_0 \to E }_{\text{satisfying } \iota(\sqrt{-d}) \circ \alpha} = \alpha \circ \iota_0(\sqrt{-d})$

The group G and its action over X are defined exactly as before.

WEAK INSTANCES

Bottom line

Given *p*, there are lots of imaginary quadratic orders $\mathcal{O} = \mathbb{Z}[\sqrt{-d}]$ and orientations to choose from to build a class group action based cryptosystem.

WEAK INSTANCES

Bottom line

Given *p*, there are lots of imaginary quadratic orders $\mathcal{O} = \mathbb{Z}[\sqrt{-d}]$ and orientations to choose from to build a class group action based cryptosystem.

Which choices are bad?

- Trivial: *d* small.
- **Our work:** *d* with a factor ℓ^{2r} for some small ℓ .

Self-pairings

Self-pairings

E =an elliptic curve E over \mathbb{F}_q .

G = a finite subgroup of E.

A self-pairing on G is a map

$$f: G \to \overline{\mathbb{F}_q}^*$$

such that $f(\lambda P) = f(P)^{\lambda^2}$ for all $P \in G$ and $\lambda \in \mathbb{Z}$.

Self-pairings

E =an elliptic curve E over \mathbb{F}_q .

G = a finite subgroup of E.

A self-pairing on G is a map

$$f: G \to \overline{\mathbb{F}_q}^*$$

such that $f(\lambda P) = f(P)^{\lambda^2}$ for all $P \in G$ and $\lambda \in \mathbb{Z}$. Given

- an isogeny $\varphi : E \to E'$,
- a self-pairing $f: G \to \overline{\mathbb{F}_q}^*$ on E,
- a self-pairing $f': G' \to \overline{\mathbb{F}_q}^*$ on E',

f and f' are compatible with φ if

$$\varphi(G) \subseteq G'$$
 and $f'(\varphi(P)) = f(P)^{\deg(\varphi)}$

for all $P \in G$.

ATTACK IDEA FOR CLASS GROUP ACTION BASED CRYPTOSYSTEMS

$$\mathcal{O} = \mathbb{Z}[\sqrt{-d}].$$

 $E, E' = \mathcal{O}$ -oriented elliptic curves.
 $[\mathfrak{a}] = \mathfrak{a} \text{ (secret) ideal class of } Cl(\mathcal{O}) \text{ such that } E' = [\mathfrak{a}]$
 $\varphi_{\mathfrak{a}} = (\text{secret}) \text{ isogeny corresponding to } \mathfrak{a}.$

We assume that $\deg(\varphi_{\mathfrak{a}})$ is smooth and known to the attacker.

Sketch of the attackSelf-pairings compatible with all
 \mathcal{O} -oriented isogenies $\varphi \colon E \to E'$ $\varphi_{\mathfrak{a}}(P)$ SIDH
attack

Ε.

ATTACK IDEA FOR CLASS GROUP ACTION BASED CRYPTOSYSTEMS

More detailed sketch of the attack

ATTACK IDEA FOR CLASS GROUP ACTION BASED CRYPTOSYSTEMS

More detailed sketch of the attack

- *f* and *f*′ might not exist!
- Computing f and f' might be inefficient.

OUR MAIN RESULT

From [Cas+23a, Prop. 4.8 and §5]:

Define $m = \ell^{2r} \cdot \gcd(2, \ell)$ and $p = \operatorname{char}(\mathbb{F}_q)$. Let $\Delta_{\mathcal{O}}$ be the discriminant of \mathcal{O} . Then f and f' exist if and only if

- *p*∤*m*,
- $m \mid \Delta_{\mathcal{O}}$,
- writing $\Delta_{\mathcal{O}} = -2^r n$ for n odd, we have:
 - if r = 2 then $m \mid \Delta_{\mathcal{O}}/2$,
 - if $r \geq 3$ then $m \mid \Delta_{\mathcal{O}}/4$.

OUR MAIN RESULT

From [Cas+23a, Prop. 4.8 and §5]:

Define $m = \ell^{2r} \cdot \gcd(2, \ell)$ and $p = \operatorname{char}(\mathbb{F}_q)$. Let $\Delta_{\mathcal{O}}$ be the discriminant of \mathcal{O} . Then f and f' exist if and only if

- *p*∤*m*,
- $m \mid \Delta_{\mathcal{O}}$,
- writing $\Delta_{\mathcal{O}} = -2^r n$ for *n* odd, we have:
 - if r = 2 then $m \mid \Delta_{\mathcal{O}}/2$,
 - if $r \geq 3$ then $m \mid \Delta_{\mathcal{O}}/4$.

Good news: CSIDH is not affected by our attack

(since $\Delta_{\mathcal{O}} = -4p$)

COMPUTING SELF-PAIRINGS (WHEN THEY EXIST!)

For the values of *m* allowed by our main result, f(P) can be computed as follows...

	Frobenius-oriented	General case
Tool	Frey–Rück Tate pairing	Weil pairing on large extension of \mathbb{F}_q
Time complexity	$O(\log^2 m \log^{1+arepsilon} q)$	$O(\Delta_{\mathcal{O}}^{2+arepsilon}m^{2+arepsilon}\log^{1+arepsilon}q)$ often: $O(m^{4+arepsilon}\log^{1+arepsilon}q)$

Which choices of ${\mathcal O}$ should be avoided?

For sure: $\Delta_{\mathcal{O}}$ with a factor ℓ^{2r} for some small prime ℓ , in the Frobenius-oriented case.

Probably: $\Delta_{\mathcal{O}}$ with a factor ℓ^{2r} for some smooth integer ℓ , in the Frobenius-oriented case.

To feel 100% safe from our attack: $\Delta_{\mathcal{O}}$ with many small factors.

OPEN PROBLEMS

• Can we compute self-pairings more efficiently in the non-Frobenius-oriented case?

OPEN PROBLEMS

- Can we compute self-pairings more efficiently in the non-Frobenius-oriented case?
- In the Frobenius-oriented case, our attack can be generalized to any smooth ℓ (not necessarily prime). The expected running time of the resulting attack is subexponential [Cas+23a, Prop. 6.5]. Is it possible to give a sharper estimate?

OPEN PROBLEMS

- Can we compute self-pairings more efficiently in the non-Frobenius-oriented case?
- In the Frobenius-oriented case, our attack can be generalized to any smooth ℓ (not necessarily prime). The expected running time of the resulting attack is subexponential [Cas+23a, Prop. 6.5]. Is it possible to give a sharper estimate?
- Can we exploit self-pairings of order < deg(φ_a) to perform some attack?

OPEN PROBLEMS

- Can we compute self-pairings more efficiently in the non-Frobenius-oriented case?
- In the Frobenius-oriented case, our attack can be generalized to any smooth ℓ (not necessarily prime). The expected running time of the resulting attack is subexponential [Cas+23a, Prop. 6.5]. Is it possible to give a sharper estimate?
- Can we exploit self-pairings of order < deg(φ_a) to perform some attack?
- A few extra values of *m* are allowed if we only require *f* to be compatible with *O*-oriented isogenies *of degree coprime with m* [Cas+23b, Prop. A.1]. Is there an effective construction for these extra cases?

THANK YOU FOR YOUR ATTENTION!

ESSENTIAL BIBLIOGRAPHY

 [CD23] W. Castryck and T. Decru. "An Efficient Key Recovery Attack on SIDH". In: Advances in Cryptology – EUROCRYPT 2023.
 Ed. by C. Hazay and M. Stam. Cham: Springer Nature Switzerland, 2023, pp. 423–447.

[Cas+23a] W. Castryck, M. Houben, S.-P. Merz, M. Mula, S. van Buuren, and F. Vercauteren. "Weak Instances of Class Group Action Based Cryptography via Self-pairings". In: Advances in Cryptology – CRYPTO 2023. Ed. by H. Handschuh and A. Lysyanskaya. Cham: Springer Nature Switzerland, 2023, pp. 762–792.

[Cas+23b] W. Castryck, M. Houben, S.-P. Merz, M. Mula, S. van Buuren, and F. Vercauteren. Weak instances of class group action based cryptography via self-pairings. Full version on ePrint Archive available at https://eprint.iacr.org/2023/549.2023.

ESSENTIAL BIBLIOGRAPHY II

[Cas+18] W. Castryck, T. Lange, C. Martindale, L. Panny, and J. Renes. CSIDH: An Efficient Post-Quantum Commutative Group Action. Ed. by T. Peyrin and S. Galbraith. Cham, 2018.

[CK20] L. Colò and D. Kohel. "Orienting supersingular isogeny graphs". In: *J. Math. Cryptol.* 14.1 (2020), pp. 414–437.

[Cou06] J.-M. Couveignes. Hard Homogeneous Spaces. Cryptology ePrint Archive, Report 2006/291. 2006. URL: https://eprint.iacr.org/2006/291.

[Mai+23] L. Maino, C. Martindale, L. Panny, G. Pope, and B. Wesolowski. "A Direct Key Recovery Attack on SIDH". In: Advances in Cryptology – EUROCRYPT 2023. Ed. by C. Hazay and M. Stam. Cham: Springer Nature Switzerland, 2023, pp. 448–471.

ESSENTIAL BIBLIOGRAPHY III

[Rob23] D. Robert. "Breaking SIDH in Polynomial Time". In: Advances in Cryptology – EUROCRYPT 2023. Ed. by C. Hazay and M. Stam. Cham: Springer Nature Switzerland, 2023, pp. 472–503.

[RS06] A. Rostovtsev and A. Stolbunov. Public-key cryptosystem based on isogenies. Cryptology ePrint Archive, Report 2006/145. https://eprint.iacr.org/2006/145.2006.

APPENDIX 1: PAIRINGS

WEIL PAIRING

p = a (large) prime.

 $\mu_n = n$ -th roots of unity in $\overline{\mathbb{F}_{\rho}}$.

E =an EC defined over \mathbb{F}_q .

n = positive integer coprime with p.

 $\mathbb{F}_q = a$ finite field containing μ_n .

E[n] = group of points of *n*-torsion of *E*

WEIL PAIRING

p = a (large) prime.n = positive integer coprime with p. $\mu_n = n$ -th roots of unity in $\overline{\mathbb{F}_p}$. $\mathbb{F}_q =$ a finite field containing μ_n .E = an EC defined over \mathbb{F}_q .E[n] = group of points of n-torsion of E

The *n-Weil pairing* is a map

$$e(\cdot, \cdot) = e_{E,n}(\cdot, \cdot): \quad E[n] \times E[n] \to \mu_n$$

which is

- Bilinear: e(P+R,Q) = e(P,Q)e(R,Q) for all $P, Q, R \in E[n]$.
- Nondegenerate: if e(P,Q) = 1 for all $Q \in E[n]$, then P = 0.
- Alternating: $e(P,Q) = e(Q,P)^{-1}$ for all $P,Q \in E[n]$.
- Compatible with *every* isogeny: if $\varphi : E \to E'$ is an isogeny, then

 $e(\varphi(P),\varphi(Q)) = e(P,Q)^{\deg(\varphi)}.$

THE POWER OF PAIRINGS

Consider a (secret) isogeny

$$\varphi \colon E \to E'.$$

What can be done with pairings?

Let P, Q be generators of E[n].

• Given $\varphi(P), \varphi(Q)$

 \rightsquigarrow recover deg(φ) mod *n*.

THE POWER OF PAIRINGS

Consider a (secret) isogeny

$$\varphi \colon E \to E'.$$

What can be done with pairings?

Let P, Q be generators of E[n].

- Given $\varphi(P), \varphi(Q) \longrightarrow$
- Given $\varphi(P)$ and deg (φ) , if $n^2 > \deg(\varphi) \quad \rightsquigarrow \quad \text{recover } \varphi \text{ itself!}$
- \rightsquigarrow recover deg(φ) mod *n*.

APPENDIX 2: ORIENTATIONS

INCLUDING THE SUPERSINGULAR CASE

What happens if we use supersingular elliptic curves?

Problem: if *E* is supersingular, then End(E) is NOT an imaginary quadratic order!

Bad news

End(E) is non-commutative, Cl(End(E)) is not even a group.

INCLUDING THE SUPERSINGULAR CASE

What happens if we use supersingular elliptic curves?

Problem: if *E* is supersingular, then End(E) is NOT an imaginary quadratic order!

Bad news

End(E) is non-commutative, Cl(End(E)) is not even a group.

Good news

For each non-scalar $\tau \in \text{End}(E)$, $\mathcal{O}_{\tau} = \{ \sigma \in \text{End}(E) \mid \sigma \circ \tau = \tau \circ \sigma \}$ is an imaginary quadratic order.

What happens if we use supersingular elliptic curves?

Problem: if *E* is supersingular, then End(E) is NOT an imaginary quadratic order!

Bad news

End(E) is non-commutative, Cl(End(E)) is not even a group.

Good news

For each non-scalar $\tau \in \operatorname{End}(E)$, $\mathcal{O}_{\tau} = \{ \sigma \in \operatorname{End}(E) \mid \sigma \circ \tau = \tau \circ \sigma \}$ is an imaginary quadratic order.

Given $\mathcal{O} = \mathbb{Z}[\sqrt{-d}]$, we say that (E, ι) is an \mathcal{O} -oriented elliptic curve if there is an injective ring homomorphism

$$\iota \colon \mathcal{O} \hookrightarrow \operatorname{End}(E).$$

Conclusion: given an \mathcal{O} -orientation (\mathcal{E}, ι) , the subring $\iota(\mathcal{O}) \subseteq \operatorname{End}(\mathcal{E})$ is an imaginary quadratic order.

APPENDIX 3: APPLICATIONS OF SELF-PAIRINGS

 $S = \{$ elliptic curves over \mathbb{F}_q , oriented by their Frobenius $\}$.

 $\operatorname{Cl}(\mathcal{O}) = \mathsf{class}$ group corresponding to the Frobenius orientation.

Consider some orbit of the action of $Cl(\mathcal{O})$ on S.

 $S = \{$ elliptic curves over \mathbb{F}_q , oriented by their Frobenius $\}$.

 $\operatorname{Cl}(\mathcal{O}) = \mathsf{class}$ group corresponding to the Frobenius orientation.

Consider some orbit of the action of $Cl(\mathcal{O})$ on S.

What can be done with self-pairings?

Given *E* and [α]*E*, recover α if Δ_O has a factor ℓ^{2r} and N(α) < ℓ^{2r}.
 [1, Prop. 6.3]

 $S = \{$ elliptic curves over \mathbb{F}_q , oriented by their Frobenius $\}$.

 $\operatorname{Cl}(\mathcal{O}) = \text{class group corresponding to the Frobenius orientation.}$

Consider some orbit of the action of $Cl(\mathcal{O})$ on S.

What can be done with self-pairings?

- Given *E* and [α]*E*, recover α if Δ_O has a factor ℓ^{2r} and N(α) < ℓ^{2r}.
 [1, Prop. 6.3]
- If *q* is 1 mod 4 and trace of Frobenius is 0 mod 4, breaking the *DDH problem*:

Distinguish the tuple $(E, [\mathfrak{a}]E, [\mathfrak{b}]E, [\mathfrak{a}\mathfrak{b}]E)$ from the tuple $(E, [\mathfrak{a}]E, [\mathfrak{b}]E, [\mathfrak{c}]E).$

 $S = \{$ elliptic curves over \mathbb{F}_q , oriented by their Frobenius $\}$.

 $\operatorname{Cl}(\mathcal{O}) = \text{class group corresponding to the Frobenius orientation.}$

Consider some orbit of the action of $Cl(\mathcal{O})$ on S.

What can be done with self-pairings?

- Given *E* and [α]*E*, recover α if Δ_O has a factor ℓ^{2r} and N(α) < ℓ^{2r}.
 [1, Prop. 6.3]
- If *q* is 1 mod 4 and trace of Frobenius is 0 mod 4, breaking the *DDH problem*:

Distinguish the tuple from the tuple

 $(E, [\mathfrak{a}]E, [\mathfrak{b}]E, [\mathfrak{a}\mathfrak{b}]E)$ $(E, [\mathfrak{a}]E, [\mathfrak{b}]E, [\mathfrak{c}]E).$

• Walking the ℓ-isogeny volcano.

 $S = \{$ elliptic curves over \mathbb{F}_q , oriented by their Frobenius some endomorphism $\}$.

 $\operatorname{Cl}(\mathcal{O}) = \text{class group corresponding to the Frobenius}$ orientation.

Consider some orbit of the action of $Cl(\mathcal{O})$ on S.

 $S = \{$ elliptic curves over \mathbb{F}_q , oriented by their Frobenius some endomorphism $\}$.

 $\operatorname{Cl}(\mathcal{O}) = \text{class group corresponding to the Frobenius}$ orientation.

Consider some orbit of the action of $Cl(\mathcal{O})$ on S.

What can might be done with self-pairings?

Given E and [a]E, recover a if Δ_O has a factor ℓ^r and N(a) < ℓ^r.

 $S = \{$ elliptic curves over \mathbb{F}_q , oriented by their Frobenius some endomorphism $\}$.

 $Cl(\mathcal{O}) = class group corresponding to the Frobenius orientation.$

Consider some orbit of the action of $Cl(\mathcal{O})$ on S.

What can might be done with self-pairings?

- Given E and [a]E, recover a if Δ_O has a factor ℓ^r and N(a) < ℓ^r.
- Breaking the DDH problem, if q is 1 mod 4 and trace of Frobenius is 0 mod 4, (under suitable assumptions on $\Delta_{\mathcal{O}}$).

 $S = \{$ elliptic curves over \mathbb{F}_q , oriented by their Frobenius some endomorphism $\}$.

 $\operatorname{Cl}(\mathcal{O}) = \text{class group corresponding to the Frobenius}$ orientation.

Consider some orbit of the action of $\operatorname{Cl}(\mathcal{O})$ on S.

What can might be done with self-pairings?

- Given E and [a]E, recover a if Δ_O has a factor ℓ^r and N(a) < ℓ^r.
- Breaking the DDH problem, if q is 1 mod 4 and trace of Frobenius is 0 mod 4, (under suitable assumptions on $\Delta_{\mathcal{O}}$).
- Walking the ℓ-isogeny volcano.

APPENDIX 4: OUR MAIN RESULT (FULL VERSION)

SELF-PAIRINGS COMPATIBLE WITH ALL ORIENTED ENDOMORPHISMS

From [Cas+23b, Prop. 4.8].

PROPOSITION 1

 $\mathcal{O} = \textit{imaginary quadratic order.}$

 $E = \mathcal{O}$ -oriented EC over \mathbb{F}_q .

f = self-pairing $G \to \mathbb{F}_q^*$.

 $\Delta_{\mathcal{O}} = discriminant of \mathcal{O}.$

G = cyclic subgroup of E.

$$m = \#\langle f(G) \rangle.$$

Assume that f is compatible with \mathcal{O} -oriented endomorphisms. Then

• $m \mid \Delta_{\mathcal{O}}$,

- Writing $\Delta_{\mathcal{O}} = -2^r n$ for n odd, we have:
 - if r = 2 then $m \mid \Delta_{\mathcal{O}}/2$,
 - if $r \geq 3$ then $m \mid \Delta_{\mathcal{O}}/4$.

SELF-PAIRINGS COMPATIBLE WITH (MOST!) ORIENTED ENDOMORPHISMS From [Cas+23b, Prop. A.1].

PROPOSITION 2

 $\mathcal{O} = imaginary quadratic order.$

 $E = \mathcal{O}$ -oriented EC over \mathbb{F}_q .

f = self-pairing $G \to \mathbb{F}_q^*$.

 $\Delta_{\mathcal{O}} = discriminant of \mathcal{O}.$

$$G = cyclic subgroup of E.$$

$$m = \#\langle f(G) \rangle.$$

Assume that f is compatible with \mathcal{O} -oriented endomorphisms of norm coprime with m. Then

- $\operatorname{char}(\mathbb{F}_q) \nmid m$,
- $m \mid \Delta_{\mathcal{O}}$,
- Writing $\Delta_{\mathcal{O}} = -2^r n$ for n odd, we have:
 - *if* r = 0 *and* $n \equiv 3 \mod 8$ *then* $m \mid \Delta_{\mathcal{O}}$ *,*
 - *if* r = 2 and $n \equiv 3 \mod 4$ then $m \mid \Delta_{\mathcal{O}}/2$,
 - if r = 3, 4 then $m \mid \Delta_{\mathcal{O}}/4$,
 - *if* r = 0 and $n \equiv 7 \mod 8$ then $m \mid 2\Delta_{\mathcal{O}}$,
 - *if* r = 2 and $n \equiv 1 \mod 4$ then $m \mid \Delta_{\mathcal{O}}$,
 - if $r \geq 5$ then $m \mid \Delta_{\mathcal{O}}/2$.