Coefficient Grouping for Complex Affine Layers

<u>Fukang Liu¹</u>, Lorenzo Grassi², Clémence Bouvier^{3,4}, Willi Meier⁵, Takanori Isobe⁶

 ¹Tokyo Institute of Technology, Tokyo, Japan liufukangs@gmail.com
 ²Ruhr University Bochum, Bochum, Germany
 ³Sorbonne University, Paris, France
 ⁴Inria, Paris, France
 ⁵FHNW, Windisch, Switzerland
 ⁶University of Hyogo, Hyogo, Japan

Tokyo Tech

Aug 23, CRYPTO 2023

SPN Ciphers over $\mathbb{F}_{2^n}^m$

 \blacksquare Target: SPN ciphers over \mathbb{F}_{2^n}

$$\blacksquare S(x) = x^d \text{ (power map)}$$

$$\blacksquare B(x) = c_0 + \sum_{i=1}^{w} c_i x^{2^{h_i}} (w : \text{density of } B(x))$$

 \blacksquare *M* : any matrix

Examples: MiMC, Chaghri, RAIN, AES

SPN Ciphers over $\mathbb{F}_{2^n}^m$

■ Specific target:

- $\blacksquare S(x) = x^{2^d+1} \text{ (of algebraic degree 2)}$
- $\blacksquare B(x) = c_0 + \sum_{i=1}^{w} c_i x^{2^{h_i}} (h_1 < h_2 < \dots < h_w)$
- M : any matrix

Examples: MiMC, Chaghri

Description of the Problem

The General Problem

Let the m inputs be linear polynomials in a variable x, i.e.

$$x_i = P_{i,0}(x) = u_{i,1} \cdot x + u_{i,0},$$

where $u_{i,0}$, $u_{i,1}$ are randomly chosen constants. Find the upper bound δ_r on the algebraic degree of the polynomials of the internal states after r rounds.

- Note 1: the algebraic degree of a polynomial in F_{2ⁿ}[x] is defined by the maximal Hamming weight of the exponents of monomials with nonzero coefficients.
- Examples:

$$Deg(X^{2^3+2^4}+x^{2^5})=2, \quad Deg(X^{2^3+2^4}+x^{2^1+2^2+2^3})=3.$$

Specific Problems

Note 2: For simplicity, we treat the coefficients of all possible monomials in x as 1, i.e.

$$x_i = P_0(x) = x + 1.$$

Moreover, the polynomial in x of the internal state after r rounds is denoted by $P_r(x)$.

Studied problems:

- **1** How does *w* influence the growth of δ_r ?
- 2 How to efficiently find (h₁,..., h_w) with the smallest w to ensure the fastest growth of δ_r?
- **3** How to efficiently upper bound δ_r for any (h_1, \ldots, h_w) ?

Let

$$P_r(x) = (B \circ S)^r(P_0(x)), \qquad P_r^S(x) = S(P_{r-1}(x)).$$

- Note 3: we omit the influence of $M(\cdot)$, i.e., ignore the influence of cancellations in monomials.
- Note 4: Studying the algebraic degree of P^S_r(x) is enough as B(x) is linear over 𝔽₂, i.e. Deg(P_r(x)) = Deg(P^S_r(x))

Studying $P_r(x)$ for small r:

r = 0:

$$P_0(x)=x+1$$

r = 1:

$$P_1^S(x) = (x+1)^{2^d}(x+1) = x^{2^d} + x^{2^d+1} + x + 1,$$

$$P_1(x) = 1 + \sum_{i=1}^w \left(P_1^S(x)\right)^{2^{h_i}} = 1 + \sum_{i=1}^w x^{2^{d+h_i}} + x^{2^{d+h_i}+2^{h_i}} + x^{2^{h_i}}.$$

Observations:

Only
$$\left\{x^{2^{d}}, x^{2^{d}+1}, x, x^{0}\right\}$$
 will appear in $P_{0}^{S}(x)$.
Only $\left\{x^{2^{d+h_{i}}}, x^{2^{d+h_{i}}+2^{h_{i}}}, x^{2^{h_{i}}}, x^{0} \mid 1 \leq i \leq w\right\}$ will appear in $P_{1}(x)$.

Describing $P_r(x)$ by its exponents:

$$\mathcal{W}_r = \{ e \in \mathbb{N} \mid x^e \text{ is a monomial of } P_r(x) \}, \\ \mathcal{W}_r^S = \{ e \in \mathbb{N} \mid x^e \text{ is a monomial of } P_r^S(x) \}.$$

For the cases r = 0, 1:

$$\begin{array}{lll} \mathcal{W}_0 &=& \{0,1\}, \\ \mathcal{W}_1^S &=& \left\{2^d, 2^d+1, 1, 0\right\} = \left\{a_{1,1}2^d+a_{1,2} \mid 0 \le a_{1,1}, a_{1,2} \le 1\right\} \\ \mathcal{W}_1 &=& \left\{2^{d+h_i}, 2^{h_i}+2^{d+h_i}, 2^{h_i}, 0 \mid 1 \le i \le w\right\} \\ &=& \left\{a_{1,1}2^{d+h_i}+a_{1,2}2^{h_i} \mid 0 \le a_{1,1}, a_{1,2} \le 1, 1 \le i \le w\right\}, \end{array}$$

How to compute \mathcal{W}_2^S ?

From \mathcal{W}_1 to \mathcal{W}_2^S :

We have $y^{2^d+1} = y^{2^d} \cdot y$ where y is a polynomial whose monomials can always be represented as $x^{a_{1,1}2^{d+h_i}+a_{1,2}2^{h_i}}$.

Left part in $y^{2^d} \cdot y$, i.e. y^{2^d} : we can choose any possible monomial $x^{a_{1,1}2^{d+h_{i_0}}+a_{1,2}2^{h_{i_0}}}$ for y, and compute $y^{2^d} = (x^{a_{1,1}2^{d+h_{i_0}}+a_{1,2}2^{h_{i_0}}})^{2^d} = x^{a'_{1,1}2^{2^{d+h_{i_0}}}+a'_{1,2}2^{d+h_{i_0}}}$.

Right part in $y^{2^d} \cdot y$, i.e. y: we can also independently choose any possible monomial $x^{a_{1,1}''}2^{d+h_{i_1}} + a_{1,2}''^{2^{h_{i_1}}}$ for y.

 $\underbrace{\frac{\text{Consequence:} x^{a_{1,1}'2^{2d+h_{i_0}} + a_{1,2}'2^{d+h_{i_0}} + a_{1,1}''2^{d+h_{i_1}} + a_{1,2}''2^{h_{i_1}}}_{\text{monomial in } y^{2^d+1} = y^{2^d} \cdot y.}$ is a possible

For the case r = 2:

$$\begin{split} \mathcal{W}_2^S &= \Big\{ a_{2,1} 2^{2d+h_{i_0}} + a_{2,2} 2^{d+h_{i_0}} + a_{2,3} 2^{d+h_{i_1}} + a_{2,4} 2^{h_{i_1}} \\ &\mid 0 \leq a_{2,j} \leq 1, 1 \leq i_0, i_1 \leq w, 1 \leq j \leq 4 \}, \\ \mathcal{W}_2 &= \Big\{ a_{2,1} 2^{2d+h_{i_0}+h_{i_2}} + a_{2,2} 2^{d+h_{i_0}+h_{i_2}} + a_{2,3} 2^{d+h_{i_1}+h_{i_2}} + a_{2,4} 2^{h_{i_1}+h_{i_2}} \\ &\mid 0 \leq a_{1,j} \leq 1, 1 \leq i_0, i_1, i_2 \leq w, 1 \leq j \leq 4 \}, \end{split}$$

From $\mathcal{W}_2^{\mathcal{S}}$ to $\mathcal{W}_2{:}$ easy

For each $r \geq 1$, let $\mathcal{V}_{r,w}$ be the set defined as

$$\mathcal{V}_{r,w} = \left\{ e \in \mathbb{N} \mid e = \sum_{i=1}^{w} b_i h_i, \sum_{i=1}^{w} b_i = r - 1, b_i \ge 0 \right\},$$
 (1)

which represents all possible values by summing up r - 1 elements from the set $\{h_1, \ldots, h_w\}$.

Examples:

$$\begin{array}{lll} \mathcal{V}_{2,w} & = & \left\{ e \in \mathbb{N} \mid e = \sum_{i=1}^{w} b_i h_i, \sum_{i=1}^{w} b_i = 1, b_i \geq 0 \right\} \\ & = & \left\{ h_i \mid 1 \leq i \leq w \right\} \\ \mathcal{V}_{3,w} & = & \left\{ e \in \mathbb{N} \mid e = \sum_{i=1}^{w} b_i h_i, \sum_{i=1}^{w} b_i = 2, b_i \geq 0 \right\} \\ & = & \left\{ h_i + h_j \mid 1 \leq i, j \leq w \right\}. \end{array}$$

Theorem

Given $\mathcal{V}_{r,w}$, the set \mathcal{W}_r^S can be represented as follows:

$$\mathcal{W}_r^S = \left\{ \sum_{i=0}^r \sum_{j=1}^{\binom{r}{i}} a_{r,v} 2^{(r-i)d+f_v}, \\ v = j + \binom{r}{\leq i-1}, 0 \leq a_{r,v} \leq 1, f_v \in \mathcal{V}_{r,w} \right\}$$

where

$$f_{\binom{r}{\leq i}+\ell} = f_{\binom{r}{\leq i}-\binom{r-1}{i}+\ell} \quad \text{for } 0 \leq i \leq r-1, 1 \leq \ell \leq \binom{r-1}{i}.$$

Graphic illustration:

Tokyo Tech

13 / 25

For each valid assignment to (f_1, \ldots, f_{2^r}) , we obtain a subset $\mathcal{W}_r^{S,f} \subseteq \mathcal{W}_r^S$:

$$\mathcal{W}_{r}^{S,f} = \left\{ \sum_{i=0}^{r} \sum_{j=1}^{\binom{r}{i}} a_{r,v} 2^{(r-i)d+f_{v}}, v = j + \binom{r}{\leq i-1}, 0 \leq a_{r,v} \leq 1 \right\}$$

Our Goals

- Study the properties of $W_r^{S,f}$ under all possible assignments.
- Find the common features inside all possible $\mathcal{W}_r^{S,f}$.

For each $W_r^{S,f}$, we can find the element with the maximal Hamming weight by first converting it into a vector of integers denoted by $\nu_r = (\nu_{r,n-1}, \dots, \nu_{r,0})$:

1: procedure CONVERSION_SUBSET(ν_r , r, n)

2: initialize
$$(\nu_{r,n-1},\ldots,\nu_{r,0})$$
 as all 0

3:
$$v = 1$$

4: for all $i \in [0, r]$ do
5: for all $j \in [1, {r \choose i}]$ do
6: $u = ((r - i) \times d + f_v)\%n$
7: $\nu_{r,u} = \nu_{r,u} + 1$
8: $v = v + 1$

- 9: end for
- 10: end for
- 11: end procedure

reduced to a well-structured optimization problem:

$$\begin{split} & \text{maximize Hw}\left(M_n\left(\sum_{i=0}^{n-1}2^i\alpha_i\right)\right),\\ & \text{subject to } \ 0\leq\alpha_i\leq\nu_{r,i} \ \text{for } i\in[0,n-1], \end{split}$$

where

$$M_n(x) := egin{cases} 2^n - 1 & ext{if } 2^n - 1 \mid x ext{ and } x \geq 2^n - 1, \ x\%(2^n - 1) & ext{otherwise.} \end{cases}$$

lf

$$w = 1$$
, we have $\mathcal{V}_{r,1} = \{(r-1)h_1\}$ and hence
 $\mathcal{W}_r^S = \left\{\sum_{i=0}^r a_i 2^{(r-i)d+(r-1)h_1}, 0 \le a_i \le \binom{r}{i}
ight\}.$

Based on $\operatorname{Hw}(M_n(a+b)) \leq \operatorname{Hw}(M_n(a)) + \operatorname{Hw}(M_n(b))$, we have

$$\begin{aligned} \mathsf{Hw}\left(M_n\left(\sum_{i=0}^{n-1} 2^i \alpha_i\right)\right) &\leq \sum_{i=0}^{n-1} \mathsf{Hw}\left(M_n(2^i \alpha_i)\right) \\ &\leq \sum_{i=0}^{n-1} \mathsf{Hw}(\alpha_i) \leq \sum_{i=0}^{n-1} \lfloor \log_2(\nu_{r,i}+1) \rfloor, \\ &\leq \sum_{j=0}^r \log_2\left(\binom{r}{j}+1\right) \leq r^2 - 2r + 3 \end{aligned}$$

At most quadratic increase for w = 1.

₼

Exponential Growth

Necessary condition on the exponential growth of δ_r

There should exist a valid assignment to (f_1, \ldots, f_{2^r}) such that the following 2^r elements are different:

Exponential Growth

Necessary condition on the exponential growth of δ_r

$$\begin{aligned} &\mathcal{B}_{r,w} = \{ (b_1, \dots, b_w) | \sum_{i=1}^w b_i = r, b_i \geq 0 \} \text{ should satisfy} \\ &|\mathcal{B}_{r-1,w}| \geq \binom{r}{\lceil \frac{r}{2} \rceil}, \text{ i.e. } |\mathcal{B}_{r-1,w}| \text{ is an upper bound on } | \{f_1, \dots, f_{2^r}\} |. \end{aligned}$$

Applications:

$$\begin{split} |\mathcal{B}_{2,2}| &= 3 \geq \binom{3}{2} = 3, \qquad \qquad |\mathcal{B}_{3,2}| = 4 < \binom{4}{2} = 6, \\ |\mathcal{B}_{5,3}| &= 21 \geq \binom{6}{3} = 20, \qquad \qquad |\mathcal{B}_{6,3}| = 28 < \binom{7}{4} = 35, \\ |\mathcal{B}_{8,4}| &= 165 \geq \binom{9}{5} = 126, \qquad \qquad |\mathcal{B}_{9,4}| = 220 < \binom{10}{5} = 252, \end{split}$$

Implications:

The sharp exponential growth can be achieved for at most the first 3, 6 and 9 rounds when w = 2, 3, 4, respectively.

Efficiently Checking the Necessary Condition

Problem reduction

Given w and (h_1, \ldots, h_w) , we compute r + 1 arrays A_1, \ldots, A_{r+1} :

Set
$$A_{i+1}$$
 as all zero
for all $u \in \mathcal{V}_{r,w}^R$:
 $j = ((r-i) \times d + u)\%r$
 $A_{i+1}[j] = 1$

where $\mathcal{V}_{r,w}^{R} = \{e \% n \mid e \in \mathcal{V}_{r,w}\}$. We should be able to choose $\binom{r}{i} = \binom{r-1}{i-1} + \binom{r-1}{i}$ different indices of A_{i+1} such that

• the values in A_{i+1} at these indices are all 1;

• for a set of $\binom{r-1}{i-1}$ indices \mathcal{J} chosen for A_{i+1} , the set of indices $\{(j+d)\%n \mid j \in \mathcal{J}\}$ has to be chosen for A_i .

It can be converted into a MILP problem and efficiently solved.

Efficiently Checking the Necessary Condition

Graphic illustration:

Tokyo Tech

21 / 25

Upper Bounding δ_r for arbitrary B(x)

Common features in ν_r

For all possible subsets $W_r^{S,f}$, we find that the corresponding vectors ν_r share the following three common features:

$$\sum_{i=0}^{n-1} \nu_{r,n-1} = 2^{r};$$

$$|\{i \mid \nu_{r,i} \neq 0, \ 0 \le i \le n-1\}| \le \beta;$$

$$\{i \mid \nu_{r,i} \neq 0, \ 0 \le i \le n-1\} \subseteq \mathcal{Z},$$

where the constant β and the set \mathcal{Z} are fixed for given (n, d, h_1, \ldots, h_w) , and they can be efficiently precomputed.

Upper Bounding δ_r for arbitrary B(x)

Problem reduction

Let

$$\mathcal{Z} = \{p_1,\ldots,p_{|\mathcal{Z}|}\}.$$

Upper bounding δ_r can be converted into solving the following optimization problem:

maximize Hw
$$\left(M_n \left(\sum_{i=1}^{|\mathcal{Z}|} 2^{p_i} \alpha_{p_i} \right) \right)$$
,
subject to $\alpha_{p_i} \ge 0 \ \forall i \in [1, |\mathcal{Z}|]$,
 $\sum_{i=1}^{|\mathcal{Z}|} \alpha_{p_i} \le 2^r$,
 $| \{ p_i \mid \alpha_{p_i} \neq 0 \} | \le \beta$.

Upper Bounding δ_r for arbitrary B(x)

Experiments for w = 2 (problems solved in less than 1 minute):

Figure: Graphic illustration of the growth of the algebraic degree

Conclusion

The considered SPN ciphers:

$$S(x) = x^{2^d+1}, \quad B(x) = c_0 + \sum_{i=1}^w c_i x^{2^{h_i}},$$

- The growth of the algebraic degree is below the quadratic growth $r^2 2r + 3$ for w = 1.
- Build the theory to explain the relation between w and the growth of the algebraic degree.
- Efficiently check whether the exponential growth can be achieved for given (n, d, h₁, ..., h_w).
- Efficiently find the upper bound on the algebraic degree for arbitrary (n, d, h₁,..., h_w).

