Horst Meets Fluid-SPN: Griffin for Zero-Knowledge Applications

Lorenzo Grassi, Yonglin Hao, Christian Rechberger, Markus Schofnegger, Roman Walch, Qingju Wang

Santa Barbara, August 2023

PHORIZEN
LABS

RUHR

T^C

Center
© IP PARIS

HORIZEN

■ Prove that something has been computed correctly

- Can be any program in theory
- Permutation call, Merkle tree, ...
- Verification cost sublinear in program size
- Potentially also with zero knowledge
- SMARIKS/STARIS
- Classical primitives (AES, KECCAK, ...) often inefficient in this setting

Use mare snecialized anes

를 Computational Integrity Proof Systems

■ Prove that something has been computed correctly

- Can be any program in theory
- Permutation call, Merkle tree, ...

■ Verification cost sublinear in program size

- Potentially also with zero knowledge
- SNARKs/STARKs
- Classical primitives ($\triangle E S$, KECCAK, ...) often inefficient in this setting

Use more specialized ones

■ Prove that something has been computed correctly

- Can be any program in theory
- Permutation call, Merkle tree, ...

■ Verification cost sublinear in program size

- Potentially also with zero knowledge
- SNARKs/STARKs
- Classical primitives (AES, KECCAK,
often inefficient in this setting
Ilse more snecialized anes

■ Prove that something has been computed correctly

- Can be any program in theory
- Permutation call, Merkle tree, ...
- Verification cost sublinear in program size

■ Potentially also with zero knowledge
■ SNARKs/STARKs

- Classical primitives (AES, KECCAK, ...) often inefficient in this setting

Use more specialized ones

름 Computational Integrity Proof Systems

■ Prove that something has been computed correctly

- Can be any program in theory
- Permutation call, Merkle tree, ...

■ Verification cost sublinear in program size
■ Potentially also with zero knowledge
■ SNARKs/STARKs
■ Classical primitives (AES, KECCAK, ...) often inefficient in this setting

- Use more specialized ones
- Proofs are split into two steps
- Arithmetization \rightarrow convert program into polynomials
- Polynomial commitment \rightarrow prove validity of polynomials
- Mostly, any arithmetization approach can be combined with any commitment technique
- Focus on arithmetization of hash function

Includes set of
Fawar constraints in general better

- Proofs are split into two steps
- Arithmetization \rightarrow convert program into polynomials
- Polynomial commitment \rightarrow prove validity of polynomials
- Mostly, any arithmetization approach can be combined with any commitment technique
- Focus on arithmetization of hash function
- Includes set of constraints
- Fewer constraints in general better

自 Symmetric Function Concepts
Type 1
"low-degree only"

$$
y=x^{3}
$$

- Fast
- Many rounds
- Often more constraints
- Poseidon, Poseidon2,
Neptune, GMiMC
- Friday, Rescue,

Griffin, Anemoi

- Reinforced

Concrete Tin5 Monolith

自 Symmetric Function Concepts

LABS

Type 1
"low-degree only"

■ Low-degree

$$
y=x^{3}
$$

- Fast
- Many rounds
- Often more constraints
- Poseidon, Poseidon2, Neptune, GMiMC

Type 2
"non-procedural", "fluid"

- Equivalent low-degree

$$
y=x^{1 / 3} \Longrightarrow x=y^{3}
$$

- Slow
- Fewer rounds
- Fewer constraints
- Friday, Rescue, Griffin, Anemoi

自 Symmetric Function Concepts

Type 1
"low-degree only"
■ Low-degree

$$
y=x^{3}
$$

- Fast
- Many rounds

■ Often more constraints
■ Poseidon, Poseidon2, Neptune, GMiMC

Type 2
"non-procedural", "fluid"
■ Equivalent low-degree

$$
y=x^{1 / 3} \Longrightarrow x=y^{3}
$$

- Slow
- Fewer rounds
- Fewer constraints
- Friday, Rescue, Griffin, Anemoi

Type 3
"lookups"
Lookup tables

$$
y=T[x]
$$

- Very fast
- Even fewer rounds
- Constraints depend on scheme
- Reinforced Concrete, Tip5, Monolith

自 Symmetric Function Concepts

Type 1
"low-degree only"
■ Low-degree

$$
y=x^{3}
$$

- Fast
- Many rounds
- Often more constraints

■ Poseidon, Poseidon2, Neptune, GMiMC

Type 2
"non-procedural", "fluid"

- Equivalent low-degree

$$
y=x^{1 / 3} \Longrightarrow x=y^{3}
$$

- Slow
- Fewer rounds
- Fewer constraints
- Friday, Rescue, Griffin, Anemoi

Type 3
"lookups"
■ Lookup tables

$$
y=T[x]
$$

■ Very fast

- Even fewer rounds
- Constraints depend on scheme
- Reinforced Concrete, Tip5, Monolith
\leftrightarrow Constraints: The Nonlinear Layer

Classical SPN
(e.g., SHARK in 1996)

Partial SPN
(e.g., Zorro in 2013 and LowMC in 2015)

Different rounds/steps
(e.g., Rescue in 2019)

\leftrightarrow Constraints: The Nonlinear Layer cont.

- Focus on SPN instantiated with power maps
- We need degree $\geqslant 3$ for the S -boxes (invertibility)
- Most practically used primes even need degree $\in\{5,7\}$

■ For degree 7: $4 t$ multiplications for t words

- Performance with low-degree functions?

Large number of rounds to reach maximum degree
Many linear layors, high latancy

- Mix rounds with x^{d} and rounds with $x^{1 / d}$ like Rescue?

Multiple $x^{1 / d}$ per round quite expensive

\leftrightarrow Constraints: The Nonlinear Layer cont.

- Focus on SPN instantiated with power maps
- We need degree $\geqslant 3$ for the S -boxes (invertibility)
- Most practically used primes even need degree $\in\{5,7\}$

■ For degree 7: $4 t$ multiplications for t words

- Performance with low-degree functions?
- Large number of rounds to reach maximum degree
\rightarrow Many linear layers, high latency
■ Mix rounds with x^{d} and rounds with $x^{1 / d}$ like Rescue?
- Multiple $x^{1 / d}$ per round quite expensive ...
- SPN
- $x \mapsto x^{d}$ and $x \mapsto x^{1 / d}$ can be included in a single round, e.g.

$$
x_{0} \mapsto x_{0}^{d}, \quad x_{1} \mapsto x_{1}^{1 / d}
$$

for state with two elements

- Only needed for 2 elements (instead of entire state)

Allows for lower degrees (e.g., non-invertible $x \mapsto x^{2}$)
Instead of addition in original Feistel consider multinlication
Nonlinear diffusion, better protection against attacks

Q Observations

- SPN
- $x \mapsto x^{d}$ and $x \mapsto x^{1 / d}$ can be included in a single round, e.g.

$$
x_{0} \mapsto x_{0}{ }^{d}, \quad x_{1} \mapsto x_{1}{ }^{1 / d}
$$

for state with two elements

- Only needed for 2 elements (instead of entire state)
- Feistel
- Allows for lower degrees (e.g., non-invertible $x \mapsto x^{2}$)
- Instead of addition in original Feistel, consider multiplication
\rightarrow Nonlinear diffusion, better protection against attacks

Horst - Multiplicative Feistel

■ Representation over \mathbb{F}^{2}

$$
(x, y) \mapsto(x, \underbrace{y \cdot G(x)}_{\text {Multiplication }}+F(x))
$$

for $G(x) \neq 0$
■ Generalization over \mathbb{F}^{t}

$$
\left(x_{0}, \ldots, x_{t-1}\right) \mapsto\left(x_{0}, x_{1} \cdot G_{1}\left(x_{0}\right)+F_{1}\left(x_{0}\right), x_{2} \cdot G_{2}\left(x_{0}, x_{1}\right)+F_{2}\left(x_{0}, x_{1}\right), \ldots\right)
$$

- Setting $G_{i}(\cdot)=1$ results in classical Feistel
- How to choose G for invertibility?

Horst - Multiplicative Feistel

■ Representation over \mathbb{F}^{2}

$$
(x, y) \mapsto(x, \underbrace{y \cdot G(x)}_{\text {Multiplication }}+F(x))
$$

for $G(x) \neq 0$
■ Generalization over \mathbb{F}^{t}

$$
\left(x_{0}, \ldots, x_{t-1}\right) \mapsto\left(x_{0}, x_{1} \cdot G_{1}\left(x_{0}\right)+F_{1}\left(x_{0}\right), x_{2} \cdot G_{2}\left(x_{0}, x_{1}\right)+F_{2}\left(x_{0}, x_{1}\right), \ldots\right)
$$

- Setting $G_{i}(\cdot)=1$ results in classical Feistel

■ How to choose G for invertibility?

Horst - Multiplicative Feistel cont.

■ Low-degree monomial does not work (since then $G(0)=0$)

- Exploit fact that $x \mapsto x^{2}$ is not a permutation in \mathbb{F}_{p}

■ Choose α, β such that

$$
\alpha^{2}-4 \beta \neq w^{2} \quad \forall w \in \mathbb{F}_{p}
$$

■ Then $G(x)=x^{2}+\alpha x+\beta=0$ has no solutions, hence $G(x) \neq 0$ for each x
\rightarrow Degree-2 function for G

回 Merging SPN and Horst: GRIFFIN- π

$$
\text { SPN: }\left\{\begin{array}{l}
y_{0}=x_{0}^{1 / d} \\
y_{1}=x_{1}^{d}
\end{array}\right.
$$

遤 Merging SPN and Horst: Griffin- π

$$
\text { SPN: }\left\{\begin{array}{l}
y_{0}=x_{0}^{1 / d} \\
y_{1}=x_{1}^{d}
\end{array}\right.
$$

Horst: $\left\{\begin{aligned} y_{2} & =x_{2} \cdot\left(L_{2}\left(y_{0}, y_{1}, 0\right)^{2}+\alpha_{2} \cdot L_{2}\left(y_{0}, y_{1}, 0\right)+\beta_{2}\right) \\ y_{3} & =x_{3} \cdot\left(L_{3}\left(y_{0}, y_{1}, x_{2}\right)^{2}+\alpha_{3} \cdot L_{3}\left(y_{0}, y_{1}, x_{2}\right)+\beta_{3}\right) \\ & \vdots \\ y_{t-1} & =x_{t-1} \cdot\left(L_{t-1}\left(y_{0}, y_{1}, x_{t-2}\right)^{2}+\alpha_{t-1} \cdot L_{t-1}\left(y_{0}, y_{1}, x_{t-2}\right)+\beta_{t-1}\right)\end{aligned}\right.$

- L_{i} is linear in the inputs
(0) What do we achieve?
- Fast degree growth in both directions due to y_{0}, y_{1}
- Constraints of degree d
. Horst part: no degree 2, but Horst leads to degree 3 (independent of d and p)

© What do we achieve?

■ Fast degree growth in both directions due to y_{0}, y_{1}

- Constraints of degree d

■ Horst part: no degree 2, but. .

- Horst leads to degree 3 (independent of d and p)
\rightarrow Seems algebraically stronger than classical Feistel

D Algebraic Security of Griffin- π with Feistel

■ Two Gröbner basis strategies

- Intermediate variables
- Practical degree of regularity $d_{\text {reg }}$ constant for any number of rounds
- Does not mean it is insecure, but potentially harder to analyze
- No intermediate variables (only for $x \mapsto x^{1 / d}$ in SPN part)

Reduced degree of regularity due to missing multiplication
Faster Gröhnar basis computation than with Morst when using same degrees
\rightarrow Suggests Horst is algebraically stronger and more efficient than Feistel

- 「ornal anal.usis left as open problem

D Algebraic Security of Griffin- π with Feistel

- Two Gröbner basis strategies

■ Intermediate variables

- Practical degree of regularity $d_{\text {reg }}$ constant for any number of rounds
- Does not mean it is insecure, but potentially harder to analyze

■ No intermediate variables (only for $x \mapsto x^{1 / d}$ in SPN part)

- Reduced degree of regularity due to missing multiplication
- Faster Gröbner basis computation than with Horst when using same degrees
\rightarrow Suggests Horst is algebraically stronger and more efficient than Feistel
■ Formal analysis left as open problem

HORIZEN
LABS

- Affine layer
- Multiplication by efficient matrix M with small values
- Round constant addition
- Good for plain performance, full diffusion
- Nonlinear layer

Defined by

- Affine layer
- Multiplication by efficient matrix M with small values
- Round constant addition
- Good for plain performance, full diffusion
- Nonlinear layer
- Defined by

$$
y_{i}= \begin{cases}x_{0}{ }^{1 / d} & \text { if } i=0, \\ x_{1}^{d} & \text { if } i=1, \\ x_{2} \cdot\left(\left(L_{i}\left(y_{0}, y_{1}, 0\right)\right)^{2}+\alpha_{2} \cdot L_{i}\left(y_{0}, y_{1}, 0\right)+\beta_{2}\right) & \text { if } i=2, \\ x_{i} \cdot\left(\left(L_{i}\left(y_{0}, y_{1}, x_{i-1}\right)\right)^{2}+\alpha_{i} \cdot L_{i}\left(y_{0}, y_{1}, x_{i-1}\right)+\beta_{i}\right) & \text { otherwise }\end{cases}
$$

- Sponge function

- Compression function

$$
x \in \mathbb{F}_{p}^{t} \mapsto \mathcal{C}(x):=\operatorname{Tr}_{n}\left(\mathcal{G}^{\pi}(x)+x\right) \in \mathbb{F}_{p}^{n}
$$

D Griffin- π Security

■ Statistical attacks

- No straightforward application for wide-trail strategy (alignment)
- Simple argument thanks to large field size
- Algebraic attacks

Often the strongest attacks against these schemes
Higher-order diff. internolation avoided by high degrees, density
Various strategies for Gröbner basis attacks

■ ≈ 10 rounds for practically relevant instances

D Griffin- π Security

■ Statistical attacks

- No straightforward application for wide-trail strategy (alignment)
- Simple argument thanks to large field size

■ Algebraic attacks

- Often the strongest attacks against these schemes
- Higher-order diff., interpolation avoided by high degrees, density
- Various strategies for Gröbner basis attacks
- Non-aligned approach seems good here

■ ≈ 10 rounds for practically relevant instances

10) Griffin Performance

- Much better SNARK performance than competitors
- Similar STARK performance as currently best constructions
- Better plain performance than close competitors

■ Scales well with larger state sizes

- Only one expensive $x \mapsto x^{1 / d}$ computation per round
- Efficient linear layer

18 Griffin Performance in SNARKs

- Security level of 128 bits

■ bellman_ce library generating Groth16 [Gro16] proofs

Permutation	State size t							
	3		4		8		12	
	Prove	R1CS	Prove	R1CS	Prove	R1CS	Prove	R1CS
Griffin	39.08	96	42.46	110	60.54	162	82.29	234
Neptune [GOPS22]	-	-	71.41	228	95.99	264	121.04	306
Poseidon [GKR+21]	74.98	240	87.99	264	108.22	363	131.89	459
Rescue-Prime [SAD20]	76.09	252	76.70	264	94.00	384	138.94	576
$\mathrm{GMiMC}_{\text {erf }}[\mathrm{AGP}+19]$	172.78	678	179.11	684	189.07	708	252.36	942
Anemoi [BBC+22]	-	-	n / a	120	n/a	200	n/a	300

HORIZEN
LABS

- Focus on proof performance in various frameworks
- Round function built specifically for this purpose

■ New design strategy for permutations

- Merge advantages of SPN and Horst
- Griffin used in various projects
- Winterfell by Facebook ${ }^{1}$

■ Future work

- Non-aligned schemes against algebraic attacks?
- Horst vs. Feistel

[^0]Questions?

References I

[AGP+19] Martin R. Albrecht, Lorenzo Grassi, Léo Perrin, Sebastian Ramacher, Christian Rechberger, Dragos Rotaru, Arnab Roy, and Markus Schofnegger. "Feistel Structures for MPC, and More". In: ESORICS 2019. Vol. 11736. LNCS. 2019, pp. 151-171.
[BBC+22] Clémence Bouvier, Pierre Briaud, Pyrros Chaidos, Léo Perrin, Robin Salen, Vesselin Velichkov, and Danny Willems. "New Design Techniques for Efficient Arithmetization-Oriented Hash Functions: Anemoi Permutations and Jive Compression Mode". In: IACR Cryptol. ePrint Arch. (2022), p. 840.
[GKR+21] Lorenzo Grassi, Dmitry Khovratovich, Christian Rechberger, Arnab Roy, and Markus Schofnegger. "Poseidon: A New Hash Function for Zero-Knowledge Proof Systems". In: USENIX Security Symposium. USENIX Association, 2021, pp. 519-535.
[GOPS22] Lorenzo Grassi, Silvia Onofri, Marco Pedicini, and Luca Sozzi. "Invertible Quadratic Non-Linear Layers for MPC-/FHE-/ZK-Friendly Schemes over Fnp: Application to Poseidon". In: IACR Trans. Symmetric Cryptol. 2022.3 (2022), pp. 20-72.
[Gro16] Jens Groth. "On the Size of Pairing-Based Non-interactive Arguments". In: EUROCRYPT (2). Vol. 9666. Lecture Notes in Computer Science. Springer, 2016, pp. 305-326.
[SAD20] Alan Szepieniec, Tomer Ashur, and Siemen Dhooghe. Rescue-Prime: a Standard Specification (SoK). Cryptology ePrint Archive, Report 2020/1143. 2020.

[^0]: ${ }^{1}$ https://github.com/facebook/winterfell/tree/main/crypto/src/hash

