Publicly Verifiable Zero-Knowledge and Post-Quantum Signatures from VOLE-in-the-Head

Carsten Baum^{1,2}, Lennart Braun¹, Cyprien Delpech de Saint Guilhem³, <u>Michael Klooß</u>⁴, Emmanuela Orsini⁵, Lawrence Roy¹, Peter Scholl¹ ²⁰²³⁻⁰⁸⁻²³

¹Aarhus University

²Technical University of Denmark

³imec-COSIC, KU Leuven

⁴Aalto University

⁵Bocconi University

Zero-knowledge (ZK) proofs of knowledge (PoK)

- Prover P convinces verifier V that $(\mathbb{x}, \mathbb{w}) \in \mathcal{R}$.
 - Zero-knowledge: Verifier learns nothing else
 - Knowledge soundness: Prover knows ₩.

VOLE-in-the-Head

Publicly verifiable VOLE-based ZK

Characteristics:

- Fast: Only symmetric-key crypto
- Simple and flexible: Builds on VOLE ZK proofs
- Secure in the ROM
- Linear-size

VOLE-ZK

Efficient ZK in the VOLE hybrid model

Vector Oblivious Linear Evaluation (VOLE)

Vector Oblivious Linear Evaluation (VOLE)

Linear commitments from VOLE

- Commitment: (q_i, Δ) commits to message v_i with randomness u_i .
- Hiding: $u_i \leftarrow \mathbb{F}$ masks Δv_i perfectly.
- Binding: (q_i, Δ) binds to (u_i, v_i) $\circ q_i = u_i + \Delta v_i$ is linear in Δ \circ Opening q_i to both $(u_i, v_i) \neq (u'_i, v'_i) \implies$ must guess Δ .
- Linear: VOLE relation is linear in Δ :

$$q_i + q'_i = (u_i + u'_i) + \Delta(v_i + v'_i)$$

ZK from VOLE: Commit-then-prove

- Commit to witness variables
- Linear equation checks: 🗸
- Quadratic equation checks: Linearization \checkmark

ZK from VOLE: Commit-then-prove

- Commit to witness variables
- Linear equation checks: 🗸
- Quadratic equation checks: Linearization \checkmark
- Circuit-SAT: "Evaluate" gate-by-gate:
 - ADD gates / Linear gates free.
 - MUL gates: Witness contains outputs.

 v_1

Quadratic equation check from VOLE

Efficient linearization (Quicksilver [Yan+21])

- P holds: $(u_i, v_i)_i$ over $\mathbb F$
- V holds: $(q_i)_i$, Δ over $\mathbb F$
- VOLE relation: $u_i + \Delta v_i = q_i$ for all *i*.
- P's Claim: Quadratic equation $f(v_1,\ldots,v_n)=0$ holds, $f\in\mathbb{F}[X_1,\ldots,X_n]$

Quadratic equation check from VOLE

Efficient linearization (Quicksilver [Yan+21])

- P holds: $(u_i, v_i)_i$ over $\mathbb F$
- V holds: $(q_i)_i$, Δ over $\mathbb F$
- VOLE relation: $u_i + \Delta v_i = q_i$ for all *i*.
- P's Claim: Quadratic equation $f(v_1, \dots, v_n) = 0$ holds, $f \in \mathbb{F}[X_1, \dots, X_n]$ $f(q_1, \dots, q_n) = f(u_1 + \Delta v_1, \dots, u_n + \Delta v_n)$ $= \underbrace{f(u_1, \dots, u_n)}_{=:a_0 \in \mathbb{F}} + \Delta \cdot \underbrace{\vec{u}^\top F \vec{v}}_{=:a_1 \in \mathbb{F}} + \Delta^2 \underbrace{f(v_1, \dots, v_n)}_{\stackrel{!}{=} 0}$ (1)
- $f(q_1,\ldots,q_n)$ is linear in Δ if and only if $f(v_1,\ldots,v_n)=0$
- $a_0, a_1 \in \mathbb{F}$ are computable from $(u_i, v_i)_i$ alone.

Cost analysis: Arithmetic circuit SAT

- **ZK**: Add random mask to mask a_0, a_1
- Amortize N checks $f_i \in \mathbb{F}[X_1, \dots, X_n]$ via random linear combination.
- Generalization: d field elements a_0, \ldots, a_{d-1} for degree d check.

Circuit-SAT

- $n_{\rm input}$ VOLEs for circuit input
- 1 VOLE per multiplication gate
- 2 VOLEs + Openings for masked quadratic check (amortized)

VOLE-in-the-Head

From private coin to public coin

High level idea: (V)COM as (V)OLE

- + Δ can be revealed at the end of the protocol. (V has no secrets.)
- Instead of real VOLE, commit to VOLE inputs.
 - VOLE is inconvenient, use OT.
 - $\circ~$ Use OT-to-VOLE conversion from SoftSpoken OT [Roy22]^6 $\,$
- In $[Cas+19]^7$ this idea is used for $\binom{2}{1}$ -OT, we use all-but-one-OT.
- NB: All VOLEs/VCOMs are "random" and derandomized in the protocol.

⁶Roy (Crypto'22)

⁷Cascudo, Damgård, David, Döttling, Dowsley, and Giacomelli (Asiacrypt'19)

 $\Pi_{ZK}^{\mathcal{F}^{\bar{1}-\text{OT}}}$

From $\overline{1}\text{-}\text{OT}$ to VOLE

Conversion from SoftSpoken OT [Roy22]:

 $\rightsquigarrow \binom{n}{n-1}$ -OT gives VOLE over \mathbb{F}_n .

- Δ easily guessable (1/n chance):
 - $\rightsquigarrow au$ parallel VOLEs with independent Δ_i
 - Easy: Repetition code. (Same input/witness in each instance.)
 - General: Use linear code.
 - Both require consistency check over the parallel instances.

Zero-Knowledge Proofs

 $\begin{array}{l} \tau\text{-repetition code} \\ v \leftarrow \mathbb{F}_p^{\tau}, \ u \leftarrow \mathbb{F}_q^{\tau}, \ \Delta \leftarrow \mathbb{F}_q \\ \text{QuickSilver-based ZK over} \\ \text{extension field } \mathbb{F}_q \end{array}$

General linear code $\Delta_i \leftarrow \{0, \dots, n-1\} \subseteq \mathbb{F}_q \text{ for } i \in [1, \tau]$ subspace VOLE compatible ZK protocol

FAEST

TES

Post-quantum signatures from VOLEitH

⁷Based on submission to NIST PQC Standardization process with Christian Majenz, Shibam Mukherjee, Sebastian Ramacher, Christian Rechberger as additional co-authors.

FAEST — Construction

Fiat-Shamir-based signature scheme

- Keypair sk, vk with vk = (x, y) = (x, AES(sk, x)).
- Use VOLEitH to prove knowledge of

 $\{sk \mid \mathsf{AES}(sk, x) = y\}$

• Fiat–Shamir transformation \rightsquigarrow signature scheme

FAEST: Handling AES-128

• AES rounds are \mathbb{F}_2 -linear, except **byte sub**. Substitute $x \in \mathbb{F}_{2^8}$ by $\circ S(0) = 0$, $\circ S(x) = x^{-1}$ in \mathbb{F}_{2^8} .

• For ZK:^{*a*}
$$x \cdot y = 1 \iff y = x^{-1}$$

- Overall:
 - 1600 bit witness (for key + AES circuit)
 - $\circ~$ 200 quadratic constraints over \mathbb{F}_{2^8}

^{*a*}For better efficiency, restrict to keys where S(0) is never used.

FAEST performance

Specification	Sign/Verify	Size
FAEST-128s	$pprox 8{ m ms}$	$\approx 5.0\mathrm{kB}$
FAEST-128f	$pprox 1{ m ms}$	$pprox 6.3{\rm kB}$
FAEST-256s	$pprox 27{ m ms}$	$\approx 22.1\mathrm{kB}$
FAEST-256f	$pprox 3{ m ms}$	$\approx 28.4\mathrm{kB}$

Optimized implementation on notebook (Ryzen 7 5800H, 3.2 GHz)

Conclusion

- VOLE-ZK: Lightweight, fast, linear-size
- VOLEitH: public-coin, NIZK via Fiat-Shamir transformation
- FAEST signature: Conservative security, reasonable performance

Conclusion

Thank you!

- VOLE-ZK: Lightweight, fast, linear-size
- VOLEitH: public-coin, NIZK via Fiat-Shamir transformation
- FAEST signature: Conservative security, reasonable performance

References I

- [Cas+19] Ignacio Cascudo, Ivan Damgård, Bernardo David, Nico Döttling, Rafael Dowsley, and Irene Giacomelli. "Efficient UC Commitment Extension with Homomorphism for Free (and Applications)". In: ASIACRYPT 2019, Part II. Vol. 11922. LNCS. Dec. 2019.
- [Roy22] Lawrence Roy. "SoftSpokenOT: Quieter OT Extension from Small-Field Silent VOLE in the Minicrypt Model". In: CRYPTO 2022, Part I. Vol. 13507. LNCS. Aug. 2022.
- [Yan+21] Kang Yang, Pratik Sarkar, Chenkai Weng, and Xiao Wang. "QuickSilver: Efficient and Affordable Zero-Knowledge Proofs for Circuits and Polynomials over Any Field". In: ACM CCS 2021. Nov. 2021.