Coefficient Grouping for Complex Affine Layers

Fukang Liu ${ }^{1}$, Lorenzo Grassi ${ }^{2}$, Clémence Bouvier ${ }^{3,4}$, Willi Meier ${ }^{5}$, Takanori Isobe ${ }^{6}$
${ }^{1}$ Tokyo Institute of Technology, Tokyo, Japan liufukangs@gmail.com
${ }^{2}$ Ruhr University Bochum, Bochum, Germany
${ }^{3}$ Sorbonne University, Paris, France
${ }^{4}$ Inria, Paris, France
${ }^{5}$ FHNW, Windisch, Switzerland
${ }^{6}$ University of Hyogo, Hyogo, Japan

Aug 23, CRYPTO 2023

SPN Ciphers over $\mathbb{F}_{2^{n}}^{m}$

- Target: SPN ciphers over $\mathbb{F}_{2^{n}}$

$$
\begin{aligned}
& S(x)=x^{d} \text { (power map) } \\
& B(x)=c_{0}+\sum_{i=1}^{w} c_{i} x^{2^{h_{i}}}(w: \text { density of } B(x))
\end{aligned}
$$

■ M : any matrix

- Examples: MiMC, Chaghri, RAIN, AES

SPN Ciphers over $\mathbb{F}_{2^{n}}^{m}$

- Specific target:

> ■ $(x)=x^{2^{d}+1}($ of algebraic degree 2$)$
> $B(x)=c_{0}+\sum_{i=1}^{w} c_{i} x^{2^{h_{i}}}\left(h_{1}<h_{2}<\cdots<h_{w}\right)$

■ M : any matrix

- Examples: MiMC, Chaghri

Description of the Problem

The General Problem

Let the m inputs be linear polynomials in a variable x, i.e.

$$
x_{i}=P_{i, 0}(x)=u_{i, 1} \cdot x+u_{i, 0}
$$

where $u_{i, 0}, u_{i, 1}$ are randomly chosen constants. Find the upper bound δ_{r} on the algebraic degree of the polynomials of the internal states after r rounds.

■ Note 1: the algebraic degree of a polynomial in $\mathbb{F}_{2^{n}}[x]$ is defined by the maximal Hamming weight of the exponents of monomials with nonzero coefficients.

- Examples:

$$
\operatorname{Deg}\left(X^{2^{3}+2^{4}}+x^{2^{5}}\right)=2, \quad \operatorname{Deg}\left(X^{2^{3}+2^{4}}+x^{2^{1}+2^{2}+2^{3}}\right)=3
$$

Specific Problems

■ Note 2: For simplicity, we treat the coefficients of all possible monomials in x as 1, i.e.

$$
x_{i}=P_{0}(x)=x+1
$$

Moreover, the polynomial in x of the internal state after r rounds is denoted by $P_{r}(x)$.

Studied problems:

1 How does w influence the growth of δ_{r} ?
2 How to efficiently find (h_{1}, \ldots, h_{w}) with the smallest w to ensure the fastest growth of δ_{r} ?
3 How to efficiently upper bound δ_{r} for any $\left(h_{1}, \ldots, h_{w}\right)$?

Finding Properties of $P_{r}(x)$

Let

$$
P_{r}(x)=(B \circ S)^{r}\left(P_{0}(x)\right), \quad P_{r}^{S}(x)=S\left(P_{r-1}(x)\right)
$$

■ Note 3: we omit the influence of $M(\cdot)$, i.e., ignore the influence of cancellations in monomials.

■ Note 4: Studying the algebraic degree of $P_{r}^{S}(x)$ is enough as $B(x)$ is linear over \mathbb{F}_{2}, i.e. $\operatorname{Deg}\left(P_{r}(x)\right)=\operatorname{Deg}\left(P_{r}^{S}(x)\right)$

Finding Properties of $P_{r}(x)$

Studying $P_{r}(x)$ for small r :
$r=0:$

$$
P_{0}(x)=x+1
$$

$r=1:$

$$
P_{1}^{S}(x)=(x+1)^{2^{d}}(x+1)=x^{2^{d}}+x^{2^{d}+1}+x+1
$$

$$
P_{1}(x)=1+\sum_{i=1}^{w}\left(P_{1}^{S}(x)\right)^{2^{h_{i}}}=1+\sum_{i=1}^{w} x^{2^{d+h_{i}}}+x^{2^{d+h_{i}}+2^{h_{i}}}+x^{2^{h_{i}}}
$$

Observations:
Only $\left\{x^{2^{d}}, x^{2^{d}+1}, x, x^{0}\right\}$ will appear in $P_{0}^{S}(x)$.
Only $\left\{x^{2^{d+h_{i}}}, x^{2^{d+h_{i}}+2^{h_{i}}}, x^{2^{h_{i}}}, x^{0} \mid 1 \leq i \leq w\right\}$ will appear in $P_{1}(x)$.

Finding Properties of $P_{r}(x)$

Describing $P_{r}(x)$ by its exponents:

$$
\begin{aligned}
\mathcal{W}_{r} & =\left\{e \in \mathbb{N} \mid x^{e} \text { is a monomial of } P_{r}(x)\right\} \\
\mathcal{W}_{r}^{S} & =\left\{e \in \mathbb{N} \mid x^{e} \text { is a monomial of } P_{r}^{S}(x)\right\}
\end{aligned}
$$

For the cases $r=0,1$:

$$
\begin{aligned}
\mathcal{W}_{0} & =\{0,1\}, \\
\mathcal{W}_{1}^{S} & =\left\{2^{d}, 2^{d}+1,1,0\right\}=\left\{a_{1,1} 2^{d}+a_{1,2} \mid 0 \leq a_{1,1}, a_{1,2} \leq 1\right\} \\
\mathcal{W}_{1} & =\left\{2^{d+h_{i}}, 2^{h_{i}}+2^{d+h_{i}}, 2^{h_{i}}, 0 \mid 1 \leq i \leq w\right\} \\
& =\left\{a_{1,1} 2^{d+h_{i}}+a_{1,2} 2^{h_{i}} \mid 0 \leq a_{1,1}, a_{1,2} \leq 1,1 \leq i \leq w\right\}
\end{aligned}
$$

How to compute \mathcal{W}_{2}^{S} ?

Finding Properties of $P_{r}(x)$

From \mathcal{W}_{1} to \mathcal{W}_{2}^{S} :
We have $y^{2^{d}+1}=y^{2^{d}} \cdot y$ where y is a polynomial whose monomials can always be represented as $x^{a_{1,1} 2^{d+h_{i}}+a_{1,2} 2^{h_{i}}}$.

Left part in $y^{2^{d}} \cdot y$, i.e. $y^{2^{d}}$: we can choose any possible monomial $x^{a_{1,1} 2^{d+h_{i}}+a_{1,2} 2^{h_{0}}}$ for y, and compute
$y^{2^{d}}=\left(x^{a_{1,1} 2^{d+h_{i}}+a_{1,2} 2^{h_{i 0}}}\right)^{2^{d}}=x^{a_{1,1}^{\prime} 2^{2 d+h_{i}}+a_{1,2}^{\prime} 2^{d+h_{i 0}}}$.
Right part in $y^{2^{d}} \cdot y$, i.e. y : we can also independently choose any possible monomial $x^{a_{1,1}^{\prime \prime} 2^{d+h_{i_{1}}}}+a_{1,2}^{\prime \prime} 2^{h_{i_{1}}}$ for y.

Consequence: $x^{a_{1,1}^{\prime} 2^{2 d+h_{i 0}}+a_{1,2}^{\prime} 2^{d+h_{0}}+a_{1,1}^{\prime \prime} 2^{d+h_{i_{1}}}+a_{1,2}^{\prime \prime} 2^{h_{i_{1}}}}$ is a possible monomial in $y^{2^{d}+1}=y^{2^{d}} \cdot y$.

Finding Properties of $P_{r}(x)$

For the case $r=2$:

$$
\begin{gathered}
\mathcal{W}_{2}^{S}=\left\{a_{2,1} 2^{2 d+h_{i_{0}}}+a_{2,2} 2^{d+h_{i_{0}}}+a_{2,3} 2^{d+h_{i_{1}}}+a_{2,4} 2^{h_{i_{1}}}\right. \\
\left.\mid 0 \leq a_{2, j} \leq 1,1 \leq i_{0}, i_{1} \leq w, 1 \leq j \leq 4\right\}
\end{gathered}
$$

$$
\mathcal{W}_{2}=\left\{a_{2,1} 2^{2 d+h_{i 0}+h_{i_{2}}}+a_{2,2} 2^{d+h_{i_{0}}+h_{i_{2}}}+a_{2,3} 2^{d+h_{i_{1}}+h_{i_{2}}}+a_{2,4} 2^{h_{i_{1}}+h_{i_{2}}}\right.
$$

$$
\left.\mid 0 \leq a_{1, j} \leq 1,1 \leq i_{0}, i_{1}, i_{2} \leq w, 1 \leq j \leq 4\right\}
$$

From \mathcal{W}_{2}^{S} to \mathcal{W}_{2} : easy

Finding Properties of $P_{r}(x)$

For each $r \geq 1$, let $\mathcal{V}_{r, w}$ be the set defined as

$$
\begin{equation*}
\mathcal{V}_{r, w}=\left\{e \in \mathbb{N} \mid e=\sum_{i=1}^{w} b_{i} h_{i}, \sum_{i=1}^{w} b_{i}=r-1, b_{i} \geq 0\right\} \tag{1}
\end{equation*}
$$

which represents all possible values by summing up $r-1$ elements from the set $\left\{h_{1}, \ldots, h_{w}\right\}$.

- Examples:

$$
\begin{aligned}
\mathcal{V}_{2, w} & =\left\{e \in \mathbb{N} \mid e=\sum_{i=1}^{w} b_{i} h_{i}, \sum_{i=1}^{w} b_{i}=1, b_{i} \geq 0\right\} \\
& =\left\{h_{i} \mid 1 \leq i \leq w\right\} \\
\mathcal{V}_{3, w} & =\left\{e \in \mathbb{N} \mid e=\sum_{i=1}^{w} b_{i} h_{i}, \sum_{i=1}^{w} b_{i}=2, b_{i} \geq 0\right\} \\
& =\left\{h_{i}+h_{j} \mid 1 \leq i, j \leq w\right\}
\end{aligned}
$$

Finding Properties of $P_{r}(x)$

Theorem

Given $\mathcal{V}_{r, w}$, the set \mathcal{W}_{r}^{S} can be represented as follows:

$$
\begin{aligned}
\mathcal{W}_{r}^{S}= & \left\{\sum_{i=0}^{r} \sum_{j=1}^{\binom{r}{i}} a_{r, v} 2^{(r-i) d+f_{v}},\right. \\
& \left.v=j+\binom{r}{\leq i-1}, 0 \leq a_{r, v} \leq 1, f_{v} \in \mathcal{V}_{r, w}\right\}
\end{aligned}
$$

where

$$
f_{\binom{r}{\leq i}+\ell}=f_{\binom{r}{\leq i}-\binom{r-1}{i}+\ell} \quad \text { for } 0 \leq i \leq r-1,1 \leq \ell \leq\binom{ r-1}{i} .
$$

Finding Properties of $P_{r}(x)$

Graphic illustration:

Implications of the Theorem

For each valid assignment to ($f_{1}, \ldots, f_{2^{r}}$), we obtain a subset $\mathcal{W}_{r}^{S, f} \subseteq \mathcal{W}_{r}^{S}:$

$$
\mathcal{W}_{r}^{S, f}=\left\{\sum_{i=0}^{r} \sum_{j=1}^{\binom{r}{i}} a_{r, v} 2^{(r-i) d+f_{v}}, v=j+\binom{r}{\leq i-1}, 0 \leq a_{r, v} \leq 1\right\}
$$

Our Goals

- Study the properties of $\mathcal{W}_{r}^{S, f}$ under all possible assignments.
- Find the common features inside all possible $\mathcal{W}_{r}^{S, f}$.

Implications of the Theorem

For each $W_{r}^{S, f}$, we can find the element with the maximal Hamming weight by first converting it into a vector of integers denoted by $\nu_{r}=\left(\nu_{r, n-1}, \ldots, \nu_{r, 0}\right)$:
1: procedure CONVERSION_SUBSET $\left(\nu_{r}, r, n\right)$
2: \quad initialize $\left(\nu_{r, n-1}, \ldots, \nu_{r, 0}\right)$ as all 0
3: $\quad v=1$
4: \quad for all $i \in[0, r]$ do
5: \quad for all $j \in\left[1,\binom{r}{i}\right]$ do
6:
7: $\quad \nu_{r, u}=\nu_{r, u}+1$
8: $\quad v=v+1$
9: \quad end for
10: end for
11: end procedure

Implications of the Theorem

■ reduced to a well-structured optimization problem:

$$
\begin{aligned}
& \text { maximize } \mathrm{Hw}\left(M_{n}\left(\sum_{i=0}^{n-1} 2^{i} \alpha_{i}\right)\right) \\
& \text { subject to } 0 \leq \alpha_{i} \leq \nu_{r, i} \text { for } i \in[0, n-1]
\end{aligned}
$$

where

$$
M_{n}(x):= \begin{cases}2^{n}-1 & \text { if } 2^{n}-1 \mid x \text { and } x \geq 2^{n}-1 \\ x \%\left(2^{n}-1\right) & \text { otherwise }\end{cases}
$$

Implications of the Theorem

If $w=1$, we have $\mathcal{V}_{r, 1}=\left\{(r-1) h_{1}\right\}$ and hence

$$
\mathcal{W}_{r}^{S}=\left\{\sum_{i=0}^{r} a_{i} 2^{(r-i) d+(r-1) h_{1}}, 0 \leq a_{i} \leq\binom{ r}{i}\right\} .
$$

Based on $\operatorname{Hw}\left(M_{n}(a+b)\right) \leq \operatorname{Hw}\left(M_{n}(a)\right)+\operatorname{Hw}\left(M_{n}(b)\right)$, we have

$$
\begin{aligned}
\mathrm{Hw}\left(M_{n}\left(\sum_{i=0}^{n-1} 2^{i} \alpha_{i}\right)\right) & \leq \sum_{i=0}^{n-1} \operatorname{Hw}\left(M_{n}\left(2^{i} \alpha_{i}\right)\right) \\
& \leq \sum_{i=0}^{n-1} \operatorname{Hw}\left(\alpha_{i}\right) \leq \sum_{i=0}^{n-1}\left\lfloor\log _{2}\left(\nu_{r, i}+1\right)\right\rfloor \\
& \leq \sum_{j=0}^{r} \log _{2}\left(\binom{r}{j}+1\right) \leq r^{2}-2 r+3
\end{aligned}
$$

At most quadratic increase for $w=1$.

Exponential Growth

Necessary condition on the exponential growth of δ_{r}

There should exist a valid assignment to $\left(f_{1}, \ldots, f_{2} r\right)$ such that the following 2^{r} elements are different:

$$
\underbrace{\left(r d+f_{1}\right) \% n}_{i=0},
$$

$$
\underbrace{\left((r-1) d+f_{1+1}\right) \% n, \ldots,\left((r-1) d+f_{1+\binom{r}{1}}\right) \% n}_{i=1}
$$

$\ldots, \underbrace{f_{2} r^{r} n n}_{i=r}$.

Exponential Growth

Necessary condition on the exponential growth of δ_{r}

$\mathcal{B}_{r, w}=\left\{\left(b_{1}, \ldots, b_{w}\right) \mid \sum_{i=1}^{w} b_{i}=r, b_{i} \geq 0\right\}$ should satisfy $\left|\mathcal{B}_{r-1, w}\right| \geq\binom{ r}{\left.\Gamma \frac{r}{2}\right\rceil}$, i.e. $\left|\mathcal{B}_{r-1, w}\right|$ is an upper bound on $\left|\left\{f_{1}, \ldots, f_{2^{r}}\right\}\right|$.

Applications:

$$
\begin{array}{ll}
\left|\mathcal{B}_{2,2}\right|=3 \geq\binom{ 3}{2}=3, & \left|\mathcal{B}_{3,2}\right|=4<\binom{4}{2}=6 \\
\left|\mathcal{B}_{5,3}\right|=21 \geq\binom{ 6}{3}=20, & \left|\mathcal{B}_{6,3}\right|=28<\binom{7}{4}=35 \\
\left|\mathcal{B}_{8,4}\right|=165 \geq\binom{ 9}{5}=126, & \left|\mathcal{B}_{9,4}\right|=220<\binom{10}{5}=252
\end{array}
$$

Implications:

- The sharp exponential growth can be achieved for at most the first 3,6 and 9 rounds when $w=2,3,4$, respectively.

Efficiently Checking the Necessary Condition

Problem reduction

Given w and $\left(h_{1}, \ldots, h_{w}\right)$, we compute $r+1$ arrays A_{1}, \ldots, A_{r+1} :

$$
\text { Set } A_{i+1} \text { as all zero }
$$

$$
\text { for all } u \in \mathcal{V}_{r, w}^{R}:
$$

$$
\begin{aligned}
& j=((r-i) \times d+u) \% n \\
& A_{i+1}[j]=1
\end{aligned}
$$

where $\mathcal{V}_{r, w}^{R}=\left\{e \% n \mid e \in \mathcal{V}_{r, w}\right\}$. We should be able to choose $\binom{r}{i}=\binom{r-1}{i-1}+\binom{r-1}{i}$ different indices of A_{i+1} such that

- the values in A_{i+1} at these indices are all 1 ;
- for a set of $\binom{r-1}{i-1}$ indices \mathcal{J} chosen for A_{i+1}, the set of indices $\{(j+d) \% n \mid j \in \mathcal{J}\}$ has to be chosen for A_{i}.

It can be converted into a MILP problem and efficiently solved.

Efficiently Checking the Necessary Condition

Graphic illustration:

Upper Bounding δ_{r} for arbitrary $B(x)$

Common features in ν_{r}

For all possible subsets $W_{r}^{S, f}$, we find that the corresponding vectors ν_{r} share the following three common features:

$$
\begin{aligned}
\sum_{i=0}^{n-1} \nu_{r, n-1} & =2^{r} \\
\left|\left\{i \mid \nu_{r, i} \neq 0,0 \leq i \leq n-1\right\}\right| & \leq \beta ; \\
\left\{i \mid \nu_{r, i} \neq 0,0 \leq i \leq n-1\right\} & \leq \mathcal{Z}
\end{aligned}
$$

where the constant β and the set \mathcal{Z} are fixed for given ($n, d, h_{1}, \ldots, h_{w}$), and they can be efficiently precomputed.

Upper Bounding δ_{r} for arbitrary $B(x)$

Problem reduction

Let

$$
\mathcal{Z}=\left\{p_{1}, \ldots, p_{|\mathcal{Z}|}\right\}
$$

Upper bounding δ_{r} can be converted into solving the following optimization problem:
maximize $\mathrm{Hw}\left(M_{n}\left(\sum_{i=1}^{|\mathcal{Z}|} 2^{p_{i}} \alpha_{p_{i}}\right)\right)$,
subject to $\alpha_{p_{i}} \geq 0 \forall i \in[1,|\mathcal{Z}|]$,

$$
\begin{aligned}
& \sum_{i=1}^{|\mathcal{Z}|} \alpha_{p_{i}} \leq 2^{r} \\
& \left|\left\{p_{i} \mid \alpha_{p_{i}} \neq 0\right\}\right| \leq \beta
\end{aligned}
$$

Upper Bounding δ_{r} for arbitrary $B(x)$

Experiments for $w=2$ (problems solved in less than 1 minute):

Figure: Graphic illustration of the growth of the algebraic degree

Conclusion

The considered SPN ciphers:

$$
S(x)=x^{2^{d}+1}, \quad B(x)=c_{0}+\sum_{i=1}^{w} c_{i} x^{2^{h_{i}}}
$$

- The growth of the algebraic degree is below the quadratic growth $r^{2}-2 r+3$ for $w=1$.
- Build the theory to explain the relation between w and the growth of the algebraic degree.
- Efficiently check whether the exponential growth can be achieved for given ($n, d, h_{1}, \ldots, h_{w}$).
■ Efficiently find the upper bound on the algebraic degree for arbitrary $\left(n, d, h_{1}, \ldots, h_{w}\right)$.

