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Motivation



Brief History

• [BGW88]: general MPC with perfect, full security and optimal
threshold (t < n/3).

• [OY91]: feasibility result of general MPC with mobile adversary
• Show feasibility of general IT MPC [BGW88, RB89].

• [HJKY95, BELO14, CH01]: Proactive Secret Sharing & MPC.
• [DJ97, WWW02, MZW+19, ELL20]: Dynamic Proactive SS & MPC.
• [GHM+17, BGG+20, GHK+21, CGG+21]: Secret sharing and MPC
using ephemeral committees (YOSO, Fluid).
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Brief History

Dynamic Proactive SS & MPC
[DJ97, WWW02, ELL20]

Proactive SS and MPC
w Ephemeral Committees
[BGG+20, GHK+21, CGG+21]

Perfect General MPC, t < n/3
[BGW88]

Perfect General MPC
w mobile adversary

[OY91]

Proactive SS & MPC
[HJKY95, CH01, CKLS02]
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Brief History
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Motivation

Is it possible to construct MPC with ephemeral committees
achieving perfect full security against a maximally mobile
adversary* while maintaining optimal corruption threshold?

*An epoch contains a single round, |epoch| = 1
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Contributions

Area Reference |epoch| Security Corruption Setup (BC+Chan.)

Proactive
MPC

[HJKY95] >1 Comp (full) t < n/2 Next Round
[OY91] =1 Stat (full) t < n/c† Next Round

Ephemeral
Committees

[GHK+21] (YOSO) =1 Stat (full) E[t] < n/2 Any Future Round
[CGG+21] (Fluid) =1 Stat (abort) t < n/2 Next Round

This work =1 Perfect (full) t < n/3 Next Round

†The adversary may corrupt at most a constant fraction of parties.
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Contributions

Layered MPC is an instance of standard MPC [Can00, Gol09, HM00]
with restricted interaction pattern [HIJ+16] induced by a graph G.

Use the setting of layered MPC to (indirectly) study protocols for
maximally proactive MPC [OY91].

Lemma 1

Secure Layered MPC ⇒∗ Secure Maximally Proactive MPC
∗ assuming secure erasures
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Contributions

Main Contribution:

• Formalize the model of Layered MPC—standard MPC with special
interaction pattern and adversary structure.

• Present layered MPC protocols for general functionalities with
perfect, full security and optimal corruption threshold t < n/3.

• CNF (Replicated) Secret Sharing based protocols [GIKR01, Mau06].
• Shamir Secret Sharing based protocols (efficient) [BGW88].

• Improve on existing results on maximally proactive MPC
protocols [OY91] and on new work on MPC with ephemeral
committees [GHK+21, CGG+21].

• Present layered MPC protocols for general functionalities with
computational, full security and t < n/2.
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Layered MPC

An (n, t,d)-layered protocol has the following properties:

Parties. N = n(d+ 1) parties partitioned into d+ 1 layers Li,
0 ≤ i ≤ d, where |Li| = n.

Interaction. d synchronous rounds where parties in Li−1 may send
messages to parties in Li over secure channels and
broadcast.
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Layered MPC

Functionalities. We consider functionalities f that take inputs from
input clients and deliver outputs to output clients.

Adversaries. We consider active, rushing, adaptive adversaries who
may corrupt any number of input/output clients, and t
parties in layers Li, 0 < i < d.
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Layered MPC

A note on Layered Broadcast
• The model of layered MPC assumes layer-to-layer broadcast.
• Deterministic Broadcast is impossible in the layered setting.
• Derived from the result of [Gar94] on reaching agreement in the
mobile setting.

Lemma 2
Deterministic Broadcast is possible iff t = 0.
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Basic Primitives



Future Messaging

Future Messaging functionality fFM
PUBLIC PARAMETERS: Sender S ∈ L0, receiver R ∈ Ld for d > 0 and

message domain M.
SECRET INPUTS: S has input m ∈ M.

fFM receives m from S, and delivers m to R.

S

L0 L1 L2 L3

R

L4

Figure 1: ΠFM from S of m to R 11



Future Messaging

ΠFM from L0 to L1:
Use the secure point-to-point
channels from layer to the next
layer.

L0 L1

ΠFM from L0 to L2:
1. S does Sh(m) = (s1, . . . , sn)
and sends sj to P1j .

2. P1j forwards sj to R and R
obtains m̂ = Rec(ŝ1, . . . , ŝn)

L0 L1 L2

(Equivalent to perfect malicious
1-way SMT [DDWY93])
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Future Messaging

L1 L2 L3 L4 L5 L6

ΠFM from S of m to R

ΠFM (S→ R)
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Future Messaging (and Rushing)

Dishonest Sender and problems with rushing

PARALLEL INVOCATIONS fnFM:
• When invoking multiple fFM in
parallel, the adversary can
cause a correlation attack.

• Model the parallel
functionality as
corruption-aware.

L0 L1

NON-COMMITTING PRIMITIVE:
• The adversary can change the
message m to a message of
its choosing m′ in fFM until the
last round.

• Where YOSO assumes ideal
committing communication to
future rounds.

S

L0 L1 L2 L3

R

L4

S NOT committed to m
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Future Broadcast

(Conditional) Future Broadcast

• FUTURE BROADCAST:
Invoke fFM where parties in Ld−1 are instructed to broadcast
their shares instead of sending to a recipient R.

• CONDITIONAL DISCLOSURE:
Conditioned on some event E, honest parties in Ld−1 reveal their
shares.

S

L0 L1 L2 L3 L4

Figure 2: Future Broadcast from S of m to L4
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Future Messaging

Summary of Future Messaging

Complexity Assuming a linear secret sharing scheme, ΠFM is a
recursive protocol realizing fFM with communication
complexity O(n⌈log d⌉ log |M|).

Security Honest sender reduces to an instance of SMT
Dishonest sender is challenging with rushing.
Especially, when composing protocols.

Extension Future Messaging can be extended to (Conditional)
Future Broadcast.
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Towards Layered MPC



Layered CNF-VSS Protocol



Design Approach

CNF-VSS of [GIKR01]

Weak Future Multicast Πweak-FMcast

Future Multicast ΠFMcast

Verifiable Secret Sharing ΠVSS

17



Techniques from [GIKR01]

4-round perfect CNF VSS
D (dealer) holds a secret s ∈ F and
obtains ShCNF(s) = (s1, . . . , sn).

1. D sends sj = (rT)T∋j to Pj.

2. Each pair (Pj, Pj′) exchange share
rT (if j, j′ ∈ T).

3. If disagreement, involved parties
broadcast “complaint (rT)”.

4. D then broadcasts “resolve (rT)”,
if any complaints received from
Pj or Pj′ .

P3

D

P1

P4

P2

18
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Techniques from [GIKR01]

Challenges with layered [GIKR01]

• Dealer speaks more than once (round 1 and round 4).

Solution:
Emulate the dealer using Conditional Future Broadcast.

• Pj and Pj′ exchange additive shares.

Solution:
Invoke a Distributed Equality Check with Πadd for each pair (j, j′).
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Future Multicast

Future Multicast functionality fFMcast
PUBLIC PARAMETERS: Sender S ∈ L0, receiving set of parties

R ⊆ Ld,d ≥ 5, message domain M.
SECRET INPUTS: S has input m ∈ M.

fFMcast receives m from S, and delivers m to all parties in R.

S

L0 L1 L2 L3 L4 L5

R

Figure 3: ΠFMcast from S ∈ L0 of m to R ⊆ L5 20



Future Multicast

Sketch of ΠFMcast

1. S samples additive shares {rT}T∈T of m.

2. S sends each rT to R ⊆ L5 using Πweak-FMcast.
Using a different set of intermediaries UT ⊂ L1 where |UT| = n− t.

3. Parties in R ⊆ L5 do m̂ =
∑

T∈T r̂T.

S

L0 L1 L2 L3 L4 L5

R

21



Weak Future Multicast

Πweak-FMcast of r = rT from S ∈ L0 to R using UT as intermediaries.

L1 L2 L3 L4 L5
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ΠFM from S of rk to P3k
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Layered VSS

An (n, t, 5)-layered protocol ΠVSS realizing fVSS where t < n/3.

From Πweak-FMcast to ΠFMcast:

• Each additive share rT is
transferred to R using UT.

• Since at least one set (UT) is
comprised of only honest parties
the message m =

∑
T∈T rT

remains secure if S and R are
honest.

From ΠFMcast to ΠVSS:

• S samples {rT}T∈T as additive
secret sharing of secret s.

• For each T ∈ T , execute ΠFMcast

with S as sender with input rT
and {P5i : i ∈ T} as receivers.

s

L0 L1 L2 L3 L4

⟨s⟩

L5

23



Results



CNF-based Layered MPC [GIKR01, Mau06]

Theorem 1: CNF-Based Layered MPC
Let f be an n-party functionality computed by a layered arithmetic
circuit C over a finite ring, with D layers and M gates. Then, for any
t < n/3, there is an (n, t,O(D))-layered MPC protocol for f. The
communication consists of 2O(n) ·M ring elements.

Corollary 1: Secure Maximally Proactive MPC
Let f be an n-party functionality computed by a layered arithmetic
circuit C over a finite ring, with D layers. Then, for t < n/3, there is a
maximally proactive MPC protocol computing f in r = O(D) rounds.

• May be concretely efficient for small n.
• Use techniques from [CDI05] to amortize the communication overhead by
sending k-bit seeds and let the receivers generate most shares locally.

• This technique makes use of black-box access to PRG (computational security).
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Efficient Layered MPC [BGW88]

Theorem 2: Efficient Layered MPC
Let f be an n-party functionality computed by a layered arithmetic
circuit C over a finite field, with D layers and M gates. Then, for any
t < n/3, there is an (n, t,O(D))-layered MPC protocol for f. The
communication consists of O(n9) ·M field elements.

Corollary 2: (Efficient) Secure Maximally Proactive MPC
Let f be an n-party functionality computed by a layered arithmetic
circuit C over a finite field, with D layers. Then, for t < n/3, there is
an efficient maximally proactive MPC protocol computing f in
r = O(D) rounds.

• Extending the techniques for Distributed Equality Check and Conditional Future
Broadcast to the [BGW88]-setting.

• Use techniques from [CDI05] to amortize the c
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Maximally Proactive MPC and Dynamic Committees

f Reference Level Security Comm. Threshold

FM This work perfect full poly(n) t < n/3

VSS
[BGG+20] comp. full poly(n) t < n/4∗

This work perfect full 2O(n) t < n/3
This work (Sec. 5) perfect full poly(n) t < n/3

MPC

[GHK+21] (YOSO) statistical full +setup† poly(n) t < n/2∗

[CGG+21] (Fluid) statistical abort poly(n) t < n/2
[OY91] perfect full poly(n) t < n/d
This work perfect full 2O(n) t < n/3
This work (Sec. 5) perfect full poly(n) t < n/3
This work (Sec. 6) comp. full poly(n) t < n/2

Table 1: Protocols realizing primitives in the most extreme proactive settings.
(∗protocol security relies on the adversary only doing probabilistic corruption,
†assumes access to ideal target-anonymous channels for future messaging)
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Conclusion

Summary:

• Definition of MPC over layered graphs (layered MPC).
• Instance of standard MPC with restricted interaction patterns.
• Implications for maximally proactive protocols [OY91].

• Reviewed CNF-based layered protocols for fVSS.

• In Section 5 we describe efficient (but more involved) layered
protocols for general MPC based on [BGW88].

• In Section 6 we present layered protocol for general MPC with
computational security for t < n/2.

Future Work:

• Identify a compiler from a class of protocols secure in the
standard setting to secure layered protocols.

• Investigate the statistical setting (t < n/2) and possibly obtain a
full characterization of layered MPC.
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Thank You!

Check out the eprint:
https://ia.cr/2023/330 & https://ia.cr/2023/415
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