# Analysis of the security of the PSSI problem and cryptanalysis of Durandal signature scheme

#### Nicolas Aragon, Victor Dyseryn, Philippe Gaborit

XLIM, Université de Limoges, France

CRYPTO - August 22, 2023





## Durandal signature scheme

#### Main characteristics

- Code-based signature presented at EC'19 [ABG<sup>+</sup>19]
- Variation of Lyubashevsky's signature [Lyu12] in the rank metric
- Fiat-Shamir heuristic to transform a one-iteration proof of knowledge into a signature scheme
- Based on problems: RSL, IRSD, PSSI
- Mildly impacted by algebraic attacks [BBC<sup>+</sup>20, BB21] targeting RSL and IRSD, no other attack since 2019



#### Durandal signature scheme

#### Design principle

- In [Lyu12], signature of the form z = y + cS
- Proves knowledge of a small weight matrix **S** from a small weight challenge **c** depending on the hash of the message
- Direct adaptation to coding theory is impossible
- Need to add extra randomness to the signature z = y + cS + pS'

## Comparaison with NIST onramp code-based signatures

|          | Metric  | pk size | $\sigma$ size | Security assumptions              |
|----------|---------|---------|---------------|-----------------------------------|
| CROSS    | -       | 38B     | 7.6kB         | Restricted SD                     |
| Durandal | Rank    | 15.2kB  | 4.1kB         | RSL, IRSD, PSSI                   |
| FuLeeca  | Lee     | 1.3kB   | 1.1kB         | Lee Codeword Finding              |
| LESS     | Hamming | 14.0kB  | 8.6kB         | Linear Code Equivalence           |
| MEDS     | Rank    | 9.9kB   | 9.9kB         | Matrix Code Equivalence           |
| pqsigRM  | Hamming | 2MB     | 1.0kB         | Modified RM code masking, SD      |
| SDitH    | Hamming | 120B    | 8.2kB         | SD in $\mathbb{F}_{256}$          |
| RYDE     | Rank    | 86B     | 6.0kB         | RSD                               |
| WAVE     | Hamming | 3.7MB   | 822B          | Large weight SD in $\mathbb{F}_3$ |

Table: Numbers are taken for 128 bits of security. When several parameters exist for the same level of security, those acheiving the least  $pk+\sigma$  size are displayed. Links to the NIST submissions can be found on https://csrc.nist.gov/Projects/pqc-dig-sig

## Comparaison with NIST onramp code-based signatures



## Hamming metric

#### Definition (Hamming weight)

The Hamming weight of a word  $\mathbf{x} \in (\mathbb{F}_q)^n$  is its number of non-zero coordinates:

$$w_h(\boldsymbol{x}) = \#\{i : x_i \neq 0\}$$

#### Definition (Hamming support)

The Hamming support of a word  $\mathbf{x} \in (\mathbb{F}_q)^n$  is the set of indexes of its non-zero coordinates:

$$Supp_h(\mathbf{x}) = \{i : x_i \neq 0\}$$

## Rank metric

In the rank metric, coordinates are in  $\mathbb{F}_{q^m}$  (which is a field extension of  $\mathbb{F}_q$  of degree m).

#### Definition (Rank weight)

Let  $\gamma = (\gamma_1, ..., \gamma_m)$  be an  $\mathbb{F}_q$ -basis of  $\mathbb{F}_{q^m}$ . A word  $\mathbf{x} = (x_1, ..., x_n) \in (\mathbb{F}_{q^m})^n$  can be unfolded against  $\gamma$ :

$$\mathcal{M}(\boldsymbol{x}) = \begin{pmatrix} x_{1,1} & \dots & x_{n,1} \\ \vdots & & \vdots \\ x_{1,m} & \dots & x_{n,m} \end{pmatrix} \in \mathcal{M}_{m,n}(\mathbb{F}_q)$$

where  $x_i = \sum_{j=1}^{m} x_{i,j} \gamma_j$ . The rank weight of  $\mathbf{x}$  is defined as the rank of this matrix:

$$w_r(\boldsymbol{x}) = \mathsf{rk} \ \mathcal{M}(\boldsymbol{x}) \in [0,\min(m,n)]$$

#### Rank metric

#### Definition (Rank support)

The rank support of a word  $\mathbf{x} = (x_1, ..., x_n) \in (\mathbb{F}_{q^m})^n$  is the  $\mathbb{F}_q$ -subspace of  $\mathbb{F}_{q^m}$  generated by its coordinates:

$$Supp_r(\mathbf{x}) = \langle x_1, ..., x_n \rangle_{\mathbb{F}_q}$$

Similar to the Hamming metric, the rank weight is equal to the dimension of the rank support.

## Difficult problems in code-based cryptography

#### Definition (Syndrome Decoding SD(n, k, w))

Given a random parity check matrix  $H \in \mathcal{M}_{n-k,n}(\mathbb{F}_q)$  and a syndrome s = He for e an error of Hamming weight  $w_h(e) = w$ , find e.

#### Definition (Rank Syndrome Decoding RSD(m, n, k, w))

Given a random parity check matrix  $H \in \mathcal{M}_{n-k,n}(\mathbb{F}_{q^m})$  and a syndrome s = He for e an error of rank weight  $w_r(e) = w$ , find e.

In this talk:

- A new attack against the PSSI problem
- $\bullet\,$  Breaks the 128-bit parameters of Durandal in  $2^{66}$   $\mathbb{F}_2\text{-operations}$



2 An attack against PSSI





2 An attack against PSSI



Notation

- $Gr(d, \mathbb{F}_{q^m})$  is the set of subspaces of  $\mathbb{F}_{q^m}$  of  $\mathbb{F}_{q}$ -dimension d.
- $x \stackrel{\$}{\leftarrow} X$  means that x is chosen uniformly at random in X.
- For  $E, F \mathbb{F}_q$ -subspaces of  $\mathbb{F}_{q^m}$ , the product space EF is defined as:

 $EF := \langle \{ef | e \in E, f \in F\} \rangle_{\mathbb{F}_q}.$ 

If  $(e_1, ..., e_r)$  and  $(f_1, ..., f_d)$  are basis of E and F, then  $(e_i f_j)_{1 \le i \le r, 1 \le j \le d}$  contains a basis of EF.

## Product space: example

#### Example

$$\mathbb{F}_{2^6} = \langle 1, \alpha, \alpha^2, \alpha^3, \alpha^4, \alpha^5 \rangle.$$

$$\begin{split} E &= \langle 1, \alpha \rangle = \{0, 1, \alpha, 1 + \alpha\} \\ F &= \langle \alpha^2, \alpha^4 \rangle = \{0, \alpha^2, \alpha^4, \alpha^2 + \alpha^4\} \end{split}$$

$$\textit{EF} = \langle \alpha^2, \alpha^3, \alpha^4, \alpha^5 \rangle$$

## **PSSI** problem

#### Definition (PSS sample)

Let  $E \subset \mathbb{F}_{q^m}$  a subspace of  $\mathbb{F}_q$ -dimension r. A Product Space Subspace (PSS) sample is a pair of subspaces (F, Z) defined as follows:

• 
$$F \stackrel{\$}{\leftarrow} \mathbf{Gr}(d, \mathbb{F}_{q^m})$$

•  $U \stackrel{\ \ }{\leftarrow} \mathbf{Gr}(rd - \lambda, \mathbf{EF})$  such that  $\{ef | e \in \mathbf{E}, f \in \mathbf{F}\} \cap U = \{0\}$ 

• 
$$W \stackrel{\$}{\leftarrow} \mathbf{Gr}(w, \mathbb{F}_{q^m})$$

• 
$$Z = W + U$$

## PSS sample: example

#### Example

$$\mathbb{F}_{2^6} = \langle 1, \alpha, \alpha^2, \alpha^3, \alpha^4, \alpha^5 \rangle.$$

$$\begin{split} & \mathcal{E} = \langle 1, \alpha \rangle = \{0, 1, \alpha, 1 + \alpha\} \\ & \mathcal{F} = \langle \alpha^2, \alpha^4 \rangle = \{0, \alpha^2, \alpha^4, \alpha^2 + \alpha^4\} \end{split}$$

$$EF = \langle \alpha^2, \alpha^3, \alpha^4, \alpha^5 \rangle$$

$$U = \langle \alpha^3 + \alpha^5 \rangle \rightarrow \text{not filtered}$$
$$V = \langle \alpha^2 + \alpha^5 \rangle \rightarrow \text{filtered}$$

## **PSSI** problem

#### Definition (Random sample)

A random sample is a pair of subspaces (F, Z) with:

•  $F \stackrel{\$}{\leftarrow} \mathbf{Gr}(d, \mathbb{F}_{q^m})$ 

• 
$$Z \stackrel{\$}{\leftarrow} \mathbf{Gr}(w + rd - \lambda, \mathbb{F}_{q^m})$$

• F and Z are independent

## **PSSI** problem

#### Definition (PSSI problem, from Durandal [ABG<sup>+</sup>19])

The Product Spaces Subspaces Indistinguishability (PSSI) problem consists in deciding whether N samples ( $F_i, Z_i$ ) are PSS samples or random samples.

#### Definition (Search-PSSI problem)

Given N PSS samples ( $F_i$ ,  $Z_i$ ), the search-PSSI problem consists in finding the vector space E of dimension r.

Perspectives

## What happens if $\lambda = 0$ ?

There is no filtration: (F, Z) = (F, W + EF). Take  $(f_1, ..., f_d)$  a basis of F.

To find *E* in one sample, compute:

$$A = \bigcap_{i=1}^{d} f_i^{-1} Z$$

Similar arguments than LRPC decoding:

$$f_i^{-1}Z = f_i^{-1}f_1E + \dots + E + \dots + f_i^{-1}f_dE + f_i^{-1}W$$
  
= E + R<sub>i</sub>

**Caveat:** dim(Z) needs to be significantly lower than m.

## Practical parameters for PSSI

|             | т   | W  | r | d | λ  |
|-------------|-----|----|---|---|----|
| Durandal-I  | 241 | 57 | 6 | 6 | 12 |
| Durandal-II | 263 | 56 | 7 | 7 | 14 |

| Example (for Durandal-I)                                                                |                                                                                                              |  |  |  |  |  |  |  |  |
|-----------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|--|--|
| Secret                                                                                  | PSS sample                                                                                                   |  |  |  |  |  |  |  |  |
| $\frac{\textit{\textit{E}} \subset \mathbb{F}_{2^{241}}}{dim(\textit{\textit{E}})} = 6$ | $(F, Z) \subset \mathbb{F}_{2^{241}}$ $\dim(F) = 6$ $\dim(Z) = 81$ $Z = W + U \text{ with } U \subsetneq EF$ |  |  |  |  |  |  |  |  |





#### 3 Perspectives

#### Simultaneous 2-sums

**Input:** Four PSS samples  $(F_1, Z_1), (F_2, Z_2), (F_3, Z_3), (F_4, Z_4)$ 

If the attacker is lucky, after drawing random pairs

$$(f_1, f_1') \stackrel{\$}{\leftarrow} F_1, \ (f_2, f_2') \stackrel{\$}{\leftarrow} F_2, \ (f_3, f_3') \stackrel{\$}{\leftarrow} F_3, \ (f_4, f_4') \stackrel{\$}{\leftarrow} F_4,$$

there exists a couple  $(e, e') \in E^2$ , such that a system (S) of four conditions is verified:

$$(S): \begin{cases} ef_1 + e'f_1' = z_1 \in Z_1 \\ ef_2 + e'f_2' = z_2 \in Z_2 \\ ef_3 + e'f_3' = z_3 \in Z_3 \\ ef_4 + e'f_4' = z_4 \in Z_4 \end{cases}$$

An attack against PSSI

Perspectives 000

## Cramer formulas

$$(S): \begin{cases} ef_1 + e'f_1' = z_1 \in Z_1 \\ ef_2 + e'f_2' = z_2 \in Z_2 \\ ef_3 + e'f_3' = z_3 \in Z_3 \\ ef_4 + e'f_4' = z_4 \in Z_4 \end{cases}$$

$$e = rac{ig| z_i & f_i' \ z_j & f_j' \ ig| }{ig| f_i & f_i' \ f_j & f_j' \ ig| }.$$

An attack against PSSI

Perspectives

### Cramer formulas

$$(S): \begin{cases} ef_1 + e'f_1' = z_1 \in Z_1 \\ ef_2 + e'f_2' = z_2 \in Z_2 \\ ef_3 + e'f_3' = z_3 \in Z_3 \\ ef_4 + e'f_4' = z_4 \in Z_4 \end{cases}$$

$$e \in A_{i,j} = rac{ig|Z_i & f_i' \ Z_j & f_j' \ ig|}{ig|f_i & f_i' \ f_j & f_j' \ ig|} = rac{f_j' Z_i + f_i' Z_j}{ig|f_i & f_j' \ ig|}.$$

An attack against PSSI

Perspectives

## Cramer formulas

$$(\mathcal{S}): \begin{cases} ef_1 + e'f_1' = z_1 \in Z_1 \\ ef_2 + e'f_2' = z_2 \in Z_2 \\ ef_3 + e'f_3' = z_3 \in Z_3 \\ ef_4 + e'f_4' = z_4 \in Z_4 \end{cases}$$

$$\langle e \rangle = \bigcap_{i \neq j} \frac{\begin{vmatrix} Z_i & f'_i \\ Z_j & f'_j \end{vmatrix}}{\begin{vmatrix} f_i & f'_i \\ f_j & f'_j \end{vmatrix}.$$

#### The attack

**Input:** Four PSS samples  $(F_1, Z_1), (F_2, Z_2), (F_3, Z_3), (F_4, Z_4)$ 

- Step 1: Draw  $(f_1, f_1') \stackrel{\$}{\leftarrow} F_1, (f_2, f_2') \stackrel{\$}{\leftarrow} F_2, (f_3, f_3') \stackrel{\$}{\leftarrow} F_3, (f_4, f_4') \stackrel{\$}{\leftarrow} F_4$
- Step 2: Compute

$$A = \bigcap_{i \neq j} \frac{\begin{vmatrix} Z_i & f'_i \\ Z_j & f'_j \end{vmatrix}}{\begin{vmatrix} f_i & f'_i \\ f_j & f'_j \end{vmatrix}}.$$

- Step 3: If dim(A) = 0 or dim(A) > 1, go back to Step 1.
- Step 4: If  $A = \langle e \rangle$ , add *e* to  $E_{guess}$  and restart with new samples.

## Probability of existence of 2-sums

#### Lemma

Let  $(f_i, f'_i) \xleftarrow{\$} F_i$  for  $i \in [1, 4]$ . If  $\lambda = 2r$ , the probability  $\varepsilon$  that there exists a pair  $(e, e') \in E^2$ , such that the system (S) of four conditions is verified

$$(S): \begin{cases} ef_1 + e'f_1' = z_1 \in Z_1 \\ ef_2 + e'f_2' = z_2 \in Z_2 \\ ef_3 + e'f_3' = z_3 \in Z_3 \\ ef_4 + e'f_4' = z_4 \in Z_4 \end{cases}$$

admits an asymptotic development

$$arepsilon = q^{-6r} + o_{r
ightarrow\infty}(q^{-10r})$$

## Total complexity of the attack

#### Proposition

The average complexity of the attack is:

$$(r+rac{1}{q-1}) imes 160$$
m $(w+rd-\lambda)^2 imes q^{6r}$ 

operations in  $\mathbb{F}_q$ .

|             | Security | Our attack |
|-------------|----------|------------|
| Durandal-I  | 128      | 66         |
| Durandal-II | 128      | 73         |

#### Experimental results



## PSSI problem

2 An attack against PSSI



#### Perspectives

- Refine the analysis on the security of PSSI problem
- Tweak to avoid the new attack on PSSI without penalizing the parameters



## Thank you for your attention ! https://eprint.iacr.org/2023/926

## References I

 Nicolas Aragon, Olivier Blazy, Philippe Gaborit, Adrien Hauteville, and Gilles Zémor.
 Durandal: a rank metric based signature scheme.
 In Advances in Cryptology - EUROCRYPT 2019 - 38th Annual International Conference on the Theory and Applications of Cryptographic Techniques, Darmstadt, Germany, May 19-23, 2019, Proceedings, Part III, pages 728–758, 2019.

- Magali Bardet and Pierre Briaud.

An algebraic approach to the rank support learning problem. In <u>International Conference on Post-Quantum Cryptography</u>, pages 442–462. Springer, 2021.

## References II

- Magali Bardet, Maxime Bros, Daniel Cabarcas, Philippe Gaborit, Ray Perlner, Daniel Smith-Tone, Jean-Pierre Tillich, and Javier Verbel.
  - Improvements of algebraic attacks for solving the rank decoding and minrank problems.
  - In International Conference on the Theory and Application of Cryptology and Information Security, pages 507–536. Springer, 2020.
- Vadim Lyubashevsky.
  - Lattice signatures without trapdoors.
  - In Annual International Conference on the Theory and Applications of Cryptographic Techniques, pages 738–755. Springer, 2012.

## Backup slides

## Combinatorial factor of the attack

$$\approx q^{6r}$$
(when  $\lambda = 2r$ )

 $\begin{array}{rcl} \mbox{Increase } \lambda & \Rightarrow & \mbox{Impossible due to inexistence of solution} \\ \mbox{Decrease } m & \Rightarrow & \mbox{Impossible due to Singleton bound} \\ \mbox{Increase } r & \Rightarrow & \mbox{Very large parameters...} & (m \ge 400) \end{array}$ 

#### Increase q!

## New parameters

| q      |   | т             | k  |                    | n   | w  | r   | d          | $\lambda$ |
|--------|---|---------------|----|--------------------|-----|----|-----|------------|-----------|
| 2      | 2 | 41 101        |    |                    | 202 | 57 | 6   | 6          | 12        |
| pk siz | e | $\sigma$ size |    | MaxMinors [BBC+20] |     |    | Our | Our attack |           |
| 15.2K  | В | 4.1           | KB | 98                 |     |    | 56  |            |           |



| q                     |   | т     | k                               |       | n | W   | r            | d   | $\lambda$ |
|-----------------------|---|-------|---------------------------------|-------|---|-----|--------------|-----|-----------|
| 4                     | 1 | 73    | 85                              | 170 5 |   | 8   | 9            | 18  |           |
| pk size $\sigma$ size |   | size  | MaxMinors [BBC <sup>+</sup> 20] |       |   | Our | Our attack   |     |           |
| 14.7K                 | В | 5.1KB |                                 | 232   |   |     | 1            | 128 |           |
| Keygen                |   |       | Signature                       |       |   | \   | Verification |     |           |
| 5ms                   |   |       | 350ms                           |       |   |     | 2ms          |     |           |

## Existing attack for PSSI

Choose  $A \subset F$  a subspace of dimension 2 and check whether

$$\dim(AZ) < 2(w + rd - \lambda)$$

#### Proposition ([ABG<sup>+</sup>19])

The advantage of the distinguisher is of the order of  $q^{(rd-\lambda)-m}$ .

Several problems:

- The distinguisher only uses **<u>one</u>** signature;
- It does not depend on w;
- It does not allow to recover the secret space *E*.

## Impossibility to avoid 2-sums



## Probability of existence of 2-sums

#### Heuristic

Let  $(e_1, e_2) \in E$  and  $U \subset EF$  filtered of dimension  $rd - \lambda$ . For  $(f_1, f_2) \stackrel{\$}{\leftarrow} F$  the event

 $e_1f_1+e_2f_2\in U$ 

happens with probability  $q^{-\lambda}$ .

#### Does this really work?

We want the chain of intersections

$$B = \bigcap_{i \neq j} \frac{\begin{vmatrix} Z_i & f_i' \\ Z_j & f_j' \end{vmatrix}}{\begin{vmatrix} f_i & f_i' \\ f_j & f_j' \end{vmatrix}}.$$

to be equal to  $\{0\}$ , in general.

All the subspaces  $f_i Z_j + f_j Z_i$  are of dimension  $2(w + rd - \lambda)$ .

| m   | W  | r | d | $\lambda$ | $2(w + rd - \lambda)$ |
|-----|----|---|---|-----------|-----------------------|
| 241 | 57 | 6 | 6 | 12        | 162                   |

## Probabilities on the intersection of two vector spaces

#### Heuristic

Let A and B be uniformly random and independent subspaces of  $\mathbb{F}_{q^m}$  of dimension a and b, respectively.

- If a + b < m, then  $\mathbb{P}(\dim(A \cap B) > 0) \approx q^{a+b-m}$ ;
- If a + b ≥ m, then the most probable outcome is dim(A ∩ B) = a + b − m.

## Generalization to n intersections

#### Heuristic

For  $1 \le i \le n$ , let  $A_i \xleftarrow{\$} \mathbf{Gr}(a, \mathbb{F}_{q^m})$  be independent subspaces of fixed dimension a.

- If na < (n-1)m, then  $\mathbb{P}(\dim(\bigcap_{i=1}^n A_i) > 0) \approx q^{na-(n-1)m}$ ;
- If na ≥ (n − 1)m, then the most probable outcome is dim(∩<sup>n</sup><sub>i=1</sub> A<sub>i</sub>) = na − (n − 1)m;

In our setting:

$$\mathbb{P}(\dim(B) > 0) \approx q^{-75}$$