New Bounds on the Local Leakage Resilience of Shamir's Secret Sharing Scheme

Ohad Klein¹ and **Ilan Komargodski^{1,2}**

¹ Department of Computer Science, Hebrew University ² NTT research

August 21, 2023

Ohad Klein (HUJI)

Leakage Resilience of Linear Secret Sharing

Aug. 21, 2023

Secret Sharing (*t* out of *n*)

Ohad Klein (HUJI)

Leakage Resilience of Linear Secret Sharing

Aug. 21, 2023 2 / 13

Local Leakage Resillient Secret Sharing

Ohad Klein (HUJI)

Leakage Resilience of Linear Secret Sharing

Aug. 21, 2023 3 / 13

Ohad Klein (HUJI)

Main Application (Conjectured Benhamouda, Degwekar, Ishai, Rabin '18)

BGW protocol for MPC (Ben-Or, Goldwasser, Wigderson '88) is more secure than currently known.

Leakage Resilience of Linear Secret Sharing

Main Application (Conjectured Benhamouda, Degwekar, Ishai, Rabin '18)

BGW protocol for **MPC** (Ben-Or, Goldwasser, Wigderson '88) is more secure than currently known. Security against local leakage attacks:

- Adversary can leak a small amount of information from each honest party, in addition to controlling malicious parties.
- Adversary obtains only negligible information of secret input.

Ohad Klein (HUJI)

Main Application (Conjectured Benhamouda, Degwekar, Ishai, Rabin '18)

BGW protocol for **MPC** (Ben-Or, Goldwasser, Wigderson '88) is more secure than currently known. Security against local leakage attacks:

- Adversary can leak a small amount of information from each honest party, in addition to controlling malicious parties.
- Adversary obtains only negligible information of secret input.

Leakage Resilience is Not Trivial

Ohad Klein (HUJI)

There are popular MPC protocols which are broken under local leakage attacks.

Leakage Resilience of Linear Secret Sharing

Aug. 21, 2023

Main Application (Conjectured Benhamouda, Degwekar, Ishai, Rabin '18)

BGW protocol for **MPC** (Ben-Or, Goldwasser, Wigderson '88) is more secure than currently known. Security against local leakage attacks:

- Adversary can leak a small amount of information from each honest party, in addition to controlling malicious parties.
- Adversary obtains only negligible information of secret input.

Leakage Resilience is Not Trivial

Ohad Klein (HUJI)

There are popular MPC protocols which are broken under local leakage attacks.

- Leakage resilient circuit compilers.
- Threshold cryptographic systems.

Leakage Resilience of Linear Secret Sharing

Aug. 21, 2023

Definition of Secret Sharing (t out of n)

s denotes secret, π_i denotes share. Assume $\mathbf{s}, \pi_i \in \mathbb{F}_q$.

Definition (Secret Sharing, t out of n)

A randomized algorithm $\mathbf{s} \mapsto (\pi_1, \ldots, \pi_n)$ s.t.

- **Reconstruction:** Any *t* shares determine **s** uniquely.
- Indistinguishability: Knowledge of less than t shares reveals nothing about s.

Definition of Secret Sharing (t out of n)

s denotes secret, π_i denotes share. Assume $\mathbf{s}, \pi_i \in \mathbb{F}_q$.

Definition (Secret Sharing, t out of n)

A randomized algorithm $\mathbf{s} \mapsto (\pi_1, \ldots, \pi_n)$ s.t.

- Reconstruction: Any t shares determine s uniquely.
- Indistinguishability: Knowledge of less than t shares reveals nothing about s.

Shamir's Secret Sharing Example (3 out of 5) Let $r_1, r_2 \sim \mathbb{F}_q$ uniformly random. $\pi_1 = \mathbf{s} + 1 \cdot r_1 + 1^2 \cdot r_2,$ $\pi_2 = \mathbf{s} + 2 \cdot r_1 + 2^2 \cdot r_2,$ \vdots $\pi_5 = \mathbf{s} + 5 \cdot r_1 + 5^2 \cdot r_2.$

Ohad Klein (HUJI)

Leakage Resilience of Linear Secret Sharing

Aug. 21, 2023

s denotes secret, π_i denotes share. Assume $\mathbf{s}, \pi_i \in \mathbb{F}_q$.

Definition (Leakage Resilient SS)

SS is resilient against leakage functions f_1, \ldots, f_n if knowledge of $\text{Leak} = (f_1(\pi_1), \ldots, f_n(\pi_n))$ reveals almost nothing about s.

Ohad Klein (HUJI) Leakage Resilience of Linear Secret Sharing Aug. 21, 2023 6 / 13

s denotes secret, π_i denotes share. Assume $\mathbf{s}, \pi_i \in \mathbb{F}_q$.

Definition (Leakage Resilient SS)

SS is resilient against leakage functions f_1, \ldots, f_n if knowledge of $\text{Leak} = (f_1(\pi_1), \ldots, f_n(\pi_n))$ reveals almost nothing about s.

Various Security Models

- f_i outputs a few bits.
- *f_i* depends on several shares.
- f_i easy to compute.

Ohad Klein (HUJI)

Leakage Resilience of Linear Secret Sharing

Aug. 21, 2023

Shamir's secret sharing is resilient for $t = (1 - \epsilon)n/2$. (Security against passive adversary.) Shamir's secret sharing is resilient for $t = (1 - \epsilon)n/3$. (Active adversary.)

Ohad Klein (HUJI) Leakage Resilience of Linear Secret Sharing Aug. 21, 2023 7 / 13

Shamir's secret sharing is resilient for $t = (1 - \epsilon)n/2$. (Security against passive adversary.) Shamir's secret sharing is resilient for $t = (1 - \epsilon)n/3$. (Active adversary.)

Theorems

Shamir's SS is $exp(-n^c)$ leakage resilient if:

•
$$f_i\colon \mathbb{F}_p o \{0,1\}^{\lg(p)/4}$$
 and $t\ge n-n^{1/4}$. (Benhamouda, Degwekar, Ishai, Rabin '18)

Ohad Klein (HUJI)

Leakage Resilience of Linear Secret Sharing

Aug. 21, 2023

Shamir's secret sharing is resilient for $t = (1 - \epsilon)n/2$. (Security against passive adversary.) Shamir's secret sharing is resilient for $t = (1 - \epsilon)n/3$. (Active adversary.)

Theorems

Shamir's SS is $exp(-n^c)$ leakage resilient if:

- $f_i \colon \mathbb{F}_p o \{0,1\}^{\lg(p)/4}$ and $t \ge n-n^{1/4}$. (Benhamouda, Degwekar, Ishai, Rabin '18)
- $f_i \colon \mathbb{F}_p \to \{0,1\}$ and $t \ge 0.92n$. (BDIR '18)

Leakage Resilience of Linear Secret Sharing

Aug. 21, 2023

Shamir's secret sharing is resilient for $t = (1 - \epsilon)n/2$. (Security against passive adversary.) Shamir's secret sharing is resilient for $t = (1 - \epsilon)n/3$. (Active adversary.)

Theorems

Shamir's SS is $exp(-n^c)$ leakage resilient if:

• $f_i\colon \mathbb{F}_p o \{0,1\}^{\lg(p)/4}$ and $t\ge n-n^{1/4}$. (Benhamouda, Degwekar, Ishai, Rabin '18)

•
$$f_i \colon \mathbb{F}_p o \{0,1\}$$
 and $t \ge 0.92n$. (BDIR '18)

• $f_i \colon \mathbb{F}_p o \{0,1\}$ and $t \ge 0.78n$. (Maji, Nguyen, Paskin-C., Wang '22)

Leakage Resilience of Linear Secret Sharing

Shamir's secret sharing is resilient for $t = (1 - \epsilon)n/2$. (Security against passive adversary.) Shamir's secret sharing is resilient for $t = (1 - \epsilon)n/3$. (Active adversary.)

Theorems

Shamir's SS is $exp(-n^c)$ leakage resilient if:

• $f_i \colon \mathbb{F}_p o \{0,1\}^{\lg(p)/4}$ and $t \ge n - n^{1/4}$. (Benhamouda, Degwekar, Ishai, Rabin '18)

•
$$f_i \colon \mathbb{F}_p o \{0,1\}$$
 and $t \ge 0.92n$. (BDIR '18)

- $f_i\colon \mathbb{F}_p o \{0,1\}$ and $t \ge 0.78n$. (Maji, Nguyen, Paskin-C., Wang '22)
- $f_i \colon \mathbb{F}_p \to \{0,1\}^{\epsilon \lg(p)}$ output 'physical' bits of π_i , and $t \ge \epsilon n$. (M., N., P-C., Suad, W. '21)

Ohad Klein (HUJI)

Leakage Resilience of Linear Secret Sharing

Aug. 21, 2023

Shamir's secret sharing is resilient for $t = (1 - \epsilon)n/2$. (Security against passive adversary.) Shamir's secret sharing is resilient for $t = (1 - \epsilon)n/3$. (Active adversary.)

Theorems

Shamir's SS is $exp(-n^c)$ leakage resilient if:

- $f_i\colon \mathbb{F}_p o \{0,1\}^{\lg(p)/4}$ and $t\ge n-n^{1/4}$. (Benhamouda, Degwekar, Ishai, Rabin '18)
- $f_i \colon \mathbb{F}_p o \{0,1\}$ and $t \ge 0.92n$. (BDIR '18)
- $f_i \colon \mathbb{F}_p o \{0,1\}$ and $t \ge 0.78n$. (Maji, Nguyen, Paskin-C., Wang '22)
- $f_i \colon \mathbb{F}_p \to \{0,1\}^{\epsilon \lg(p)}$ output 'physical' bits of π_i , and $t \ge \epsilon n$. (M., N., P-C., Suad, W. '21)
- Random linear SS is resilient against $f_i \colon \mathbb{F}_p \to \{0,1\}$ if $t \ge (0.5 + \epsilon)n$. (MPSW '20)

Ohad Klein (HUJI)

Leakage Resilience of Linear Secret Sharing

Aug. 21, 2023

Shamir's secret sharing is resilient for $t = (1 - \epsilon)n/2$. (Security against passive adversary.) Shamir's secret sharing is resilient for $t = (1 - \epsilon)n/3$. (Active adversary.)

Theorems

Shamir's SS is $exp(-n^c)$ leakage resilient if:

- $f_i\colon \mathbb{F}_p o \{0,1\}^{\lg(p)/4}$ and $t\ge n-n^{1/4}.$ (Benhamouda, Degwekar, Ishai, Rabin '18)
- $f_i \colon \mathbb{F}_p o \{0,1\}$ and $t \ge 0.92n$. (BDIR '18)
- $f_i \colon \mathbb{F}_p o \{0,1\}$ and $t \ge 0.78n$. (Maji, Nguyen, Paskin-C., Wang '22)
- $f_i \colon \mathbb{F}_p \to \{0,1\}^{\epsilon \lg(p)}$ output 'physical' bits of π_i , and $t \ge \epsilon n$. (M., N., P-C., Suad, W. '21)
- Random linear SS is resilient against $f_i \colon \mathbb{F}_p \to \{0,1\}$ if $t \ge (0.5 + \epsilon)n$. (MPSW '20)
- \exists non-linear SS against $f_i \colon \mathbb{F}_p \to \{0,1\}^{0.99 \lg(p)}$, \forall access structure. (Srinivasan, Vasudevan '19)

Ohad Klein (HUJI)

Shamir SS with small t is not leakage resilient

∀ linear SS with threshold t, ∃ one-bit leakage functions with $I(s; Leak) \ge \exp(-t)$. ⇒ Leakage resilience may hold only if t, n are large.

Ohad Klein (HUJI) Leakage Resilience of Linear Secret Sharing Aug. 21, 2023 8 / 13

Shamir SS with small t is not leakage resilient

Ohad Klein (HUJI)

∀ linear SS with threshold *t*, ∃ one-bit leakage functions with $I(s; Leak) \ge \exp(-t)$. ⇒ Leakage resilience may hold only if *t*, *n* are large.

Shamir SS with $q = 2^k$ is not resilient (Guruswami Wootters '15)

If $q = 2^k$ equals n = 2t, then **s** is **completely** determined by $(f_i(\pi_i))_{i=1}^n$ for $f_i \colon \mathbb{F}_q \to \{0, 1\}$. \implies Leakage resilience makes sense primarily over \mathbb{F}_p .

Aug. 21, 2023

Shamir SS with small t is not leakage resilient

∀ linear SS with threshold *t*, ∃ one-bit leakage functions with $I(s; Leak) \ge \exp(-t)$. ⇒ Leakage resilience may hold only if *t*, *n* are large.

Shamir SS with $q = 2^k$ is not resilient (Guruswami Wootters '15)

If $q = 2^k$ equals n = 2t, then **s** is **completely** determined by $(f_i(\pi_i))_{i=1}^n$ for $f_i \colon \mathbb{F}_q \to \{0, 1\}$. \implies Leakage resilience makes sense primarily over \mathbb{F}_p .

t and n are of same order of magnitude (Nielsen Simkin '19)

Ohad Klein (HUJI)

 $\exists c > 0 \text{ s.t. if } t < cn/\log(n), \exists \text{ one-bit leakage functions with } I(\mathbf{s}; \mathbf{Leak}) \ge c.$ \implies Leakage resilience essentially requires $t = \Omega(n).$

Leakage Resilience of Linear Secret Sharing

Aug. 21, 2023

Let $s \mapsto \pi$ be linear SS. Leak = $(f_1(\pi_1), \ldots, f_n(\pi_n))$ for $f_1, \ldots, f_n \colon \mathbb{F}_p \to \{0, 1\}$. $p = 2^{o(n)}$.

Theorem (Main) For all secrets $s_1, s_2 \in \mathbb{F}_p$, $SD(\text{Leak} \mid \mathbf{s} = s_1 \ , \ \text{Leak} \mid \mathbf{s} = s_2) \leq \text{New Proxy.}$

Ohad Klein (HUJI)Leakage Resilience of Linear Secret SharingAug. 21, 20239 / 13

Let $s \mapsto \pi$ be linear SS. Leak = $(f_1(\pi_1), \ldots, f_n(\pi_n))$ for $f_1, \ldots, f_n \colon \mathbb{F}_p \to \{0, 1\}$. $p = 2^{o(n)}$.

Theorem (Main)

For all secrets $s_1, s_2 \in \mathbb{F}_p$,

$$SD(Leak | s = s_1, Leak | s = s_2) \le New Proxy.$$

Corollary (General Bound)

Ohad Klein (HUJI)

Shamir's secret sharing is Leakage Resilient once $t \ge 0.69n$.

Leakage Resilience of Linear Secret Sharing

Aug. 21, 2023

Let $s \mapsto \pi$ be linear SS. Leak = $(f_1(\pi_1), \ldots, f_n(\pi_n))$ for $f_1, \ldots, f_n \colon \mathbb{F}_p \to \{0, 1\}$. $p = 2^{o(n)}$.

Theorem (Main)

For all secrets $s_1, s_2 \in \mathbb{F}_p$,

$$SD(Leak | s = s_1, Leak | s = s_2) \le New Proxy.$$

Corollary (General Bound)

Ohad Klein (HUJI)

Shamir's secret sharing is Leakage Resilient once $t \ge 0.69n$.

Corollary (Bound for Hard-Cases)

If $\Pr[f_i = 0] = 1/2 \pm \epsilon$ then Shamir's secret sharing is Leakage Resilient once $t \ge 0.58n$.

Leakage Resilience of Linear Secret Sharing

Aug. 21, 2023

Let $s \mapsto \pi$ be linear SS. Leak = $(f_1(\pi_1), \ldots, f_n(\pi_n))$ for $f_1, \ldots, f_n \colon \mathbb{F}_p \to \{0, 1\}$. $p = 2^{o(n)}$.

Theorem (Main)

For all secrets $s_1, s_2 \in \mathbb{F}_p$,

$$SD(Leak | s = s_1, Leak | s = s_2) \le New Proxy.$$

Corollary (General Bound)

Shamir's secret sharing is Leakage Resilient once $t \ge 0.69n$.

Corollary (Bound for Hard-Cases)

If $\Pr[f_i = 0] = 1/2 \pm \epsilon$ then Shamir's secret sharing is Leakage Resilient once $t \ge 0.58n$.

Corollary (Going below t = n/2)

If $\Pr[f_i = 0] < \epsilon$ then Shamir's secret sharing is Leakage Resilient once $t \ge 0.01n$.

Ohad Klein (HUJI)

Leakage Resilience of Linear Secret Sharing

Aug. 21, 2023

Main Result

Let
$$f_1, \ldots, f_n \colon \mathbb{F}_p \to \{0, 1\}$$
. Let $I \subseteq [n]$. Define
$$f(I) \coloneqq \max_{s \in \mathbb{F}_p} \left| \Pr\left[\bigoplus_{i \in I} f_i(\pi_i) = 0 \middle| \mathbf{s} = s\right] - \Pr\left[\bigoplus_{i \in I} f_i(\pi_i) = 0\right] \right|.$$

Theorem (New Proxy)

$$SD(Leak | s = s_1 , Leak | s = s_2)^4 \le \rho^{O(1)} \sum_{I \subseteq [n]} f(I)^2.$$

Previous Proxy (BDIR '19)

Ohad Klein (HUJI)

$$\operatorname{SD}(\operatorname{Leak} | \mathbf{s} = s_1 , \operatorname{Leak} | \mathbf{s} = s_2) \leq \operatorname{Proxy} \geq p^{-O(1)} \sum_{I \subseteq [n]} f(I)$$

Leakage Resilience of Linear Secret Sharing

Aug. 21, 2023

Main Result

Let
$$f_1, \ldots, f_n \colon \mathbb{F}_p \to \{0, 1\}$$
. Let $I \subseteq [n]$. Define
$$f(I) \coloneqq \max_{s \in \mathbb{F}_p} \left| \Pr\left[\bigoplus_{i \in I} f_i(\pi_i) = 0 \middle| \mathbf{s} = s\right] - \Pr\left[\bigoplus_{i \in I} f_i(\pi_i) = 0\right] \right|.$$

Theorem (New Proxy)

$$SD(Leak | s = s_1 , Leak | s = s_2)^4 \le p^{O(1)} \sum_{I \subseteq [n]} f(I)^2.$$

Previous Proxy (BDIR '19)

$$\operatorname{SD}(\operatorname{Leak} | \mathbf{s} = s_1, \operatorname{Leak} | \mathbf{s} = s_2) \leq \operatorname{Proxy} \geq p^{-O(1)} \sum_{I \subseteq [n]} f(I)$$

Previous Barrier (MPSW '19)

 \exists functions f_1, \ldots, f_n with $Proxy \ge 1$ whenever $t \le n/2$. Even if $\Pr[f_i = 0] \approx 0$.

Ohad Klein (HUJI)

Leakage Resilience of Linear Secret Sharing

10 / 13

Aug. 21, 2023

(Heuristic) Interpretation of Main Result

Suppose attackers wish to distinguish

 $\mathbf{s} = \mathbf{0}$ and $\mathbf{s} = \mathbf{1}$.

Ohad Klein (HUJI)Leakage Resilience of Linear Secret SharingAug. 21, 202311 / 13

(Heuristic) Interpretation of Main Result

Suppose attackers wish to distinguish

 $\mathbf{s} = \mathbf{0}$ and $\mathbf{s} = \mathbf{1}$.

Given independent statistical information: samples $s_j \in \{0,1\}$ and $\epsilon_j \in [-1,1]$ with guarantee

$$\operatorname{Cov}(\mathbf{s}, \mathbf{s}_j) = \epsilon_j, \qquad j = 1 \dots \ell.$$

Aggregating all information, maximum likelihood of s gives (optimal) advantage

$$\mathbb{E}_{s_1,\ldots,s_\ell} \left| \Pr\left[\mathbf{s} = 0 \,|\, s_1,\ldots,s_\ell \right] - \Pr\left[\mathbf{s} = 1 \,|\, s_1,\ldots,s_\ell \right] \right| = \Theta\left(\sum_j \epsilon_j^2\right).$$

Ohad Klein (HUJI)Leakage Resilience of Linear Secret SharingAug. 21, 202311 / 13

(Heuristic) Interpretation of Main Result

Suppose attackers wish to distinguish

 $\mathbf{s} = \mathbf{0}$ and $\mathbf{s} = \mathbf{1}$.

Given independent statistical information: samples $s_j \in \{0,1\}$ and $\epsilon_j \in [-1,1]$ with guarantee

$$\operatorname{Cov}(\mathbf{s}, \mathbf{s}_j) = \epsilon_j, \qquad j = 1 \dots \ell.$$

Aggregating all information, maximum likelihood of s gives (optimal) advantage

$$\mathbb{E}_{s_1,\ldots,s_\ell} \left| \Pr\left[\mathbf{s} = 0 \,|\, s_1,\ldots,s_\ell \right] - \Pr\left[\mathbf{s} = 1 \,|\, s_1,\ldots,s_\ell \right] \right| = \Theta\left(\sum_j \epsilon_j^2\right).$$

Suggested attack

Given the leakage, compute $s_I = \bigoplus_{i \in I} f_i(\pi_i)$. Covariance of s_I with **s** is $\epsilon_I = p^{O(1)} f(I)$. Using MLE, advantage is

$$\sum_{I} \epsilon_{I}^{2} = p^{O(1)} \sum_{I} f(I)^{2}.$$

Ohad Klein (HUJI)

Leakage Resilience of Linear Secret Sharing

Aug. 21, 2023

Open problems

Conjecture (Benhamouda, Degwekar, Ishai, Rabin '18)

Shamir SS over \mathbb{F}_p with $t/n = \alpha > 0$ and **arbitrary** 1-bit leakage from each share satisfies

$$\operatorname{SD}(\operatorname{Leak} | \mathbf{s} = s_1, \operatorname{Leak} | \mathbf{s} = s_2) \le \exp(-O_{\alpha}(n)).$$
 (1)

Ohad Klein (HUJI)Leakage Resilience of Linear Secret SharingAug. 21, 202312 / 13

Open problems

Conjecture (Benhamouda, Degwekar, Ishai, Rabin '18)

Shamir SS over \mathbb{F}_p with $t/n = \alpha > 0$ and **arbitrary** 1-bit leakage from each share satisfies

$$\operatorname{SD}(\operatorname{Leak} | \mathbf{s} = s_1, \operatorname{Leak} | \mathbf{s} = s_2) \le \exp(-O_{\alpha}(n)).$$
 (1)

Aug. 21, 2023

12 / 13

Problem (indistinguishability using XOR)

Under same conditions, prove

Ohad Klein (HUJI)

$$f([n]) = \max_{s \in \mathbb{F}_{\rho}} \left| \Pr\left[\bigoplus_{i=1}^{n} f_{i}(\pi_{i}) = 0 \, \middle| \, \mathbf{s} = s \right] - \Pr\left[\bigoplus_{i=1}^{n} f_{i}(\pi_{i}) = 0 \right] \right| = \exp(-O_{\alpha}(n)).$$

* Currently known only for $\alpha > 1/2$.

Leakage Resilience of Linear Secret Sharing

Open problems

Conjecture (Benhamouda, Degwekar, Ishai, Rabin '18)

Shamir SS over \mathbb{F}_p with $t/n = \alpha > 0$ and **arbitrary** 1-bit leakage from each share satisfies

$$\operatorname{SD}(\operatorname{Leak} | \mathbf{s} = s_1, \operatorname{Leak} | \mathbf{s} = s_2) \le \exp(-O_{\alpha}(n)).$$
 (1)

Aug. 21, 2023

12 / 13

Problem (indistinguishability using XOR)

Under same conditions, prove

$$f([n]) = \max_{s \in \mathbb{F}_p} \left| \Pr\left[\bigoplus_{i=1}^n f_i(\pi_i) = 0 \, \middle| \, \mathbf{s} = s \right] - \Pr\left[\bigoplus_{i=1}^n f_i(\pi_i) = 0 \right] \right| = \exp(-O_\alpha(n)).$$

* Currently known only for $\alpha > 1/2$.

Problem (Generalize to multi-bit leakage)

Find useful bound for (1) when $f_1, \ldots, f_n \colon \mathbb{F}_p \to \{0, 1\}^m$ for m > 1.

Ohad Klein (HUJI)

Leakage Resilience of Linear Secret Sharing

The end

Thank You!

Ohad Klein (HUJI)

Leakage Resilience of Linear Secret Sharing

Aug. 21, 2023