Unifying Freedom and Separation for Tight Probing-Secure Composition

Sonia Belaïd ${ }^{1}$, Gaëtan Cassiers³, Matthieu Rivain ${ }^{1}$, Abdel Rahman Taleb ${ }^{1,2}$

${ }^{1}$ CryptoExperts, France
${ }^{2}$ Sorbonne Université, CNRS, LIP6, F-75005 Paris, France
${ }^{3}$ TU Graz, Austria

CRYPTO-21/08/2023

We innovate to secure your business

Side-Channel Attacks

Power Consumtion

Electromagnetic Radiation

Countermeasure

Masking chari etal. [CRYPTo'sg], Goubin and Patarin [CHES'9]

Secret Variable $x \in \mathbb{F}_{2}$ (field)

Countermeasure

MaSking chari et al. [CRYPTO'99], Goubin and Patarin [CHES'99]

Countermeasure

Gadgets

Operations over variables \mathbb{F}_{2}

$$
a, b \text { Atomic gates } a+b
$$

Countermeasure

Gadgets

Operations over variables \mathbb{F}_{2}

Operations over masked variables in \mathbb{F}_{2}^{n}

$$
\begin{aligned}
& \left(a_{1}, \ldots, a_{n}\right),\left(b_{1}, \ldots, b_{n}\right) G_{+}\left(c_{1}, \ldots, c_{n}\right) \text { s.t. } c_{1}+\ldots+c_{n}=a+b \\
& \left(a_{1}, \ldots, a_{n}\right),\left(b_{1}, \ldots, b_{n}\right) G_{\times}\left(c_{1}, \ldots, c_{n}\right) \text { s.t. } c_{1}+\ldots+c_{n}=a \times b
\end{aligned}
$$

Countermeasure

Gadgets

Intuitively, a gadget is considered «secure» if an attacker needs at least n observations to retrieve the

Operations over variables \mathbb{F}_{2}

$a, b \quad a \times b$
random

$$
r \quad r \stackrel{\$ \mathbb{F}_{2}}{ }
$$

$$
\begin{aligned}
& \text { Operations over masked variables in } \mathbb{F}_{2}^{n} \\
& \left(a_{1}, \ldots, a_{n}\right),\left(b_{1}, \ldots, b_{n}\right) \lcm{G_{+}}\left(c_{1}, \ldots, c_{n}\right) \text { s.t. } c_{1}+\ldots+c_{n}=a+b \\
& \text { g-share Gadgets formed of atomic } \\
& \text { gates }
\end{aligned}
$$

$$
\left(a_{1}, \ldots, a_{n}\right) \boldsymbol{G}_{\text {refresh }}\left(c_{1}, \ldots, c_{n}\right) \text { s.t. } c_{1}+\ldots+c_{n}=a
$$

Probing Model

Security sshai, Sanai and Wasener cevrerovas

t-probing security $(t<n)$: any set of at most t variables is independent of the secrets

Probing Model

Security ıshai, Sahai and Wagner [CRYPTO'03]

t-probing security $(t<n)$: any set of at most t variables is independent of the secrets

Probing Model

Composition

2-probing secure?
($n=3$ shares)

Probing Model

Composition: Non-interference (NI) Bathe eta. [ccstrg]

t-NI: the distribution of any set of at most t variables can be simulated with the knowledge of at most t input shares of each input

Probing Model

Composition: Non-interference (NI) Eathte etal. ccostre]

t-NI: the distribution of any set of at most t variables can be simulated
with the knowledge of at most t input shares of each input

$\Longrightarrow 2$-probing secure

Probing Model

Composition: Strong Non-interference (SNI) Earthe etal [ccsitg]

t-SNI: the distribution of any set of at most t_{1} intermediate variables and t_{2} output variables such that $t_{1}+t_{2} \leq t$, can be simulated with the knowledge of at most t_{1} input shares of each input

Probing Model

Composition: Strong Non-interference (SNI) Earthe otal [ccsisel

t-SNI: the distribution of any set of at most t_{1} intermediate variables and t_{2} output variables such that $t_{1}+t_{2} \leq t$, can be simulated with the knowledge of at most t_{1} input shares of each input

$\Longrightarrow 2$-probing secure

Probing Model

Composition: Strong Non-interference (SNI) Earthe otal [cccs'bl

\underline{t}-SNI: the distribution of any set of at most t_{1} intermediate variables and t_{2} output variables such that $t_{1}+t_{2} \leq t$, can be simulated with the knowledge of at most t_{1} input

\Longrightarrow 2-probing secure

Probing Model
 Stronger Region Probing Security

Split the circuit into regions

Each region is t-probing secure \Longrightarrow whole circuit is t-region probing secure

Better reduction to more realistic leakage models

Motivation of this Work

Tight Private Circuits ${ }_{\text {Belaia, G Gudarzi and Rivain [ASIACRYPT'ıs] }}$

Secure composition in the probing model by inserting refresh gadgets

Only inserts refresh gadgets when needed (tight composition)

Uses SNI multiplication and refresh gadgets (authors use ISW scheme)

Motivation of this Work

Tight Private Circuits ${ }_{\text {Belaia, G Gudarzi and Rivain [ASIACRYPT'ıs] }}$

Secure composition in the probing model by inserting refresh gadgets

Only inserts refresh gadgets when needed (tight composition)

Uses SNI multiplication and refresh gadgets (authors use ISW scheme)

Not sufficient!
(more details later)

Contributions

t-IOS (Input Output Separation)
Goudarzi et al. [TCHES'21]
composition in the region probing model

Contributions

free t-SNI
Coron and Spignoli [CRYPTO'21]
secure wire shuffling in the probing model

t-IOS (Input Output Separation)
Goudarzi et al. [TCHES'21]
composition in the region probing model

- Unify and extend free t-SNI and t-IOS
- Propose efficient automatic verification for both properties and include it in IronMask (Belaïd et al. [S\&P’22])
- Propose gadgets that satisfy both notions
- Generalize Tight Private Circuits (TPC) and show that it requires free t-SNI multiplication and refresh gadgets
- Provide more efficient composition in the region probing model

Stronger Composition Notions

Free-SNI \& IOS

3-share 1 -input 1-output gadget
W: set of probes on G
$|W| \leq 2$
$|W| \leq 2$

Stronger Composition Notions

Free-SNI \& IOS

3-share 1-input 1-output gadget
W : set of probes on G
$|W| \leq 2$

Stronger Composition Notions
 Free-SNI \& IOS

3-share 1-input 1-output gadget
W : set of probes on G
$|W| \leq 2$

Stronger Composition Notions
 Free-SNI \& IOS

Stronger Composition Notions
 Free-SNI \& IOS

$$
W,|W| \leq t
$$

```
    free t-SNI
    \existsI, set of input shares s.t. |I| \leq|W|
perfect simulation of W and output shares in }J=I\mathrm{ , using input
    shares in I
output shares in any strict subset of {1,\ldots,n}\J are mutually
    independent from the simulation and uniform
```

```
t-IOS
\exists I, set of input shares s.t. }|||\leq|W
\exists J, set of output shares s.t. }|J|\leq|W
perfect simulation of W using input shares in I and output
    shares in J
```


Stronger Composition Notions
 Free-SNI \& IOS

$$
W,|W| \leq t
$$

```
    free t-SNI
    \existsI, set of input shares s.t. |I| \leq | W|
perfect simulation of W and output shares in }J=I\mathrm{ , using input
    shares in I
output shares in any strict subset of {1,\ldots,n}\J are mutually
    independent from the simulation and uniform
```

balanced t-IOS

```
balanced t-IOS
    \existsI, set of input shares s.t. |I| \leq|W|
    \existsI, set of input shares s.t. |I| \leq|W|
        J=I set of output shares
        J=I set of output shares
    perfect simulation of W using input shares in I and output
    perfect simulation of W using input shares in I and output
    shares in J
```

```
    shares in J
```

```

\section*{Stronger Composition Notions \\ Free-SNI \& IOS}
\[
W,|W| \leq t
\]
```

 free t-SNI
 \existsI, set of input shares s.t. |I| \leq|W|
 perfect simulation of W and output shares in }J=I\mathrm{ , using input
shares in I
output shares in any strict subset of {1,···,n}\J are mutually
independent from the simulation and uniform

```
```

t-IOS
\exists I, set of input shares s.t. }|||\leq|W
\exists J, set of output shares s.t. }|J|\leq|W
perfect simulation of W using input shares in I and output
shares in J

```

\section*{Stronger Composition Notions \\ Free-SNI \& IOS}
\[
W,|W| \leq t
\]
```

 Unbalanced free t-SNI
 \existsI, set of input shares s.t. |I| \leq | W|
 \existsJ, set of output shares s.t. |J | \leq |W|
 perfect simulation of W and output shares in J, using input shares
in I
output shares in any strict subset of {1,···,n}\JJ are mutually
independent from the simulation and uniform

```

\section*{Stronger Composition Notions}

Free-SNI \& IOS

\section*{Stronger Composition Notions Free-SNI \& IOS}


\section*{Automatic Verification}

\section*{IronMask Beläid et al. [sspr22]}
- Verification tool for probing and random probing properties
- Algebraic characterization for probe expression

\section*{Automatic Verification}

\section*{IronMask Beläid et al. [sspr22]}
- Verification tool for probing and random probing properties
- Algebraic characterization for probe expression

Set of Probes

\section*{Automatic Verification}

\section*{IronMask Beläid et al. [sspr22]}
- Verification tool for probing and random probing properties
- Algebraic characterization for probe expression

\section*{Automatic Verification}

\section*{IronMask Belaid et al. [S\&P'22]}
- Verification tool for probing and random probing properties
- Algebraic characterization for probe expression


\section*{Automatic Verification}

\section*{IronMask Beläid et al. [sspr22]}
- Verification tool for probing and random probing properties
- Algebraic characterization for probe expression


\section*{Automatic Verification \\ Free-SNI \& IOS}

Verification of Free-SNI and IOS (or balanced Free-SNI)

\title{
Automatic Verification \\ Free-SNI \& IOS
}

Verification of Free-SNI and IOS (or balanced Free-SNI)

Set of Probes

\section*{Automatic Verification}

\section*{Free-SNI \& IOS}

Verification of Free-SNI and IOS (or balanced Free-SNI)

\author{
Set of Probes
}


Input shares necessary for a simulation

\section*{Automatic Verification}

\section*{Free-SNI \& IOS}

Verification of Free-SNI and IOS (or balanced Free-SNI)


\section*{Automatic Verification}

\section*{Free-SNI \& IOS}

Verification of Free-SNI and IOS (or balanced Free-SNI)


\section*{Automatic Verification Free-SNI \& IOS}

Verification of Free-SNI and IOS (or balanced Free-SNI)


We show that one Gaussian Elimination is sufficient to find the set of input shares for the simulation and ensure the independence of the necessary subsets of output shares

\section*{Constructions Satisfying Free SNI \& IOS}

\section*{ISW Scheme Ispai \(^{\text {Sanaia and Waserer Ccrverovos }}\)}

Example: 3-share ISW multiplication

\section*{Constructions Satisfying Free SNI \& IOS}

\section*{}

\author{
Example: 3-share ISW multiplication
}
\[
\begin{array}{lll}
a_{1} \times b_{1} & a_{1} \times b_{2} & a_{1} \times b_{3} \\
a_{2} \times b_{1} & a_{2} \times b_{2} & a_{2} \times b_{3} \\
a_{3} \times b_{1} & a_{3} \times b_{2} & a_{3} \times b_{3}
\end{array}
\]

\section*{Constructions Satisfying Free SNI \& IOS}

\section*{}

\author{
Example: 3-share ISW multiplication
}
\[
\begin{array}{lll}
a_{1} \times b_{1} & a_{1} \times b_{2}+r_{1,2} & a_{1} \times b_{3}+r_{1,3} \\
a_{2} \times b_{1} & a_{2} \times b_{2} & a_{2} \times b_{3}+r_{2,3} \\
a_{3} \times b_{1} & a_{3} \times b_{2} & a_{3} \times b_{3}
\end{array}
\]

\section*{Constructions Satisfying Free SNI \& IOS}

\section*{}

\author{
Example: 3-share ISW multiplication
}
\[
\begin{array}{lll}
a_{1} \times b_{1} & a_{1} \times b_{2}+r_{1,2}+a_{2} \times b_{1} & a_{1} \times b_{3}+r_{1,3} \\
& a_{2} \times b_{2} & a_{2} \times b_{3}+r_{2,3} \\
& & \\
a_{3} \times b_{1} & a_{3} \times b_{2} & a_{3} \times b_{3}
\end{array}
\]

\section*{Constructions Satisfying Free SNI \& IOS}

\section*{}

Example: 3-share ISW multiplication
\[
\begin{array}{ll}
a_{1} \times b_{1} & a_{1} \times b_{2}+r_{1,2}+a_{2} \times b_{1} \\
& a_{1} \times b_{3}+r_{1,3}+a_{3} \times b_{1} \\
a_{2} \times b_{2} & a_{2} \times b_{3}+r_{2,3}+a_{3} \times b_{2} \\
& a_{3} \times b_{3}
\end{array}
\]

\section*{Constructions Satisfying Free SNI \& IOS}

\section*{}

Example: 3-share ISW multiplication
\[
\begin{array}{lll}
a_{1} \times b_{1} & a_{1} \times b_{2}+r_{1,2}+a_{2} \times b_{1} & a_{1} \times b_{3}+r_{1,3}+a_{3} \times b_{1} \\
a_{2} \times b_{2} & & a_{2} \times b_{3}+r_{2,3}+a_{3} \times b_{2} \\
a_{3} \times b_{3} & &
\end{array}
\]

\section*{Constructions Satisfying Free SNI \& IOS}

\section*{}

\author{
Example: 3-share ISW multiplication
}
\[
\begin{array}{lcc}
a_{1} \times b_{1} & +r_{1,2} & a_{1} \times b_{3}+r_{1,3}+a_{3} \times b_{1} \\
a_{2} \times b_{2} & a_{1} \times b_{2}+r_{1,2}+a_{2} \times b_{1} & a_{2} \times b_{3}+r_{2,3}+a_{3} \times b_{2} \\
a_{3} \times b_{3} & &
\end{array}
\]

\section*{Constructions Satisfying Free SNI \& IOS}

\section*{ISW Scheme ishai, sanai and Wasper crevrrocoas}

Example: 3-share ISW multiplication
\[
\begin{array}{ccc}
a_{1} \times b_{1} & +r_{1,2} & +r_{1,3} \\
a_{2} \times b_{2} & a_{1} \times b_{2}+r_{1,2}+a_{2} \times b_{1} & a_{2} \times b_{3}+r_{2,3}+a_{3} \times b_{2} \\
a_{3} \times b_{3} & a_{1} \times b_{3}+r_{1,3}+a_{3} \times b_{1} &
\end{array}
\]

\section*{Constructions Satisfying Free SNI \& IOS}

\section*{ISW Scheme Issai \(^{2}\) Sanai and wasnerccivverooos}

\author{
Example: 3-share ISW multiplication
}
\[
\begin{array}{ccccc}
c_{1} \leftarrow & a_{1} \times b_{1} & & +r_{1,2} & +r_{1,3} \\
c_{2} \leftarrow & a_{2} \times b_{2} & + & a_{1} \times b_{2}+r_{1,2}+a_{2} \times b_{1} & +r_{2,3} \\
c_{3} \leftarrow & a_{3} \times b_{3} & + & a_{1} \times b_{3}+r_{1,3}+a_{3} \times b_{1}+a_{2} \times b_{3}+r_{2,3}+a_{3} \times b_{2}
\end{array}
\]
\[
c_{1}+\ldots+c_{n}=a \times b\left(\text { over } \mathbb{F}_{2}\right)
\]

\section*{Constructions Satisfying Free SNI \& IOS}

\section*{ISW Scheme Issai \(^{2}\) Sanai and wasnerccivverooos}

\author{
Example: 3-share ISW multiplication
}
\[
\begin{array}{ccccc}
c_{1} \leftarrow & a_{1} \times b_{1} & & +r_{1,2} & +r_{1,3} \\
c_{2} \leftarrow & + & a_{1} \times b_{2}+r_{1,2}+a_{2} \times b_{1} & +r_{2,3} \\
a_{3} \times b_{2} & \leftarrow & a_{3} \times b_{3} & + & a_{1} \times b_{3}+r_{1,3}+a_{3} \times b_{1}+a_{2} \times b_{3}+r_{2,3}+a_{3} \times b_{2}
\end{array}
\]
\[
c_{1}+\ldots+c_{n}=a \times b\left(\text { over } \mathbb{F}_{2}\right)
\]
\[
\begin{gathered}
\text { Randomness Complexity } \mathcal{O}\left(n^{2}\right) \\
\text { Gates Complexity } \mathcal{O}\left(n^{2}\right) \\
\hline
\end{gathered}
\]

\title{
Constructions Satisfying Free SNI \& IOS
}

ISW Scheme Ishai, Sahai and Wagner [сRYpto’03]

\[
n \text {-share ISW multiplication is }(n-1) \text {-SNI }
\]

Our work
\(n\)-share ISW multiplication is only free \((n-2)\)-SNI
\(n\)-share ISW refresh (by fixing \(\left.b_{1}, \ldots, b_{n}=1,0, \ldots, 0\right)\) is free \((n-1)\)-SNI

\section*{Constructions Satisfying Free SNI \& IOS}

\author{
\(\mathcal{O}(n \log n)\) Refresh Gadget вatitisello et al [ाсненsoos]
}

\section*{Constructions Satisfying Free SNI \& IOS}

\author{
\(\mathcal{O}(n \log n)\) Refresh Gadget Batisisello et al. [тснеకоos
}

\section*{Constructions Satisfying Free SNI \& IOS}

\section*{}
\begin{tabular}{|c|}
\hline \begin{tabular}{c}
\(n\)-share \\
input
\end{tabular}
\end{tabular}\(\longrightarrow\)\begin{tabular}{c}
1 layer of \\
\begin{tabular}{c} 
randomness with \(n / 2\) \\
random values
\end{tabular} \\
\hline
\end{tabular}

\section*{Constructions Satisfying Free SNI \& IOS}

\section*{}


Randomness Complexity \(\mathcal{O}(n \log n)\)

\section*{Constructions Satisfying Free SNI \& IOS}

\section*{}

\[
n \text {-share } \mathcal{O}(n \log n) \text { refresh is }(n-1) \text {-SNI }
\]

\section*{Our work}
\(n\)-share \(\mathcal{O}(n \log n)\) refresh is free \((n-1)\)-SNI

\section*{Tight Private Circuits}

\section*{The Return}
- Secure tight composition in the probing model by inserting refresh gadgets only when needed
- Uses ( \(n-1\) )-SNI multiplication and refresh gadgets

\section*{Tight Private Circuits}

\section*{The Return}
- Secure tight composition in the probing model by inserting refresh gadgets only when needed
- Uses ( \(n-1\) )-SNI multiplication and refresh gadgets

Authors use and prove that any \(n-1\) shares of the output sharing of a \((n-1)\)-SNI gadget are uniform and independent of the input sharing

\section*{Tight Private Circuits}

\section*{The Return}
- Secure tight composition in the probing model by inserting refresh gadgets only when needed
- Uses ( \(n-1\) )-SNI multiplication and refresh gadgets

Authors use and prove that any \(n-1\) shares of the output sharing of a \((n-1)\)-SNI gadget are uniform and independent of the input sharing


Not necessarily true when we have probes inside the gadget
Breaks the correctness of the strategy

\section*{Tight Private Circuits}

\section*{The Return}
- Secure tight composition in the probing model by inserting refresh gadgets only when needed
- Uses ( \(n-1\) )-SNI multiplication and refresh gadgets

\section*{Tight Private Circuits}

\section*{The Return}
- Secure tight composition in the probing model by inserting refresh gadgets only when needed
- Uses ( \(n-1\) )-SNI multiplication and refresh gadgets
\(c_{1} \leftarrow a_{1} \times b_{1}+r_{1,2}+r_{1,3}+r_{1,4}\)
\(c_{2} \leftarrow a_{2} \times b_{2}+\left(a_{1} \times b_{2}+r_{1,2}+a_{2} \times b_{1}\right)+r_{2,3}+r_{2,4}\)
\(c_{3} \leftarrow a_{3} \times b_{3}+\left(a_{1} \times b_{3}+r_{1,3}+a_{3} \times b_{1}\right)+\left(a_{2} \times b_{3}+r_{2,3}+a_{3} \times b_{2}\right)+r_{3,4}\)
\(c_{4} \leftarrow a_{4} \times b_{4}+\left(a_{1} \times b_{4}+r_{1,4}+a_{4} \times b_{1}\right)+\left(a_{2} \times b_{4}+r_{2,4}+a_{4} \times b_{2}\right)+\left(a_{3} \times b_{4}+r_{3,4}+a_{4} \times b_{3}\right)\)

\section*{Tight Private Circuits}

\section*{The Return}
- Secure tight composition in the probing model by inserting refresh gadgets only when needed
- Uses ( \(n-1\) )-SNI multiplication and refresh gadgets
\(c_{1} \leftarrow a_{1} \times b_{1}+r_{1,2}+r_{1,3}+r_{1,4}\)
\(c_{2} \leftarrow a_{2} \times b_{2}+\left(a_{1} \times b_{2}+r_{1,2}+a_{2} \times b_{1}\right)+r_{2,3}+r_{2,4}\)
\(c_{3} \leftarrow a_{3} \times b_{3}+\left(a_{1} \times b_{3}+r_{1,3}+a_{3} \times b_{1}\right)+\left(a_{2} \times b_{3}+r_{2,3}+a_{3} \times b_{2}\right)+r_{3,4}\)
\(c_{4} \leftarrow a_{4} \times b_{4}+\left(a_{1} \times b_{4}+r_{1,4}+a_{4} \times b_{1}\right)+\left(a_{2} \times b_{4}+r_{2,4}+a_{4} \times b_{2}\right)+\left(a_{3} \times b_{4}+r_{3,4}+a_{4} \times b_{3}\right)\)
\(c_{3}\) is not uniform independent conditioned the probes

\section*{Tight Private Circuits}

\section*{The Return}
- Secure tight composition in the probing model by inserting refresh gadgets only when needed
- Uses ( \(n-1\) )-SNI multiplication and refresh gadgets

\section*{Tight Private Circuits}

\section*{The Return}
- Secure tight composition in the probing model by inserting refresh gadgets only when needed
- Uses ( \(n-1\) )-SNI multiplication and refresh gadgets

Using free ( \(n-2\) )-SNI multiplication and refresh fixes the flaw in the TPC proof (uniformity of a subset of the output shares, conditioned on the probes)

\section*{Tight Private Circuits}

\section*{The Return}
- Secure tight composition in the probing model by inserting refresh gadgets only when needed
- Uses ( \(n-1\) )-SNI multiplication and refresh gadgets

Using free ( \(n-2\) )-SNI multiplication and refresh fixes the flaw in the TPC proof (uniformity of a subset of the output shares, conditioned on the probes)


The results in TPC are still correct, because the authors use ISW, which is free \((n-2)\)-SNI

\section*{Tight Private Circuits}

\section*{The Return}
- Secure tight composition in the probing model by inserting refresh gadgets only when needed
- Uses ( \(n-1\) )-SNI multiplication and refresh gadgets

Using free ( \(n-2\) )-SNI multiplication and refresh fixes the flaw in the TPC proof (uniformity of a subset of the output shares, conditioned on the probes)


The results in TPC are still correct, because the authors use ISW, which is free \((n-2)\)-SNI

Our results generalize TPC to any free \((n-2)\)-SNI gadgets, like the \(\mathcal{O}(n \log n)\) refresh gadget instead of the ISW refresh gadget (improved efficiency)

\section*{Composition in the Region Probing Model}

\section*{Composition in the Region Probing Model}

Framework by Goudarzi et al. [TCHES'21] provides region probing security by inserting IOS refresh gadgets between probing secure regions

\section*{Composition in the Region Probing Model}

Framework by Goudarzi et al. [TCHES'21] provides region probing security by inserting IOS refresh gadgets between probing secure regions

We adapt the generalization of TPC to region probing security

\section*{Composition in the Region Probing Model}

Framework by Goudarzi et al. [TCHES'21] provides region probing security by inserting IOS refresh gadgets between probing secure regions

We adapt the generalization of TPC to region probing security
- Use any IOS gadgets (not only refresh)
- Reduced number of IOS refresh gadgets to insert
- Increased efficiency and generalization to more IOS gadgets from the literature

\section*{Conclusion}

\section*{Conclusion}
- Equivalence of Free-SNI and IOS, notions introduced in different contexts and for different purposes
- Both can be efficiently verified like other probing notions (SNI, NI, PINI, ...) using IronMask
- Well-known gadgets from the literature already satisfy these stronger notions
- Both notions lead to more efficient composition in the probing and region probing models

\section*{Conclusion}
- Equivalence of Free-SNI and IOS, notions introduced in different contexts and for different purposes
- Both can be efficiently verified like other probing notions (SNI, NI, PINI, ...) using IronMask
- Well-known gadgets from the literature already satisfy these stronger notions
- Both notions lead to more efficient composition in the probing and region probing models


Thank you! Any questions?
```

