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Can we prove that data has been deleted?



Quantum Encryption with Certified Deletion (BI’20)

Bob

CT
x y π✓

x k

Alice CT← Enck(m)

Prior work:

• Broadbent and Islam (TCC ’20): Private-key encryption

• Hiroka, Morimae, Nishimaki and Yamakawa (Asiacrypt ’21):

Public-key encryption and attribute-based encryption

• Bartusek and Khurana (CRYPTO ’23): Generic compiler for

public-key, attribute-based and homomorphic encryption

Publicly-verifiable deletion?

Anyone should be able to verify a certificate π to determine

whether CT was successfully deleted.
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Publicly-Verifiable Deletion



Publicly-Verifiable Deletion (PVD)

• Hiroka, Morimae, Nishimaki and Yamakawa (Asiacrypt ’21): Public-key encryption with

PVD assuming one-shot signatures and extractable witness encryption.

• Poremba (ITCS ’23): Public-key and fully homomorphic encryption with PVD assuming

Strong Gaussian-Collapsing Conjecture about Ajtai hash function.

• Bartusek, Garg, Goyal, Khurana, Malavolta, Raizes, Roberts (QIP ’23): Variety of

cryptosystems with PVD assuming indistinguishability obfuscation.

This work: PVD under standard assumptions.

• Initiate the study of (certified-everlasting) target-collapsing hashes:

• Proof of Strong Gaussian-Collapsing Conjecture (implies PVD under LWE/SIS)

• Proof that the public-key encryption scheme by Hhan, Morimae, Yamawaka

(Eurocrypt’23) enables PVD (implies PVD under non-abelian group actions)

• Generic compiler for cryptosystems with PVD from target-collapsing hashes (for

example, assuming almost-regular one-way functions)
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Candidate construction:

Dual-Regev public-key scheme with PVD

Poremba (ITCS ’23)



Gaussian superpositions

Main idea: Quantum reduction from SIS to LWE [Reg’05,SSTX’09]. Let A ∈ Zn×m
q .

|ψ⟩ =
∑
x∈Zm

q

ρσ(x) |x⟩ ⊗ |A · x (mod q)⟩, ρσ(x) = exp(−π∥x∥2/σ2).

Measure the second register, which results in an outcome y ∈ Zn
q.

|ψy⟩ =
∑
x∈Zm

q :

Ax=y (mod q)

ρσ(x) |x⟩

Coset state

Superposition of short vectors x

subject to the constraint that

Ax = y (mod q).

(solutions to inhomogenous SIS problem)
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Duality of Gaussian States

∑
s∈Zn

q

∑
e∈Zm

q

ρq/σ(e)ω
−⟨s,y⟩
q |s⊺A+e⊺⟩

Primal state

FT←→

∑
x∈Zm

q :

Ax=y (mod q)

ρσ(x) |x⟩

Dual state
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Duality of Gaussian States

Use primal domain to encrypt messages.

∑
s∈Zn

q

∑
e∈Zm

q

ρq/σ(e)ω
−⟨s,y⟩
q |s⊺A+e⊺⟩

Primal state

FT←→

Use dual domain to prove deletion.

∑
x∈Zm

q :

Ax=y (mod q)

ρσ(x) |x⟩

Dual state
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Dual-Regev public-key encryption with PVD [Poremba, ITCS’23]

• KeyGen(1λ) generate pk = A ∈ Zn×m
q and sk = t with A · t = 0 (mod q).

• Encpk(b) generate a verification key vk← (A, y ∈ Zn
q) and ciphertext

|CT⟩ ←
∑
s∈Zn

q

∑
e∈Zm

q

ρq/σ(e)ω
−⟨s,y⟩
q |s⊺A+e⊺+ (0, . . . , 0, b · ⌊q/2⌋)⟩.

• Decsk(|CT⟩) measure the ciphertext in the computational basis with outcome

c ∈ Zm
q and round c⊺ · sk ∈ Zq with respect to 0 and ⌊ q2 ⌋.

To delete the ciphertext, apply the quantum Fourier transform resulting in

|ĈT⟩ =
∑
x∈Zm

q :

Ax=y (mod q)

ρσ(x)ω
⟨x,(0,...,0,b·⌊ q

2 ⌋)⟩
q |x⟩

and measure to obtain a short solution π to the ISIS problem A · π = y (public verification!)
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|ĈT⟩ =
∑
x∈Zm

q :

Ax=y (mod q)

ρσ(x)ω
⟨x,(0,...,0,b·⌊ q

2 ⌋)⟩
q |x⟩

and measure to obtain a short solution π to the ISIS problem A · π = y (public verification!)

6



Security



Certified Deletion Experiment

CD-EXPA(b):

1. Sample a matrix A $←−Zn×m
q .

2. Generate a pair (y, |ψb,y⟩) with

|ψb,y⟩ =
∑

x∈Zm
q s.t.Ax=y

ρσ(x) ω
⟨x,(0,...,0,b·⌊ q

2 ⌋)⟩
q |x⟩.

3. Run A(A, y, |ψb,y⟩) to produce certificate π and residual state ρ.

4. If π is short and A · π = y, output ρ. Else, output |⊥⟩⟨⊥|.

Security: For any QPT A: TD
(
CD-EXPA(0),CD-EXPA(1)

)
≤ negl.
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(Certified-Everlasting)

Target-Collapsing Hashes



Certified-Everlasting Gaussian-Collapsing

CEGC-EXPA(b):

1. Sample a matrix A $←−Zn×m
q .

2. Generate a pair (y, |ψy⟩X) with

|ψy⟩X =
∑

x∈Zm
q s.t.Ax=y

ρσ(x) |x⟩X.

3. If b = 1, additionally measure register X in computational basis.

4. Run A(A, y,X) to produce certificate π and residual state ρ.

5. If π is short and A · π = y, output ρ. Else, output |⊥⟩⟨⊥|.

Security: For any QPT A: TD
(
CEGC-EXPA(0),CEGC-EXPA(1)

)
≤ negl.
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Certified-Everlasting Gaussian-Collapsing

CEGC-EXPA(b):

1. Sample a matrix A $←−Zn×m
q .

2. Generate a pair (y, |ψy⟩X) with

|ψy⟩X =
∑

x∈Zm
q s.t.Ax=y

ρσ(x) |x⟩X.

3. If b = 1, additionally measure register X in computational basis.

4. Run A(A, y,X) to produce certificate π and residual state ρ.

5. If π is short and A · π = y, output ρ. Else, output |⊥⟩⟨⊥|.

Proof idea: • use entanglement via |+⟩C: superposition of non-measured/measured register X.

• wait until A replies with π, then perform projective measurement on register C.
9



Generalization: Certified-Everlasting Target-Collapsing

Let H = {h : X → Y}h be a hash family, D be a distribution andM be a measurement.

Certified-Everlasting (D,M)-Target-Collapsing

• Ajtai hash function → random hash h in H
• Gaussian distribution → distribution specified by D.
• Computational basis measurement of X → measurement specified byM.

|ψ⟩XY =
∑
x∈X

√
D(x) |x⟩X ⊗ |h(x)⟩Y.

Main Theorem: If the hash function family H satisfies

• (D,M)-target-collision-resistance

• (D,M)-target-collapsing

then H is certified-everlasting (D,M)-target-collapsing.
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D(x) |x⟩X ⊗ |h(x)⟩Y.

Main Theorem: If the hash function family H satisfies

• (D,M)-target-collision-resistance (← quantum generalization of classical TCR)

• (D,M)-target-collapsing (← weakening of collapsing property [Unruh’16])

then H is certified-everlasting (D,M)-target-collapsing.
11



Conclusion



Conclusion

• We introduce a natural weakening of collapsing called target-collapsing.

• We show that hash functions which satisfy basic (non-everlasting) security properties

automatically satisfy certified-everlasting target-collapsing.

• We use our framework to prove that the encryption schemes of Poremba (ITCS’23) and

Hhan, Morimae and Yamakawa (Eurocrypt’23) enable PVD.

• We use our framework to design a generic compiler that adds PVD to a variety of schemes

(commitments, PKE, ABE, FHE, WE, ...).

Open Problems:

• investigate the relationship between target-collapsing and

target-collision-resistance, and related notions.

• new cryptographic applications of target-collapsing hashes.
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Questions?
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