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MOTIVATION



SIDH ATTACK + SELF-PAIRINGS: A DEADLY COMBINATION?

Consider a public-key cryptosystem where the secret key is an
isogeny ¢ of known, smooth degree:
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SIDH ATTACK + SELF-PAIRINGS: A DEADLY COMBINATION?

Consider a public-key cryptosystem where the secret key is an
isogeny ¢ of known, smooth degree:

E E'

P /\ ©(P)

The attack that would put us out of business

©(P) (for suitable o
point Pon E)

Public key: £’

Our work: for which cryptosystems can we use self-pairings to fill this gap?
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OUR ATTACK IDEA

Fact: in a class group action based cryptosystem, one can always find
Ap(P) for some (unknown) A € Z.

Goal of the attack: finding ).
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OUR ATTACK IDEA

Fact: in a class group action based cryptosystem, one can always find
Ap(P) for some (unknown) A € Z.

Goal of the attack: finding ).

Naive approach:

e Compute the Weil (self-)pairing
e(A\p(P), \p(P)) = e(P, P)X de&(®). ) ©(P)

e Recover \ using a dlog computation.

SIDH
attack

Problem: The Weil (self-)pairing e(P, P) is always 1.

Can we construct non-trivial self-pairings
to make this attack work?

3/16



CLASS GROUP ACTION BASED CRYPTOGRAPHY



CRYPTO 101: DIFFIE-HELLMAN KEY EXCHANGE

Let X = (x) be a cyclic group of order n.

Alice Bob
0, b2y
X
b
Computes (x*)? Computes (x7)”

\ /

x°P is the shared key
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CRYPTO 101: DIFFIE-HELLMAN KEY EXCHANGE

Let X = (x) be a cyclic group of order n.

Alice Bob
0, b2y
X
b
Computes (x*)? Computes (x7)”

\ /

x°P is the shared key

In [Cou06; RS06] this construction is generalized to group actions...
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CRS: DIFFIE-HELLMAN WITH ISOGENIES, 1

Eo = an ordinary elliptic curve defined over [Fg,
O = Z[V—d] = End(Ep).

Alice Bob
[a] & C1(0) [6] & C1(0)
Eo &) [Cl]Eo Eo ﬂ [b]Eo
[a]Eo
[b]Eo
Computes [a]([b]Eo) Computes [b]([a]Eo)

[ab]Eg is the shared key
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CRS: DIFFIE-HELLMAN WITH ISOGENIES, 2

Eo = an ordinary elliptic curve defined over IFg,
O =Z[V—d] = End(Ey) (some imaginary quadratic order)
(alsoO =Z [(1 +V fd)/z] isfineifd = 3 mod 4).
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CRS: DIFFIE-HELLMAN WITH ISOGENIES, 2

Eo = an ordinary elliptic curve defined over IFg,
O = Z[V—d] = End(E) (some imaginary quadratic order)
(also O =Z [(1 + \/jd)/z] isfineifd = 3 mod 4).
Consider the set
X = { E over Fq which are F4-isogenous to £y and s.t. End(E) = O }
and the group
G = class group of O.

Action of G over X

[a]E = codomain of the isogeny ¢,
with kernel ker(yq) = (,cq ker(a).
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CSIDH: DIFFIE-HELLMAN WITH (FROBENIUS-ORIENTED) ISOGENIES

Eo = asupersingular elliptic curve defined over I, for p = 3 mod 4.

7 = the Frobenius endomorphismon E, i.e. w: (x,y) — (xP,yP).
O=Z[J-p].
to = themap /—p — .

The pair (Eo, to) is called an O-orientation.
In particular, 10(O) = Endr, (Eo).
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Eo = asupersingular elliptic curve defined over I, for p = 3 mod 4.

7 = the Frobenius endomorphismon E, i.e. w: (x,y) — (xP,yP).
O=Z[J-p].
to = themap /—p — .

The pair (Eo, to) is called an O-orientation.
In particular, 10(O) = Endr, (Eo).

Define the set

X = { (E, ) over F, oriented by O and Fp-isogenous to £y }.

The group G and its action over X are defined exactly as before.
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OSIDH: DIFFIE-HELLMAN WITH (ORIENTED) ISOGENIES

More generally...

Eo = an supersingutar elliptic curve defined over F,.
O0=2Z [\/fd} for some positive integer d.

to = an injective homomorphism O — End(Ey).
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OSIDH: DIFFIE-HELLMAN WITH (ORIENTED) ISOGENIES

More generally...

Eo = an supersingutar elliptic curve defined over F,.
O0=2Z [\/fd} for some positive integer d.
to = an injective homomorphism O — End(Ey).

Define the set

X = { (E, ) over [, oriented by O and s.t. there exists an
O-oriented isogeny a: Eg — E }.
—_——

satisfying «(v/—d) o a = a0 10(v/—d)

The group G and its action over X are defined exactly as before.
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WEAK INSTANCES

Bottom line

Given p, there are lots of imaginary quadratic orders O = Z[v/ —d]
and orientations to choose from to build a class group action based
cryptosystem.
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WEAK INSTANCES

Bottom line

Given p, there are lots of imaginary quadratic orders O = Z[v/ —d]
and orientations to choose from to build a class group action based
cryptosystem.

Which choices are bad?

e Trivial: d small.

o Our work: d with a factor /2 for some small 4.
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SELF-PAIRINGS



SELF-PAIRINGS

E = anelliptic curve E over Iy,.

G = afinite subgroup of E.
A self-pairing on G is a map
f:G— E*

such that f(\P) = f(P)** forallP € Gand \ € Z.
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SELF-PAIRINGS

E = anelliptic curve E over Iy,.
G = afinite subgroup of E.

A self-pairing on G is a map
f:G— E*

such that f(\P) = f(P)** forallP € Gand \ € Z.
Given

e anisogeny p: E — E/,

« aself-pairingf : G — F, onE,

« aself-pairingf' : G’ — F, onF/,
f and f’ are compatible with ¢ if

p(G)C G and  f(p(P)) = f(P)del®)

forall P € G.
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ATTACK IDEA FOR CLASS GROUP ACTION BASED CRYPTOSYSTEMS

E E

O = Z[V—d].

E,E' = O-oriented elliptic curves.
[a] = a(secret) ideal class of C1(O) such that £/ = [a]E.
wq = (secret) isogeny corresponding to a.

We assume that deg(¢q) is smooth and known to the attacker.

Sketch of the attack

Self-pairings compatible with all P) SIDH o
O-oriented isogenies ¢: E — E’ ¥a attack ‘
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ATTACK IDEA FOR CLASS GROUP ACTION BASED CRYPTOSYSTEMS

More detailed sketch of the attack

¢ = small prime not dividing deg(q)-

G = (suitable) cyclic subgroup of £
of order £ > deg(q).

G = ¢q(G).
P, P" = generators of G, G'. P) SIDH o
In particular, P = Apq(P) for some . Yo attack

f,f’ = self-pairings on G, G’ compatible
with all O-oriented isogenies p: E — F'.

e Compute f/(P') = f(P)\" deg(wa),
e Deduce A by comparing f(P) and f'(P').
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ATTACK IDEA FOR CLASS GROUP ACTION BASED CRYPTOSYSTEMS

More detailed sketch of the attack

¢ = small prime not dividing deg(q)-
G = (suitable) cyclic subgroup of £
of order £ > deg(q).
G = ¢q(G).
P,P" = generators of G, G'.
In particular, P = Apq(P) for some .

SIDH
#a(P) attack Fa

f,f’ = self-pairings on G, G’ compatible
with all O-oriented isogenies p: E — F'.

e Compute f/(P') = f(P)\" deg(wa),
e Deduce A by comparing f(P) and f'(P').

Possible problems:
+ fandf’ might not exist!
« Computing f and f’ might be inefficient.
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OUR MAIN RESULT

From [Cas+23a, Prop. 4.8 and §5]:

Definem = ¢2" - ged(2,¢) and p = char(Fy).
Let Ap be the discriminant of O.
Then f and f’ exist if and only if

© pim,
° m | ZX(Q,
e writing Ap = —2"n for n odd, we have:

ifr=2thenm | Ap/2,
ifr >3thenm | Ap /4.
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OUR MAIN RESULT

From [Cas+23a, Prop. 4.8 and §5]:

Definem = ¢2" - ged(2,¢) and p = char(Fy).
Let Ap be the discriminant of O.
Then f and f’ exist if and only if

© pim,
° m | ZXCQ,
e writing Ap = —2"n for n odd, we have:

ifr=2thenm | Ap/2,
ifr >3thenm | Ap/4.

Good news: CSIDH is not affected by our attack
(since Ap = —4p)
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COMPUTING SELF-PAIRINGS (WHEN THEY EXIST!)

For the values of m allowed by our main result, f(P) can be computed
as follows...

Frobenius-oriented General case

Weil pairing on
large extension of I,
O(Aé+€m2+a |Og1+5 q)
often: O(m**+< log!*© q)

Tool Frey-Rlick Tate pairing

Time complexity O(log? mlog'*e q)
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AFFECTED PROTOCOLS

Which choices of O should be avoided?
For sure: Ao with a factor /2" for some small prime 4, in the
Frobenius-oriented case.

Probably: Ay with a factor /2" for some smooth integer /, in the
Frobenius-oriented case.

To feel 100% safe from our attack: A with many small factors.
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OPEN PROBLEMS

e Can we compute self-pairings more efficiently in the
non-Frobenius-oriented case?
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* In the Frobenius-oriented case, our attack can be generalized to
any smooth /¢ (not necessarily prime). The expected running time
of the resulting attack is subexponential [Cas+23a, Prop. 6.5]. Is it
possible to give a sharper estimate?
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OPEN PROBLEMS

e Can we compute self-pairings more efficiently in the
non-Frobenius-oriented case?

* In the Frobenius-oriented case, our attack can be generalized to
any smooth /¢ (not necessarily prime). The expected running time
of the resulting attack is subexponential [Cas+23a, Prop. 6.5]. Is it
possible to give a sharper estimate?

« Can we exploit self-pairings of order < deg(,) to perform some
attack?

» Afew extra values of m are allowed if we only require f to be
compatible with O-oriented isogenies of degree coprime with
m [Cas+23b, Prop. A.1]. Is there an effective construction for these
extra cases?

15/16
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WEIL PAIRING

p = a(large) prime. n = positive integer coprime with p.
pn = n-throots of unity inF,.  F, = afinite field containing .
E = anECdefined over F,.  E[n] = group of points of n-torsion of E



WEIL PAIRING

p = a(large) prime. n = positive integer coprime with p.
pn = n-throots of unity inF,.  F, = afinite field containing .
E = anECdefined over F,.  E[n] = group of points of n-torsion of E

The n-Weil pairing is a map
e(-,-)=-een(-, ) E[n]xE[n — un
whichis
« Bilinear: e(P+R,Q) =e(P,Q)e(R,Q) forall P,Q,R € E[n].
* Nondegenerate: ife(P,Q) = 1forall Q € E[n],then P = O.

+ Alternating: e(P,Q) = e(Q,P)tforall P,Q € E[n.
» Compatible with every isogeny: if p: E — E'is anisogeny, then

e((P). 2(Q)) = e(P. Q).



THE POWER OF PAIRINGS

Consider a (secret) isogeny

0 E— FE.

What can be done with pairings?

Let P, Q be generators of E[n].

* Given ¢(P), ¢(Q) ~~  recover deg(y) mod n.



THE POWER OF PAIRINGS

Consider a (secret) isogeny

0 E— FE.

What can be done with pairings?
Let P, Q be generators of E[n].
* Given ¢(P), ¢(Q) ~~  recover deg(y) mod n.

« Given (P) and deg(y), if > > deg(¢) ~» recover g itself!
(using SIDH attack)



APPENDIX 2: ORIENTATIONS



INCLUDING THE SUPERSINGULAR CASE

What happens if we use supersingular elliptic curves?

Problem: if E is supersingular, then End(E) is NOT an imaginary
quadratic order!
Bad news

End(E) is non-commutative,
Cl(End(E)) is not even a

group.
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INCLUDING THE SUPERSINGULAR CASE

What happens if we use supersingular elliptic curves?

Problem: if E is supersingular, then End(E) is NOT an imaginary
quadratic order!

Bad news Good news
End(E) is non-commutative, For each non-scalar 7 € End(E),
Cl(End(E)) is not even a O ={o € End(E) |coT =700}
group. is an imaginary quadratic order.

Given O = Z[v/—d|, we say that (E, +) is an O-oriented elliptic curve if
there is an injective ring homomorphism

t: O — End(E).

Conclusion: given an O-orientation (E, ), the subring
t(O) C End(E) is an imaginary quadratic order.

6/10



APPENDIX 3: APPLICATIONS OF SELF-PAIRINGS
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APPENDIX 4: OUR MAIN RESULT (FULL VERSION)



SELF-PAIRINGS COMPATIBLE WITH ALL ORIENTED ENDOMORPHISMS

From [Cas+23b, Prop. 4.8].

PROPOSITION 1
O = imaginary quadratic order. Ao = discriminant of O.
E = O-oriented EC over IF,. G = cyclic subgroup of E.
f = self-pairing G — . m = #(f(G)).

Assume that f is compatible with O-oriented endomorphisms. Then

* char(Fq) tm,

« m| Ao,

o Writing Ao = —2"n for n odd, we have:

ifr=2thenm | Ap/2,
o ifr>3thenm | Ap /4.



SELF-PAIRINGS COMPATIBLE WITH (MOST!) ORIENTED ENDOMORPHISMS
From [Cas+23b, Prop. A.1].

PROPOSITION 2
O = imaginary quadratic order. Ao = discriminant of O.
E = O-oriented EC over IFg. G = cyclic subgroup of E.
f = self-pairing G — . m = #(f(G)).
Assume that f is compatible with O-oriented endomorphisms of norm
coprime with m. Then
* char(Fq) tm,
© mtho;
e Writing Ao = —2"n for n odd, we have:
« ifr=0andn =3 mod 8thenm | Ao,
o ifr=2andn =3 mod 4thenm | Ap/2,
e ifr=3,4thenm | Ap/4,
« ifr=0andn =7 mod 8thenm | 2Ap,

e ifr=2andn =1 mod 4thenm | Ao,
e ifr>5thenm | Ap/2.
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