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State-of-art tightly-secure AKE
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AKE from KEM

» Construction [FSXY12,JKRS21]: Static KEM +
Alice(pkpa, ska) Bob(pkg, skg)

(Ks, cg) <~ Encaps(pkg) Cs

Ca (Ka, €a) <= Encaps(pka)
Kg «— Decaps(skg,Cg)

A

Ka < Decaps(ska,ca)

SK = H(pka, pks, Cg, C, Ca, Ka, Kg)
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AKE from KEM

tightly?
KEM » Two-message AKE

« Strategy: AKE adversaries — Security requirements of KEM

« Both are in multi-user and multi-challenge settings
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AKE from KEM, tightly
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AKE from KEM, tightly
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AKE from KEM, tightly

 Tight reduction = cannot quess challenge session

Alice(pka, ska) Adversary

(K*g, c*g) « Challenge C's

Ka < Decaps(ska,cCa)
Corrupt Bob(pk*s, sk*g)
SK = H(pka, pks, 0. Cg, ©. Ca, <. Ka, K*g)
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AKE from KEM, tightly
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AKE from KEM, tightly
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OW-ChCCA KEM
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Summary and Open Problems

LWE Two-message AKE
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Summary and Open Problems
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