Publicly-Verifiable Deletion via Target-Collapsing Functions

James Bartusek (UC Berkeley) Dakshita Khurana (UIUC) <u>Alexander Poremba</u> (Caltech)

CRYPTO 2023

August 21, 2023

Can we prove that data has been deleted?

Quantum Encryption with Certified Deletion (BI'20)

Alice $CT \leftarrow Enc_k(m)$

Quantum Encryption with Certified Deletion (BI'20)

Bob

Prior work:

- Broadbent and Islam (TCC '20): Private-key encryption
- Hiroka, Morimae, Nishimaki and Yamakawa (Asiacrypt '21): Public-key encryption and attribute-based encryption
- Bartusek and Khurana (CRYPTO '23): *Generic compiler* for public-key, attribute-based and homomorphic encryption

Quantum Encryption with Certified Deletion (BI'20)

Bob

Alice $CT \leftarrow Enc_k(m)$

Prior work:

- Broadbent and Islam (TCC '20): Private-key encryption
- Hiroka, Morimae, Nishimaki and Yamakawa (Asiacrypt '21): Public-key encryption and attribute-based encryption
- Bartusek and Khurana (CRYPTO '23): *Generic compiler* for public-key, attribute-based and homomorphic encryption

Publicly-verifiable deletion?

Anyone should be able to verify a certificate π to determine whether CT was successfully deleted.

• Hiroka, Morimae, Nishimaki and Yamakawa (Asiacrypt '21): *Public-key encryption* with PVD assuming one-shot signatures and extractable witness encryption.

- Hiroka, Morimae, Nishimaki and Yamakawa (Asiacrypt '21): *Public-key encryption* with PVD assuming one-shot signatures and extractable witness encryption.
- Poremba (ITCS '23): *Public-key and fully homomorphic encryption* with PVD assuming Strong Gaussian-Collapsing Conjecture about Ajtai hash function.

- Hiroka, Morimae, Nishimaki and Yamakawa (Asiacrypt '21): *Public-key encryption* with PVD assuming one-shot signatures and extractable witness encryption.
- Poremba (ITCS '23): *Public-key and fully homomorphic encryption* with PVD assuming Strong Gaussian-Collapsing Conjecture about Ajtai hash function.
- Bartusek, Garg, Goyal, Khurana, Malavolta, Raizes, Roberts (QIP '23): Variety of cryptosystems with PVD assuming indistinguishability obfuscation.

- Hiroka, Morimae, Nishimaki and Yamakawa (Asiacrypt '21): *Public-key encryption* with PVD assuming one-shot signatures and extractable witness encryption.
- Poremba (ITCS '23): *Public-key and fully homomorphic encryption* with PVD assuming Strong Gaussian-Collapsing Conjecture about Ajtai hash function.
- Bartusek, Garg, Goyal, Khurana, Malavolta, Raizes, Roberts (QIP '23): Variety of cryptosystems with PVD assuming indistinguishability obfuscation.

THIS WORK: PVD under standard assumptions.

- Initiate the study of (certified-everlasting) target-collapsing hashes:
 - Proof of Strong Gaussian-Collapsing Conjecture (implies PVD under LWE/SIS)
 - Proof that the public-key encryption scheme by Hhan, Morimae, Yamawaka (Eurocrypt'23) enables PVD (implies PVD under non-abelian group actions)
- Generic compiler for cryptosystems with PVD from target-collapsing hashes (for example, assuming *almost-regular one-way functions*)

Candidate construction:

Dual-Regev public-key scheme with PVD

Poremba (ITCS '23)

$$|\psi
angle = \sum_{\mathbf{x}\in\mathbb{Z}_q^m}
ho_{\sigma}(\mathbf{x}) |\mathbf{x}
angle \otimes |\mathbf{A}\cdot\mathbf{x} \pmod{q}
angle, \qquad
ho_{\sigma}(\mathbf{x}) = \exp(-\pi \|\mathbf{x}\|^2/\sigma^2).$$

$$|\psi
angle = \sum_{\mathbf{x}\in\mathbb{Z}_q^m}
ho_{\sigma}(\mathbf{x}) |\mathbf{x}
angle \otimes |\mathbf{A}\cdot\mathbf{x} \pmod{q}
angle, \qquad
ho_{\sigma}(\mathbf{x}) = \exp(-\pi \|\mathbf{x}\|^2/\sigma^2).$$

Measure the second register, which results in an outcome $\mathbf{y} \in \mathbb{Z}_{a}^{n}$.

$$|\psi\rangle = \sum_{\mathbf{x}\in\mathbb{Z}_q^m}
ho_{\sigma}(\mathbf{x}) |\mathbf{x}\rangle \otimes |\mathbf{A}\cdot\mathbf{x} \pmod{q}\rangle, \qquad
ho_{\sigma}(\mathbf{x}) = \exp(-\pi \|\mathbf{x}\|^2/\sigma^2).$$

Measure the second register, which results in an outcome $\mathbf{y} \in \mathbb{Z}_q^n$.

$$ert \psi_{\mathbf{y}}
angle = \sum_{\substack{\mathbf{x} \in \mathbb{Z}_q^m: \ \mathbf{A}\mathbf{x} = \mathbf{y} \pmod{q}}}
ho_{\sigma}(\mathbf{x}) ert \mathbf{x}
angle$$

$$|\psi\rangle = \sum_{\mathbf{x}\in\mathbb{Z}_q^m}
ho_{\sigma}(\mathbf{x}) |\mathbf{x}\rangle \otimes |\mathbf{A}\cdot\mathbf{x} \pmod{q}\rangle, \qquad
ho_{\sigma}(\mathbf{x}) = \exp(-\pi \|\mathbf{x}\|^2/\sigma^2).$$

Measure the second register, which results in an outcome $\mathbf{y} \in \mathbb{Z}_q^n$.

$$ert \psi_{\mathbf{y}}
angle = \sum_{\substack{\mathbf{x} \in \mathbb{Z}_q^m: \\ \mathbf{A}\mathbf{x} = \mathbf{y} \pmod{q}}}
ho_{\sigma}(\mathbf{x}) ert \mathbf{x}
angle$$

Superposition of short vectors **x** subject to the constraint that

 $\mathbf{A}\mathbf{x} = \mathbf{y} \pmod{q}$.

(solutions to inhomogenous SIS problem)

Duality of Gaussian States

Duality of Gaussian States

Use primal domain to *encrypt* messages.

$$\sum_{\mathbf{s} \in \mathbb{Z}_q^n} \sum_{\mathbf{e} \in \mathbb{Z}_q^m} \rho_{q/\sigma}(\mathbf{e}) \, \omega_q^{-\langle \mathbf{s}, \mathbf{y} \rangle} | \mathbf{s}^\mathsf{T} \mathbf{A} \! + \! \mathbf{e}^\mathsf{T} \rangle$$

Primal state

Use dual domain to prove deletion.

Dual-Regev public-key encryption with PVD [Poremba, ITCS'23]

- KeyGen (1^{λ}) generate $\mathsf{pk} = \mathbf{A} \in \mathbb{Z}_q^{n \times m}$ and $\mathsf{sk} = \mathbf{t}$ with $\mathbf{A} \cdot \mathbf{t} = \mathbf{0} \pmod{q}$.
- $\mathsf{Enc}_{\mathsf{pk}}(b)$ generate a verification key vk \leftarrow (**A**, **y** \in \mathbb{Z}_q^n) and ciphertext

$$|\mathsf{CT}\rangle \leftarrow \sum_{\mathbf{s}\in\mathbb{Z}_q^n}\sum_{\mathbf{e}\in\mathbb{Z}_q^n} \rho_{q/\sigma}(\mathbf{e})\,\omega_q^{-\langle\mathbf{s},\mathbf{y}
angle} |\mathbf{s}^\mathsf{T}\mathbf{A} + \mathbf{e}^\mathsf{T} + (0,\ldots,0,b\cdot\lfloor q/2\rfloor)\rangle.$$

Dec_{sk}(|CT⟩) measure the ciphertext in the computational basis with outcome
 c ∈ Z^m_q and round c^T · sk ∈ Z_q with respect to 0 and L^q/₂].

Dual-Regev public-key encryption with PVD [Poremba, ITCS'23]

- KeyGen (1^{λ}) generate $pk = \mathbf{A} \in \mathbb{Z}_q^{n \times m}$ and $sk = \mathbf{t}$ with $\mathbf{A} \cdot \mathbf{t} = \mathbf{0} \pmod{q}$.
- $\mathsf{Enc}_{\mathsf{pk}}(b)$ generate a verification key vk \leftarrow (A, y $\in \mathbb{Z}_q^n$) and ciphertext

$$|\mathsf{CT}\rangle \leftarrow \sum_{\mathbf{s}\in\mathbb{Z}_q^n}\sum_{\mathbf{e}\in\mathbb{Z}_q^n} \rho_{q/\sigma}(\mathbf{e})\,\omega_q^{-\langle\mathbf{s},\mathbf{y}
angle} |\mathbf{s}^\mathsf{T}\mathbf{A} + \mathbf{e}^\mathsf{T} + (0,\ldots,0,b\cdot\lfloor q/2\rfloor)\rangle.$$

Dec_{sk}(|CT⟩) measure the ciphertext in the computational basis with outcome
 c ∈ Z^m_q and round c^T · sk ∈ Z_q with respect to 0 and L^q/₂].

To delete the ciphertext, apply the quantum Fourier transform resulting in

$$|\widehat{\mathsf{CT}}
angle = \sum_{\substack{\mathbf{x}\in\mathbb{Z}_q^m:\\ \mathbf{A}\mathbf{x}=\mathbf{y} \pmod{q}}}
ho_{\sigma}(\mathbf{x}) \, \omega_q^{\langle \mathbf{x},(0,\dots,0,b\cdot\lfloor rac{q}{2}
floor)
angle} \ket{\mathbf{x}}$$

and measure to obtain a *short* solution π to the ISIS problem $\mathbf{A} \cdot \pi = \mathbf{y}$ (public verification!)

Security

Certified Deletion Experiment

$CD-EXP_{\mathcal{A}}(b)$:

- 1. Sample a matrix $\mathbf{A} \stackrel{s}{\leftarrow} \mathbb{Z}_{q}^{n \times m}$.
- 2. Generate a pair $(\mathbf{y}, |\psi_{b,\mathbf{y}}\rangle)$ with

$$|\psi_{b,\mathbf{y}}
angle = \sum_{\mathbf{x}\in\mathbb{Z}_q^m \text{ s.t. } \mathbf{A}\mathbf{x}=\mathbf{y}}
ho_{\sigma}(\mathbf{x}) \; \omega_q^{\langle \mathbf{x},(0,\dots,0,b\cdot\lfloor rac{q}{2}
floor)
angle} |\mathbf{x}
angle.$$

3. Run $\mathcal{A}(\mathbf{A}, \mathbf{y}, |\psi_{b, \mathbf{y}}\rangle)$ to produce certificate π and residual state ρ .

4. If π is short and $\mathbf{A} \cdot \pi = \mathbf{y}$, output ρ . Else, output $|\perp\rangle\langle\perp|$.

Security: For any QPT \mathcal{A} : TD(CD-EXP_{\mathcal{A}}(0), CD-EXP_{\mathcal{A}}(1)) \leq negl.

(Certified-Everlasting) Target-Collapsing Hashes

Certified-Everlasting Gaussian-Collapsing

CEGC-**EXP**_{\mathcal{A}}(*b*):

- **1**. Sample a matrix $\mathbf{A} \stackrel{\hspace{0.1em}\mathsf{\scriptscriptstyle\$}}{\leftarrow} \mathbb{Z}_q^{n \times m}$.
- 2. Generate a pair $(\mathbf{y},|\psi_{\mathbf{y}}
 angle_{\mathsf{X}})$ with

$$|\psi_{\mathbf{y}}
angle_{\mathsf{X}} = \sum_{\mathbf{x}\in\mathbb{Z}_{a}^{m} ext{ s.t. } \mathbf{A}\mathbf{x}=\mathbf{y}}
ho_{\sigma}(\mathbf{x}) \, |\mathbf{x}
angle_{\mathsf{X}}.$$

- 3. If b = 1, additionally measure register X in computational basis.
- 4. Run $\mathcal{A}(\mathbf{A}, \mathbf{y}, \mathbf{X})$ to produce certificate π and residual state ρ .
- 5. If π is short and $\mathbf{A} \cdot \pi = \mathbf{y}$, output ρ . Else, output $|\perp\rangle\langle\perp|$.

Security: For any QPT \mathcal{A} : TD(CEGC-EXP_{\mathcal{A}}(0), CEGC-EXP_{\mathcal{A}}(1)) \leq negl.

Certified-Everlasting Gaussian-Collapsing

CEGC-**EXP**_{\mathcal{A}}(*b*):

- **1**. Sample a matrix $\mathbf{A} \stackrel{\hspace{0.1em}\mathsf{\scriptscriptstyle\$}}{\leftarrow} \mathbb{Z}_q^{n \times m}$.
- 2. Generate a pair $(\mathbf{y},|\psi_{\mathbf{y}}
 angle_{\mathsf{X}})$ with

$$|\psi_{\mathbf{y}}
angle_{\mathbf{X}} = \sum_{\mathbf{x}\in\mathbb{Z}_{\sigma}^{m} ext{ s.t. } \mathbf{A}\mathbf{x}=\mathbf{y}}
ho_{\sigma}(\mathbf{x}) \, |\mathbf{x}
angle_{\mathbf{X}}.$$

- 3. If b = 1, additionally measure register X in computational basis.
- 4. Run $\mathcal{A}(\mathbf{A}, \mathbf{y}, \mathsf{X})$ to produce certificate π and residual state ρ .
- 5. If π is short and $\mathbf{A} \cdot \pi = \mathbf{y}$, output ρ . Else, output $|\perp\rangle\langle\perp|$.

<u>Proof idea:</u> • use entanglement via $|+\rangle_{C}$: superposition of non-measured/measured register X. • wait until \mathcal{A} replies with π , then perform projective measurement on register C.

Generalization: Certified-Everlasting Target-Collapsing

Let $\mathcal{H} = \{h : \mathcal{X} \to \mathcal{Y}\}_h$ be a hash family, \mathcal{D} be a distribution and \mathcal{M} be a measurement.

Certified-Everlasting $(\mathcal{D}, \mathcal{M})$ -Target-Collapsing

- Ajtai hash function ightarrow random hash h in ${\mathcal H}$
- Gaussian distribution \rightarrow distribution specified by $\mathcal{D}.$
- Computational basis measurement of X \rightarrow measurement specified by $\mathcal{M}.$

$$|\psi\rangle_{\mathsf{X}\mathsf{Y}} = \sum_{x\in\mathcal{X}} \sqrt{\mathcal{D}(x)} |x\rangle_{\mathsf{X}} \otimes |h(x)\rangle_{\mathsf{Y}}.$$

Generalization: Certified-Everlasting Target-Collapsing

Let $\mathcal{H} = \{h : \mathcal{X} \to \mathcal{Y}\}_h$ be a hash family, \mathcal{D} be a distribution and \mathcal{M} be a measurement.

Certified-Everlasting $(\mathcal{D}, \mathcal{M})$ -Target-Collapsing

- Ajtai hash function \rightarrow random hash h in $\mathcal H$
- Gaussian distribution \rightarrow distribution specified by \mathcal{D} .
- Computational basis measurement of X \rightarrow measurement specified by $\mathcal{M}.$

$$|\psi\rangle_{\mathsf{X}\mathsf{Y}} = \sum_{x\in\mathcal{X}} \sqrt{\mathcal{D}(x)} |x\rangle_{\mathsf{X}} \otimes |h(x)\rangle_{\mathsf{Y}}.$$

Main Theorem: If the hash function family $\mathcal H$ satisfies

- $(\mathcal{D}, \mathcal{M})$ -target-collision-resistance
- $(\mathcal{D}, \mathcal{M})$ -target-collapsing

then $\mathcal H$ is certified-everlasting ($\mathcal D,\mathcal M)\text{-target-collapsing}.$

Generalization: Certified-Everlasting Target-Collapsing

Let $\mathcal{H} = \{h : \mathcal{X} \to \mathcal{Y}\}_h$ be a hash family, \mathcal{D} be a distribution and \mathcal{M} be a measurement.

Certified-Everlasting $(\mathcal{D}, \mathcal{M})$ -Target-Collapsing

- Ajtai hash function ightarrow random hash h in ${\mathcal H}$
- Gaussian distribution \rightarrow distribution specified by $\mathcal{D}.$
- Computational basis measurement of X \rightarrow measurement specified by $\mathcal{M}.$

$$|\psi\rangle_{\mathsf{X}\mathsf{Y}} = \sum_{x\in\mathcal{X}} \sqrt{\mathcal{D}(x)} |x\rangle_{\mathsf{X}} \otimes |h(x)\rangle_{\mathsf{Y}}.$$

<u>Main Theorem</u>: If the hash function family \mathcal{H} satisfies

- $(\mathcal{D}, \mathcal{M})$ -target-collision-resistance (\leftarrow quantum generalization of classical TCR)
- $(\mathcal{D}, \mathcal{M})$ -target-collapsing (\leftarrow weakening of collapsing property [Unruh'16])

then \mathcal{H} is certified-everlasting $(\mathcal{D}, \mathcal{M})$ -target-collapsing.

Conclusion

Conclusion

- We introduce a natural weakening of *collapsing* called target-collapsing.
- We show that hash functions which satisfy basic (non-everlasting) security properties *automatically* satisfy certified-everlasting target-collapsing.
- We use our framework to prove that the encryption schemes of Poremba (ITCS'23) and Hhan, Morimae and Yamakawa (Eurocrypt'23) enable PVD.
- We use our framework to design a generic compiler that adds PVD to a variety of schemes (commitments, PKE, ABE, FHE, WE, ...).

Conclusion

- We introduce a natural weakening of *collapsing* called target-collapsing.
- We show that hash functions which satisfy basic (non-everlasting) security properties *automatically* satisfy certified-everlasting target-collapsing.
- We use our framework to prove that the encryption schemes of Poremba (ITCS'23) and Hhan, Morimae and Yamakawa (Eurocrypt'23) enable PVD.
- We use our framework to design a generic compiler that adds PVD to a variety of schemes (commitments, PKE, ABE, FHE, WE, ...).

Open Problems:

- investigate the relationship between target-collapsing and target-collision-resistance, and related notions.
- new cryptographic applications of target-collapsing hashes.

Questions?