SECURITY - PRESERVING DISTRIBUTED SAMPLERS

HOW TO GENERATE ANY CRS IN ONE ROUND WITHOUT RANDOM ORACLES

(DAMIANO ABRAM	
	AARHUS UNIVERSITY	

BRENT WATERS

UNIVERSITY OF TEXAS AT AUSTIN

NTT RESEARCH

MARK ZHANDRY

NTT RESEARCH

P,

SEMI - HONEST DISTRIBUTED SAMPLERS

- any efficient distribution $D(1)^{*}$ in the plain model
- · dishonest majority
- i) + multi-Key FHE

ACTIVE SECURITY?

ACTIVE DISTRIBUTED SAMPLERS

any efficient distribution D(11^{*})
in the programmable RO model
dishonest majority, static corruption
iO + multi-Key FHE + NIZKs

Then, any actively secure distributed sampler for D(1) needs a CRS.

PREVIOUS WORK NEGATIVE RESULTS [EPRINT: ABRAM, OBREMSKI, SCHOLL 23]

THEOREM Suppose that $H_{\infty}(D) = \omega(\log \lambda)$. Then, any actively secure distributed sampler for $D(1^{*})$ needs a CRS. Furthermore, the CRS is: • non-reusable PREVIOUS WORK NEGATIVE RESULTS [EPRINT: ABRAM, OBREMSKI, SCHOLL 23]

THEOREM Suppose that $H_{\infty}(D) = \omega(\log \lambda)$. Then, any actively secure distributed sampler for D(1)needs a CRS. Furthermore, the CRS is: • non-reusable

• at least HyAO (D) - O(log x) bits long

PRFVIOUS X/()RKNEGATIVE RESULTS [EPRINT: ABRAM, OBREMSKI, SCHOLL 23]

THEOREM Suppose that $H_{\infty}(D) = \omega(\log \lambda)$. Then, any actively secure distributed sampler for D(1) needs a CRS. Furthermore, the CRS is:

- non-reusable
- at least HyAO (D) O(log x) bits long
- unstructured only if D is obliviously samplable

PREVIOUS WORK NEGATIVE RESULTS [EPRINT: ABRAM, OBREMSKI, SCHOLL 23]

THEOREM Suppose that $H_{\infty}(D) = \omega(\log \lambda)$. Then, any actively secure distributed sampler for $D(1^{*})$ needs a CRS. Furthermore, the CRS is:

- non-reusable
- at least HyAO (D) O(log x) bits long
- unstructured only if D is obliviously samplable

SUMMARY

WITHOUT RANDOM ORACLE, ACTIVELY SECURE DISTRIBUTED SAMPLERS CANNOT BE BETTER THAN THE TRUSTED SETUP!

OUR CONTRIBUTION

NEW DEFINITIONS OF ACTIVE DISTRIBUTED SAMPLERS THAT DON'T NEED RANDOM ORACLES

OUR CONTRIBUTION

NEW DEFINITIONS OF ACTIVE DISTRIBUTED SAMPLERS THAT DON'T NEED RANDOM ORACLES

HARDNESS-PRESERVING DISTRIBUTED SAMPLERS

INDISTINGUISHABILITY - PRESERVING DISTRIBUTED SAMPLERS

OUR CONTRIBUTION

NEW DEFINITIONS OF ACTIVE DISTRIBUTED SAMPLERS THAT DON'T NEED RANDOM ORACLES

HARDNESS-PRESERVING DISTRIBUTED SAMPLERS

preserving the hardness of search games with efficient challenger.

INDISTINGUISHABILITY - PRESERVING DISTRIBUTED SAMPLERS

CONTRIBUTION ()(JK NEW DEFINITIONS OF ACTIVE DISTRIBUTED SAMPLERS THAT DON'T

NEED RANDOM ORACLES

HARDNESS-PRESERVING DISTRIBUTED SAMPLERS

preserving the hardness of search games with efficient challenger.

INDISTINGUISHABILITY - PRESERVING DISTRIBUTED SAMPLERS

preserving the functionality of the compiled protocol if certain conditions are satisfied.

REAL WORLD

IDEAL WORLD

HARDNESS - PRESERVING DISTRIBUTED SAMPLERS REAL WORLD 1 IDEAL WORLD

IP_os[A succeeds < negl(x)

IP_ces[A succeeds < negl(x)

 $P_{cRS}[A \text{ succeeds}] < negl(\lambda) \Rightarrow P_{DS}[A \text{ succeeds}] < negl(\lambda)$

$$\begin{array}{c} \text{LOSSY DISTRIBUTED} \\ \text{distributed} \\ \text{Sampler mensage} \\ \text{VU:} \\ \Omega_{U}^{2} = \left\{ \text{Sample} \left(U, U_{x}, ..., U_{m,x} \right) | U_{x}, ..., U_{m,x} \right\} \\ \text{STANDARD} \\ \text{MODE} \\ \begin{array}{c} \text{LOSSY} \\ \text{MODE} \end{array} \right. \\ \begin{array}{c} \text{MODE} \\ \text{MODE} \end{array}$$

PROGRAMMABILITY OF LOSSY DISTRIBUTED SAMPLERS

PROGRAMMABILITY OF LOSSY DISTRIBUTED SAMPLERS

SIZE

THAN

LOSSY MODE (q) PROGRAMMED MODE (q) $R \stackrel{\$}{\leftarrow} D(1|^{\lambda})$ Û, ムとû. SIZE SMALLER THAN 9

INDISTINGUISHABLE

BUILDING LOSSY DISTRIBUTED SAMPLERS

THEOREM Assume the existence of

- subexp iO
 subexp multi-Key FHE
 extremely lossy functions (ELFs)
 subexp collision resistant hash functions

BUILDING LOSSY DISTRIBUTED SAMPLERS

subexp injective OWFs

perfectly correct IBE

perfectly sound NIWI

THEOREM Assume the existence of

- subexp iO
 subexp multi Key FHE
- extremely lossy functions (ELFs)
 subexp collision resistant hash functions
- almost-everywhere extractable NIZKs -

BUILDING LOSSY DISTRIBUTED SAMPI FRS

subexp injective OWFs

perfectly correct IBE

perfectly sound NIWI

THEOREM Assume the existence of

- subexp iO
 subexp multi-Key FHE
- extremely lossy functions (ELFs)
 subexp collision resistant hash functions
- almost-everywhere extractable NIZKs -

Then, there exists a programmable lossy distributed sampler with a short (poly x), reusable CRS. can le made unstructured

REAL WORLD

FROM LOSSY TO HARDNESS-PRESERVING DISTRIBUTED SAMPLERS REAL WORLD P Pm SUPERPOLYNOMIAL SIZE R_3 R, P, Ψ b= 0/1 $P\left[5=1\right] = \varepsilon(\lambda) \leftarrow polynomial$

HYBRID WORLD 1

POLYNOMIAL

SIZE

Rg

 $\left(I\right)$

INDISTINGUISHABILITY - PRESERVING DISTRIBUTED SAMPLERS

REAL WORLD

BUILDING INDISTINGUISHABILITY-PRESERVING DISTRIBUTED SAMPLERS

THEOREM Our lossy distributed sampler is indistinguishability - preserving.

Our distributed samplers have CRS's that are:

ON THE NEED FOR CRS'S Our distributed samplers have CRS's that are: • reurable

Our distributed samplers have CRS's that are:

- reusable
- short

Our distributed samplers have CRS's that are:

- · reusable
- shortunstructured

Our distributed samplers have CRS's that are:

- reusable
- short
- · unstructured

Can we get rid of CRSs?

ON THE NEED FOR (RSS Our distributed samplers have CRS's that are: · reusable shortunstructured Can we get rid of CRSs? • for indistinguishability-preserving distributed samplers NO!

ON THE NEED FOR CRSS Our distributed samplers have CRS's that are: · reusable • short · unstructuro Can we get rid of CRSs? · for indistinguishability - preserving distributed samplers NO! BY COMPILING [PVW08], WE WOULD GET 3-ROUND ACTIVE OT IN THE PLAIN MODEL \$

ON THE NEED FOR (RSS Our distributed samplers have CRS's that are: · reusable shortunstructured Can we get rid of CRSs? · for indistinguishability - preserving distributed samplers NO! BY COMPILING [PVW08], WE WOULD GET 3-ROUND ACTIVE OT IN THE PLAIN MODEL \$ · for hardness-preserving distributed samplers OPEN!

We can build security-preserving distributed samplers without CRS if:

We can build security-preserving distributed samplers without CRS if: · ve restrict to uniform dversaries

We can build security-preserving distributed samplers without CRS if: · ve restrict to uniform dversaries • ve allow non-uniform simulators

We can build security-preserving distributed samplers without CRS if: · ve restrict to uniform dversaries • ve allow non-uniform simulators Ş We built CRS-less simulation-extractable NIZKs!

NEW NIZK NOTIONS: •CRS-LESS NIZKS •ALMOST-EVERYWHERE - EXTRACTABILITY