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Security of AKE
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Security of AKE
• Multi-user and Multi-session Settings

• Adversary Capabilities
– Control the network
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Security of AKE
• Multi-user and Multi-session Settings

• Adversary Capabilities
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Security of AKE
• Multi-user and Multi-session Settings

• Adversary Capabilities
– Control the network
– Reveal established session keys
– Adaptively corrupt long-term keys
– Reveal secret state

• Security Goals
– Key Indistinguishability
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Tight Security
• Security Proof via Reduction

– A breaks Pi
– => R solves problems

(or breaks building blocks)

• Such reduction is tight if
– T(R) ≈ T(A)  (running time)
– Adv(R) ≈ Adv(A) (winning advantage)

• Relevance: Parameter selection
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State-of-art tightly-secure AKE
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Our Goal

Schemes Construction Assumptions Model
BHJK15 KEM + SIGN DDH StdM

GJ18 KE + SIGN DDH + CDH ROM
JKRS21 KEM DDH ROM
HJK+21 KEM + SIGN DDH StdM

- KEM? PostQuantum? -
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Our Contributions

Schemes Construction Assumptions Model
BHJK15 KEM + SIGN DDH StdM

GJ18 KE + SIGN DDH + CDH ROM
JKRS21 KEM DDH ROM
HJK+21 KEM + SIGN DDH StdM

Our work KEM LWE ROM
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Outline of Technical Parts
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AKE from KEM
• Construction [FSXY12,JKRS21]: Static KEM + Ephemeral KEM

Alice(pkA, skA) Bob(pkB, skB)

(pk, sk) ← KeyGen
(KB, cB) ← Encaps(pkB)

K ← Decaps(sk,c)
KA ← Decaps(skA,cA)

pk, cB

c, cA

(c, K) ← Encaps(pk)
(KA, cA) ← Encaps(pkA)
KB ← Decaps(skB,cB)

SK = H(pkA, pkB, pk, cB, c, cA, K, KA, KB)
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AKE from KEM

Two-message AKEKEM
tightly?

• Strategy:  AKE adversaries → Security requirements of KEM

• Both are in multi-user and multi-challenge settings
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AKE from KEM, tightly
AKE adversaries

Control the network CCA security
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• Proof by reduction
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AKE from KEM, tightly

Alice(pkA, skA)

(pk, sk) ← KeyGen
(K*B, c*B) ← Challenge

K ← Decaps(sk,c)
KA ← Decaps(skA,cA)

pk, c*B

c, cA

SK = H(pkA, pkB, pk, cB, c, cA, K, KA, K*B)

Adversary

• Tight reduction ≈ cannot guess challenge session

Corrupt Bob(pk*B, sk*B)
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AKE from KEM, tightly
AKE adversaries

Control the network

Reveal session keys

Reveal secret states

Adaptively corrupt long-term keys

CCA security

Reveal decapsulated keys 
of challenge ciphertexts

Security requirements of KEM

Strong adaptive corruptions
(allowed to corrupt users

that generated 
challenge ciphertexts)
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AKE from KEM, tightly
AKE adversaries
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Reveal session keys

Reveal secret states

Adaptively corrupt long-term keys

CCA security

Reveal decapsulated keys 
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OW-ChCCA KEM

CCA security

Reveal decapsulated keys 
of challenge ciphertexts

Security requirements of KEM

Strong adaptive corruptions

OW-ChCCA KEM

Decapsulation Oracle

Reveal Oracle

Corruption Oracle

Check Oracle

One-wayness (for 
uncorrupted ciphertext)

One-wayness & 
Check Oracle
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Two-message AKEOW-ChCCA KEM
tightly



45

OW-ChCCA KEM from LWE, tightly

Two-message AKEOW-ChCCA KEM
tightly

LWE

tightly?
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Strong Corruption
& Reveal

OW-ChCCA KEM from LWE, tightly

multi-user
multi-challenge

Decapsulation & Check
consistent with 

Corruption & Reveal

Challenge

Dual Regev + lossy LWE 
[GPV08, LSSS17, KYY18]

RO reprogramming

Double encryption 
[NY90, BHJK15]

Solutions
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Summary and Open Problems 

Two-message AKEOW-ChCCA KEMLWE

Non-commting KEM

Bi-SO PKE

QROM?
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eprint: 2023/823



60

References

BHJ+15

FSXY12

LSSS17

Christoph Bader, Dennis Hofheinz, Tibor Jager, Eike Kiltz, Yong Li: Tightly-secure
authenticated key exchange. TCC 2015

Atsushi Fujioka, Koutarou Suzuki, Keita Xagawa, Kazuki Yoneyama: Strongly secure 
authenticated key exchange from factoring, codes, and lattices. PKC 2012

Benoît Libert, Amin Sakzad, Damien Stehlé, Ron Steinfeld: All-but-many lossy trapdoor
functions and selective opening chosen-ciphertext security from LWE. CRYPTO 2017

Kristian Gjøsteen and Tibor Jager: Practical and tightly-secure digital signatures and 
authenticated key exchange. CRYPTO 2018

GJ18



61

References

Junzuo Lai, Rupeng Yang, Zhengan Huang, Jian Weng: Simulation-based bi-selective 
opening security for public key encryption. ASIACRYPT 2021

Tibor Jager, Eike Kiltz, Doreen Riepel, Sven Schäge: Tightly-secure authenticated key 
exchange, revisited. EUROCRYPT 2021

Shuai Han, Tibor Jager, Eike Kiltz, Shengli Liu, Jiaxin Pan, Doreen Riepel, Sven Schäge: 
Authenticated key exchange and signatures with tight security in the standard model. 
CRYPTO 2021

LYHW21

JKRS21

HJK+21

KYY18 Shuichi Katsumata, Shota Yamada, Takashi Yamakawa: Tighter security proofs for GPV-
IBE in the quantum random oracle model. ASIACRYPT 2018


