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SPN Ciphers over Fm
2n

■ Target: SPN ciphers over F2n

■ S(x) = xd (power map)

■ B(x) = c0 +
∑w

i=1 cix
2hi (w : density of B(x))

■ M : any matrix
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■ Examples: MiMC, Chaghri, RAIN, AES
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SPN Ciphers over Fm
2n

■ Specific target:

■ S(x) = x2
d+1 (of algebraic degree 2)

■ B(x) = c0 +
∑w

i=1 cix
2hi (h1 < h2 < · · · < hw )

■ M : any matrix

· · · · · ·
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Description of the Problem

The General Problem

Let the m inputs be linear polynomials in a variable x , i.e.

xi = Pi ,0(x) = ui ,1 · x + ui ,0,

where ui ,0, ui ,1 are randomly chosen constants. Find the upper
bound δr on the algebraic degree of the polynomials of the
internal states after r rounds.

Note 1: the algebraic degree of a polynomial in F2n [x ] is
defined by the maximal Hamming weight of the exponents of
monomials with nonzero coefficients.

Examples:

Deg(X 23+24 + x2
5
) = 2, Deg(X 23+24 + x2

1+22+23) = 3.
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Specific Problems

Note 2: For simplicity, we treat the coefficients of all possible
monomials in x as 1, i.e.

xi = P0(x) = x + 1.

Moreover, the polynomial in x of the internal state after r
rounds is denoted by Pr (x).

Studied problems:

1 How does w influence the growth of δr?

2 How to efficiently find (h1, . . . , hw ) with the smallest w to
ensure the fastest growth of δr?

3 How to efficiently upper bound δr for any (h1, . . . , hw )?
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Finding Properties of Pr(x)

Let

Pr (x) = (B ◦ S)r (P0(x)), PS
r (x) = S(Pr−1(x)).

Note 3: we omit the influence of M(·), i.e., ignore the
influence of cancellations in monomials.

Note 4: Studying the algebraic degree of PS
r (x) is enough as

B(x) is linear over F2, i.e. Deg(Pr (x)) = Deg(PS
r (x))
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Finding Properties of Pr(x)

Studying Pr (x) for small r :

r = 0:
P0(x) = x + 1

r = 1:

PS
1 (x) = (x + 1)2

d
(x + 1) = x2

d
+ x2

d+1 + x + 1,

P1(x) = 1 +
w∑
i=1

(
PS
1 (x)

)2hi
= 1 +

w∑
i=1

x2
d+hi + x2

d+hi+2hi + x2
hi .

Observations:

Only
{
x2

d
, x2

d+1, x , x0
}
will appear in PS

0 (x).

Only
{
x2

d+hi , x2
d+hi+2hi , x2

hi , x0 | 1 ≤ i ≤ w
}
will appear in P1(x).
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Finding Properties of Pr(x)

Describing Pr (x) by its exponents:

Wr = {e ∈ N | xe is a monomial of Pr (x)},
WS

r = {e ∈ N | xe is a monomial of PS
r (x)}.

For the cases r = 0, 1:

W0 = {0, 1},

WS
1 =

{
2d , 2d + 1, 1, 0

}
=
{
a1,12

d + a1,2 | 0 ≤ a1,1, a1,2 ≤ 1
}

W1 =
{
2d+hi , 2hi + 2d+hi , 2hi , 0 | 1 ≤ i ≤ w

}
=

{
a1,12

d+hi + a1,22
hi | 0 ≤ a1,1, a1,2 ≤ 1, 1 ≤ i ≤ w

}
,

How to compute WS
2 ?
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Finding Properties of Pr(x)

From W1 to WS
2 :

We have y2
d+1 = y2

d · y where y is a polynomial whose
monomials can always be represented as xa1,12

d+hi+a1,22
hi .

Left part in y2
d · y , i.e. y2d : we can choose any possible monomial

xa1,12
d+hi0+a1,22

hi0 for y , and compute

y2
d
= (xa1,12

d+hi0+a1,22
hi0 )2

d
= xa

′
1,12

2d+hi0+a′1,22
d+hi0

.

Right part in y2
d · y , i.e. y : we can also independently choose any

possible monomial xa
′′
1,12

d+hi1+a′′1,22
hi1

for y .

Consequence:xa
′
1,12

2d+hi0+a′1,22
d+hi0+a′′1,12

d+hi1+a′′1,22
hi1

is a possible

monomial in y2
d+1 = y2

d · y .
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Finding Properties of Pr(x)

For the case r = 2:

WS
2 =

{
a2,12

2d+hi0 + a2,22
d+hi0 + a2,32

d+hi1 + a2,42
hi1

| 0 ≤ a2,j ≤ 1, 1 ≤ i0, i1 ≤ w , 1 ≤ j ≤ 4},

W2 =
{
a2,12

2d+hi0+hi2 + a2,22
d+hi0+hi2 + a2,32

d+hi1+hi2 + a2,42
hi1+hi2

| 0 ≤ a1,j ≤ 1, 1 ≤ i0, i1, i2 ≤ w , 1 ≤ j ≤ 4},

From WS
2 to W2: easy
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Finding Properties of Pr(x)

For each r ≥ 1, let Vr ,w be the set defined as

Vr ,w =

{
e ∈ N | e =

w∑
i=1

bihi ,
w∑
i=1

bi = r − 1, bi ≥ 0

}
, (1)

which represents all possible values by summing up r − 1 elements
from the set {h1, . . . , hw}.

■ Examples:

V2,w =

{
e ∈ N | e =

w∑
i=1

bihi ,
w∑
i=1

bi = 1, bi ≥ 0

}
= {hi | 1 ≤ i ≤ w}

V3,w = {e ∈ N | e =
w∑
i=1

bihi ,
w∑
i=1

bi = 2, bi ≥ 0}

= {hi + hj | 1 ≤ i , j ≤ w}.
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Finding Properties of Pr(x)

Theorem

Given Vr ,w , the set WS
r can be represented as follows:

WS
r =

{
r∑

i=0

(ri)∑
j=1

ar ,v2
(r−i)d+fv ,

v = j +

(
r

≤ i − 1

)
, 0 ≤ ar ,v ≤ 1, fv ∈ Vr ,w

}

where

f( r
≤i)+ℓ = f( r

≤i)−(
r−1
i )+ℓ for 0 ≤ i ≤ r − 1, 1 ≤ ℓ ≤

(r−1
i

)
.
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Finding Properties of Pr(x)

Graphic illustration:
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Implications of the Theorem

For each valid assignment to (f1, . . . , f2r ), we obtain a subset

WS ,f
r ⊆ WS

r :

WS ,f
r =


r∑

i=0

(ri)∑
j=1

ar ,v2
(r−i)d+fv , v = j +

(
r

≤ i − 1

)
, 0 ≤ ar ,v ≤ 1

 .

Our Goals

Study the properties of WS ,f
r under all possible assignments.

Find the common features inside all possible WS ,f
r .
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Implications of the Theorem

For each W S,f
r , we can find the element with the maximal

Hamming weight by first converting it into a vector of integers
denoted by νr = (νr ,n−1, . . . , νr ,0):

1: procedure CONVERSION SUBSET(νr , r , n)
2: initialize (νr ,n−1, . . . , νr ,0) as all 0
3: v = 1
4: for all i ∈ [0, r ] do
5: for all j ∈ [1,

(r
i

)
] do

6: u = ((r − i)× d + fv )%n
7: νr ,u = νr ,u + 1
8: v = v + 1
9: end for

10: end for
11: end procedure
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Implications of the Theorem

■ reduced to a well-structured optimization problem:

maximizeHw

(
Mn

(
n−1∑
i=0

2iαi

))
,

subject to 0 ≤ αi ≤ νr ,i for i ∈ [0, n − 1],

where

Mn(x) :=

{
2n − 1 if 2n − 1 | x and x ≥ 2n − 1,

x%(2n − 1) otherwise.
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Implications of the Theorem

If w = 1, we have Vr ,1 = {(r − 1)h1} and hence

WS
r =

{
r∑

i=0

ai2
(r−i)d+(r−1)h1 , 0 ≤ ai ≤

(
r

i

)}
.

Based on Hw(Mn(a+ b)) ≤ Hw(Mn(a)) + Hw(Mn(b)), we have

Hw

(
Mn

(
n−1∑
i=0

2iαi

))
≤

n−1∑
i=0

Hw

(
Mn(2

iαi )

)

≤
n−1∑
i=0

Hw(αi ) ≤
n−1∑
i=0

⌊log2(νr ,i + 1)⌋,

≤
r∑

j=0

log2

((
r

j

)
+ 1

)
≤ r2 − 2r + 3

At most quadratic increase for w = 1.
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Exponential Growth

Necessary condition on the exponential growth of δr

There should exist a valid assignment to (f1, . . . , f2r ) such that the
following 2r elements are different:

(rd + f1)%n︸ ︷︷ ︸
i=0

,

((r − 1)d + f1+1)%n, . . . , ((r − 1)d + f1+(r1)
)%n︸ ︷︷ ︸

i=1

,

. . . ,

((r − i)d + f( r
≤i−1)+1)%n, . . . , ((r − i)d + f( r

≤i−1)+(
r
i)
)%n︸ ︷︷ ︸

i

,

. . . , f2r%n︸ ︷︷ ︸
i=r

.
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Exponential Growth

Necessary condition on the exponential growth of δr

Br ,w = {(b1, . . . , bw )|
∑w

i=1 bi = r , bi ≥ 0} should satisfy
|Br−1,w | ≥

( r
⌈ r
2
⌉
)
, i.e. |Br−1,w | is an upper bound on |{f1, . . . , f2r }|.

Applications:

|B2,2| = 3 ≥
(
3

2

)
= 3, |B3,2| = 4 <

(
4

2

)
= 6,

|B5,3| = 21 ≥
(
6

3

)
= 20, |B6,3| = 28 <

(
7

4

)
= 35,

|B8,4| = 165 ≥
(
9

5

)
= 126, |B9,4| = 220 <

(
10

5

)
= 252,

Implications:

The sharp exponential growth can be achieved for at most the
first 3, 6 and 9 rounds when w = 2, 3, 4, respectively.
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Efficiently Checking the Necessary Condition

Problem reduction

Given w and (h1, . . . , hw ), we compute r + 1 arrays A1, . . . ,Ar+1:

Set Ai+1 as all zero

for all u ∈ VR
r ,w :

j = ((r − i)× d + u)%n

Ai+1[j ] = 1

where VR
r ,w = {e%n | e ∈ Vr ,w}. We should be able to choose(r

i

)
=
(r−1
i−1

)
+
(r−1

i

)
different indices of Ai+1 such that

the values in Ai+1 at these indices are all 1;

for a set of
(r−1
i−1

)
indices J chosen for Ai+1, the set of indices

{(j + d)%n | j ∈ J } has to be chosen for Ai .

It can be converted into a MILP problem and efficiently solved. 20 / 25



Efficiently Checking the Necessary Condition

Graphic illustration:
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Upper Bounding δr for arbitrary B(x)

Common features in νr

For all possible subsets W S,f
r , we find that the corresponding

vectors νr share the following three common features:

n−1∑
i=0

νr ,n−1 = 2r ;

| {i | νr ,i ̸= 0, 0 ≤ i ≤ n − 1} | ≤ β;

{i | νr ,i ̸= 0, 0 ≤ i ≤ n − 1} ⊆ Z,

where the constant β and the set Z are fixed for given
(n, d , h1, . . . , hw ), and they can be efficiently precomputed.
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Upper Bounding δr for arbitrary B(x)

Problem reduction

Let
Z = {p1, . . . , p|Z|}.

Upper bounding δr can be converted into solving the following
optimization problem:

maximize Hw

(
Mn

( |Z|∑
i=1

2piαpi

))
,

subject to αpi ≥ 0 ∀i ∈ [1, |Z|],
|Z|∑
i=1

αpi ≤ 2r ,

| {pi | αpi ̸= 0} |≤ β.
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Upper Bounding δr for arbitrary B(x)

Experiments for w = 2 (problems solved in less than 1 minute):

Figure: Graphic illustration of the growth of the algebraic degree

24 / 25



Conclusion

The considered SPN ciphers:

S(x) = x2
d+1, B(x) = c0 +

w∑
i=1

cix
2hi ,

The growth of the algebraic degree is below the quadratic
growth r2 − 2r + 3 for w = 1.

Build the theory to explain the relation between w and the
growth of the algebraic degree.

Efficiently check whether the exponential growth can be
achieved for given (n, d , h1, . . . , hw ).

Efficiently find the upper bound on the algebraic degree for
arbitrary (n, d , h1, . . . , hw ).
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