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Durandal signature scheme

Main characteristics

Code-based signature presented at EC’19 [ABG+19]

Variation of Lyubashevsky’s signature [Lyu12] in the rank metric

Fiat-Shamir heuristic to transform a one-iteration proof of knowledge
into a signature scheme

Based on problems: RSL, IRSD, PSSI

Mildly impacted by algebraic attacks [BBC+20, BB21] targeting RSL
and IRSD, no other attack since 2019
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Durandal signature scheme

Design principle

In [Lyu12], signature of the form z = y + cS

Proves knowledge of a small weight matrix S from a small weight
challenge c depending on the hash of the message

Direct adaptation to coding theory is impossible

Need to add extra randomness to the signature z = y + cS + pS ′
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Comparaison with NIST onramp code-based signatures

Metric pk size σ size Security assumptions

CROSS - 38B 7.6kB Restricted SD

Durandal Rank 15.2kB 4.1kB RSL, IRSD, PSSI

FuLeeca Lee 1.3kB 1.1kB Lee Codeword Finding

LESS Hamming 14.0kB 8.6kB Linear Code Equivalence

MEDS Rank 9.9kB 9.9kB Matrix Code Equivalence

pqsigRM Hamming 2MB 1.0kB Modified RM code masking, SD

SDitH Hamming 120B 8.2kB SD in F256

RYDE Rank 86B 6.0kB RSD

WAVE Hamming 3.7MB 822B Large weight SD in F3

Table: Numbers are taken for 128 bits of security. When several parameters
exist for the same level of security, those acheiving the least pk+σ size are
displayed. Links to the NIST submissions can be found on https://csrc.nist.

gov/Projects/pqc-dig-sig
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Comparaison with NIST onramp code-based signatures
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Hamming metric

Definition (Hamming weight)

The Hamming weight of a word x ∈ (Fq)
n is its number of non-zero

coordinates:
wh(x) = #{i : xi ̸= 0}

Definition (Hamming support)

The Hamming support of a word x ∈ (Fq)
n is the set of indexes of

its non-zero coordinates:

Supph(x) = {i : xi ̸= 0}
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Rank metric

In the rank metric, coordinates are in Fqm (which is a field extension
of Fq of degree m).

Definition (Rank weight)

Let γ = (γ1, ..., γm) be an Fq-basis of Fqm . A word
x = (x1, ..., xn) ∈ (Fqm)

n can be unfolded against γ:

M(x) =

x1,1 . . . xn,1
...

...
x1,m . . . xn,m

 ∈Mm,n(Fq)

where xi =
∑m

j=1 xi ,jγj .

The rank weight of x is defined as the rank of this matrix:

wr (x) = rkM(x) ∈ [0,min(m, n)]

7 / 31



PSSI problem An attack against PSSI Perspectives

Rank metric

Definition (Rank support)

The rank support of a word x = (x1, ..., xn) ∈ (Fqm)
n is the

Fq-subspace of Fqm generated by its coordinates:

Suppr (x) = ⟨x1, ..., xn⟩Fq

Similar to the Hamming metric, the rank weight is equal to the
dimension of the rank support.
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Difficult problems in code-based cryptography

Definition (Syndrome Decoding SD(n, k ,w))

Given a random parity check matrix H ∈Mn−k,n(Fq) and a
syndrome s = He for e an error of Hamming weight wh(e) = w ,
find e.

Definition (Rank Syndrome Decoding RSD(m, n, k ,w))

Given a random parity check matrix H ∈Mn−k,n(Fqm) and a
syndrome s = He for e an error of rank weight wr (e) = w , find e.
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Summary

In this talk:

A new attack against the PSSI problem

Breaks the 128-bit parameters of Durandal in 266 F2-operations

10 / 31



PSSI problem An attack against PSSI Perspectives

Summary
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3 Perspectives
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Notation

Gr(d ,Fqm) is the set of subspaces of Fqm of Fq-dimension d .

x
$← X means that x is chosen uniformly at random in X .

For E ,F Fq-subspaces of Fqm , the product space EF is defined
as:

EF := ⟨{ef |e ∈ E , f ∈ F}⟩Fq .

If (e1, ..., er ) and (f1, ..., fd) are basis of E and F , then
(ei fj)1≤i≤r ,1≤j≤d contains a basis of EF .
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Product space: example

Example

F26 = ⟨1, α, α2, α3, α4, α5⟩.

E = ⟨1, α⟩ = {0, 1, α, 1 + α}
F = ⟨α2, α4⟩ = {0, α2, α4, α2 + α4}

EF = ⟨α2, α3, α4, α5⟩
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PSSI problem

Definition (PSS sample)

Let E ⊂ Fqm a subspace of Fq-dimension r . A Product Space
Subspace (PSS) sample is a pair of subspaces (F ,Z ) defined as
follows:

F
$← Gr(d ,Fqm)

U
$← Gr(rd − λ,EF ) such that {ef |e ∈ E , f ∈ F} ∩ U = {0}

W
$← Gr(w ,Fqm)

Z = W + U
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PSS sample: example

Example

F26 = ⟨1, α, α2, α3, α4, α5⟩.

E = ⟨1, α⟩ = {0, 1, α, 1 + α}
F = ⟨α2, α4⟩ = {0, α2, α4, α2 + α4}

EF = ⟨α2, α3, α4, α5⟩

U = ⟨α3 + α5⟩ → not filtered

V = ⟨α2 + α5⟩ → filtered
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PSSI problem

Definition (Random sample)

A random sample is a pair of subspaces (F ,Z ) with:

F
$← Gr(d ,Fqm)

Z
$← Gr(w + rd − λ,Fqm)

F and Z are independent
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PSSI problem

Definition (PSSI problem, from Durandal [ABG+19])

The Product Spaces Subspaces Indistinguishability (PSSI) problem
consists in deciding whether N samples (Fi ,Zi ) are PSS samples or
random samples.

Definition (Search-PSSI problem)

Given N PSS samples (Fi ,Zi ), the search-PSSI problem consists in
finding the vector space E of dimension r .
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What happens if λ = 0?

There is no filtration: (F ,Z ) = (F ,W + EF ).
Take (f1, ..., fd) a basis of F .

To find E in one sample, compute:

A =
d⋂

i=1

f −1
i Z

Similar arguments than LRPC decoding:

f −1
i Z = f −1

i f1E + ...+ E + ...+ f −1
i fdE + f −1

i W

= E + Ri

Caveat: dim(Z ) needs to be significantly lower than m.
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Practical parameters for PSSI

m w r d λ

Durandal-I 241 57 6 6 12
Durandal-II 263 56 7 7 14

Example (for Durandal-I)

Secret PSS sample

E ⊂ F2241 (F ,Z ) ⊂ F2241

dim(E ) = 6 dim(F ) = 6
dim(Z ) = 81

Z = W + U with U ⊊ EF
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Summary
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3 Perspectives

21 / 31



PSSI problem An attack against PSSI Perspectives

Simultaneous 2-sums

Input: Four PSS samples (F1,Z1), (F2,Z2), (F3,Z3), (F4,Z4)

If the attacker is lucky, after drawing random pairs

(f1, f
′
1)

$← F1, (f2, f
′
2)

$← F2, (f3, f
′
3)

$← F3, (f4, f
′
4)

$← F4,

there exists a couple (e, e ′) ∈ E 2, such that a system (S) of four
conditions is verified:

(S) :


ef1 + e ′f ′1 = z1 ∈ Z1

ef2 + e ′f ′2 = z2 ∈ Z2

ef3 + e ′f ′3 = z3 ∈ Z3

ef4 + e ′f ′4 = z4 ∈ Z4
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Cramer formulas

(S) :


ef1 + e ′f ′1 = z1 ∈ Z1

ef2 + e ′f ′2 = z2 ∈ Z2

ef3 + e ′f ′3 = z3 ∈ Z3

ef4 + e ′f ′4 = z4 ∈ Z4

e =

∣∣∣∣zi f ′i
zj f ′j

∣∣∣∣∣∣∣∣fi f ′i
fj f ′j

∣∣∣∣ .
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Cramer formulas

(S) :


ef1 + e ′f ′1 = z1 ∈ Z1

ef2 + e ′f ′2 = z2 ∈ Z2

ef3 + e ′f ′3 = z3 ∈ Z3

ef4 + e ′f ′4 = z4 ∈ Z4

e ∈ Ai ,j =

∣∣∣∣Zi f ′i
Zj f ′j

∣∣∣∣∣∣∣∣fi f ′i
fj f ′j

∣∣∣∣ =
f ′j Zi + f ′i Zj∣∣∣∣fi f ′i

fj f ′j

∣∣∣∣ .
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Cramer formulas

(S) :


ef1 + e ′f ′1 = z1 ∈ Z1

ef2 + e ′f ′2 = z2 ∈ Z2

ef3 + e ′f ′3 = z3 ∈ Z3

ef4 + e ′f ′4 = z4 ∈ Z4

⟨e⟩ =
⋂
i ̸=j

∣∣∣∣Zi f ′i
Zj f ′j

∣∣∣∣∣∣∣∣fi f ′i
fj f ′j

∣∣∣∣ .
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The attack

Input: Four PSS samples (F1,Z1), (F2,Z2), (F3,Z3), (F4,Z4)

Step 1: Draw

(f1, f
′
1)

$← F1, (f2, f
′
2)

$← F2, (f3, f
′
3)

$← F3, (f4, f
′
4)

$← F4

Step 2: Compute

A =
⋂
i ̸=j

∣∣∣∣Zi f ′i
Zj f ′j

∣∣∣∣∣∣∣∣fi f ′i
fj f ′j

∣∣∣∣ .
Step 3: If dim(A) = 0 or dim(A) > 1, go back to Step 1.

Step 4: If A = ⟨e⟩, add e to Eguess and restart with new
samples.
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Probability of existence of 2-sums

Lemma

Let (fi , f
′
i )

$← Fi for i ∈ [1, 4]. If λ = 2r , the probability ε that there
exists a pair (e, e ′) ∈ E 2, such that the system (S) of four
conditions is verified

(S) :


ef1 + e ′f ′1 = z1 ∈ Z1

ef2 + e ′f ′2 = z2 ∈ Z2

ef3 + e ′f ′3 = z3 ∈ Z3

ef4 + e ′f ′4 = z4 ∈ Z4

admits an asymptotic development

ε = q−6r + or→∞(q−10r )
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Total complexity of the attack

Proposition

The average complexity of the attack is:

(r +
1

q − 1
)× 160m(w + rd − λ)2 × q6r

operations in Fq.

Security Our attack

Durandal-I 128 66
Durandal-II 128 73
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Experimental results
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Summary
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2 An attack against PSSI
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Perspectives

Refine the analysis on the security of PSSI problem

Tweak to avoid the new attack on PSSI without penalizing the
parameters
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Conclusion

Thank you for your attention !
https://eprint.iacr.org/2023/926
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Combinatorial factor of the attack

≈ q6r

(when λ = 2r)

Increase λ ⇒ Impossible due to inexistence of solution
Decrease m ⇒ Impossible due to Singleton bound
Increase r ⇒ Very large parameters... (m ≥ 400)

Increase q!
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New parameters

q m k n w r d λ

2 241 101 202 57 6 6 12

pk size σ size MaxMinors [BBC+20] Our attack

15.2KB 4.1KB 98 56

↓
q m k n w r d λ

4 173 85 170 5 8 9 18

pk size σ size MaxMinors [BBC+20] Our attack

14.7KB 5.1KB 232 128

Keygen Signature Verification

5ms 350ms 2ms
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Existing attack for PSSI

Choose A ⊂ F a subspace of dimension 2 and check whether

dim(AZ ) < 2(w + rd − λ)

Proposition ([ABG+19])

The advantage of the distinguisher is of the order of q(rd−λ)−m.

Several problems:

The distinguisher only uses one signature;

It does not depend on w ;

It does not allow to recover the secret space E .
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Impossibility to avoid 2-sums

Fqm

E

FEF

U
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Probability of existence of 2-sums

Heuristic

Let (e1, e2) ∈ E and U ⊂ EF filtered of dimension rd − λ.

For (f1, f2)
$← F the event

e1f1 + e2f2 ∈ U

happens with probability q−λ.
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Does this really work?

We want the chain of intersections

B =
⋂
i ̸=j

∣∣∣∣Zi f ′i
Zj f ′j

∣∣∣∣∣∣∣∣fi f ′i
fj f ′j

∣∣∣∣ .
to be equal to {0}, in general.

All the subspaces fiZj + fjZi are of dimension 2(w + rd − λ).

m w r d λ 2(w + rd − λ)

241 57 6 6 12 162
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Probabilities on the intersection of two vector spaces

Heuristic

Let A and B be uniformly random and independent subspaces of
Fqm of dimension a and b, respectively.

If a+ b < m, then P(dim(A ∩ B) > 0) ≈ qa+b−m;

If a+ b ≥ m, then the most probable outcome is
dim(A ∩ B) = a+ b −m.
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Generalization to n intersections

Heuristic

For 1 ≤ i ≤ n, let Ai
$← Gr(a,Fqm) be independent subspaces of

fixed dimension a.

If na < (n − 1)m, then P(dim(
⋂n

i=1 Ai ) > 0) ≈ qna−(n−1)m;

If na ≥ (n − 1)m, then the most probable outcome is
dim(

⋂n
i=1 Ai ) = na− (n − 1)m;

In our setting:

a = 162,m = 241, n = 4

P(dim(B) > 0) ≈ q−75
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