
Horst Meets Fluid -SPN: Griffin for
Zero-Knowledge Applications
Lorenzo Grassi, Yonglin Hao, Christian Rechberger, Markus Schofnegger, Roman Walch, Qingju Wang

Santa Barbara, August 2023

www.horizenlabs.io

� Computational Integrity Proof Systems

■ Prove that something has been computed correctly

§ Can be any program in theory

§ Permutation call, Merkle tree, . . .

■ Verification cost sublinear in program size

■ Potentially also with zero knowledge

■ SNARKs/STARKs

■ Classical primitives (AES, Keccak, . . .) often inefficient in this setting

§ Use more specialized ones

1 / 19

� Computational Integrity Proof Systems

■ Prove that something has been computed correctly

§ Can be any program in theory

§ Permutation call, Merkle tree, . . .

■ Verification cost sublinear in program size

■ Potentially also with zero knowledge

■ SNARKs/STARKs

■ Classical primitives (AES, Keccak, . . .) often inefficient in this setting

§ Use more specialized ones

1 / 19

� Computational Integrity Proof Systems

■ Prove that something has been computed correctly

§ Can be any program in theory

§ Permutation call, Merkle tree, . . .

■ Verification cost sublinear in program size

■ Potentially also with zero knowledge

■ SNARKs/STARKs

■ Classical primitives (AES, Keccak, . . .) often inefficient in this setting

§ Use more specialized ones

1 / 19

� Computational Integrity Proof Systems

■ Prove that something has been computed correctly

§ Can be any program in theory

§ Permutation call, Merkle tree, . . .

■ Verification cost sublinear in program size

■ Potentially also with zero knowledge

■ SNARKs/STARKs

■ Classical primitives (AES, Keccak, . . .) often inefficient in this setting

§ Use more specialized ones

1 / 19

� Computational Integrity Proof Systems

■ Prove that something has been computed correctly

§ Can be any program in theory

§ Permutation call, Merkle tree, . . .

■ Verification cost sublinear in program size

■ Potentially also with zero knowledge

■ SNARKs/STARKs

■ Classical primitives (AES, Keccak, . . .) often inefficient in this setting

§ Use more specialized ones

1 / 19

� Arithmetization and Commitment

■ Proofs are split into two steps

§ Arithmetization Ñ convert program into polynomials

§ Polynomial commitment Ñ prove validity of polynomials

■ Mostly, any arithmetization approach can be combined with any
commitment technique

■ Focus on arithmetization of hash function

§ Includes set of constraints

§ Fewer constraints in general better

2 / 19

� Arithmetization and Commitment

■ Proofs are split into two steps

§ Arithmetization Ñ convert program into polynomials

§ Polynomial commitment Ñ prove validity of polynomials

■ Mostly, any arithmetization approach can be combined with any
commitment technique

■ Focus on arithmetization of hash function

§ Includes set of constraints

§ Fewer constraints in general better

2 / 19

Á Symmetric Function Concepts

Type 1
“low-degree only”

■ Low-degree

y “ x3

■ Fast

■ Many rounds

■ Often more constraints

■ Poseidon,
Poseidon2,
Neptune, GMiMC

Type 2
“non-procedural”, “fluid”

■ Equivalent low-degree

y “ x1{3 ùñ x “ y3

■ Slow

■ Fewer rounds

■ Fewer constraints

■ Friday, Rescue,
Griffin, Anemoi

Type 3
“lookups”

■ Lookup tables

y “ T rxs

■ Very fast

■ Even fewer rounds

■ Constraints depend on
scheme

■ Reinforced

Concrete, Tip5,
Monolith

3 / 19

Á Symmetric Function Concepts

Type 1
“low-degree only”

■ Low-degree

y “ x3

■ Fast

■ Many rounds

■ Often more constraints

■ Poseidon,
Poseidon2,
Neptune, GMiMC

Type 2
“non-procedural”, “fluid”

■ Equivalent low-degree

y “ x1{3 ùñ x “ y3

■ Slow

■ Fewer rounds

■ Fewer constraints

■ Friday, Rescue,
Griffin, Anemoi

Type 3
“lookups”

■ Lookup tables

y “ T rxs

■ Very fast

■ Even fewer rounds

■ Constraints depend on
scheme

■ Reinforced

Concrete, Tip5,
Monolith

3 / 19

Á Symmetric Function Concepts

Type 1
“low-degree only”

■ Low-degree

y “ x3

■ Fast

■ Many rounds

■ Often more constraints

■ Poseidon,
Poseidon2,
Neptune, GMiMC

Type 2
“non-procedural”, “fluid”

■ Equivalent low-degree

y “ x1{3 ùñ x “ y3

■ Slow

■ Fewer rounds

■ Fewer constraints

■ Friday, Rescue,
Griffin, Anemoi

Type 3
“lookups”

■ Lookup tables

y “ T rxs

■ Very fast

■ Even fewer rounds

■ Constraints depend on
scheme

■ Reinforced

Concrete, Tip5,
Monolith

3 / 19

Á Symmetric Function Concepts

Type 1
“low-degree only”

■ Low-degree

y “ x3

■ Fast

■ Many rounds

■ Often more constraints

■ Poseidon,
Poseidon2,
Neptune, GMiMC

Type 2
“non-procedural”, “fluid”

■ Equivalent low-degree

y “ x1{3 ùñ x “ y3

■ Slow

■ Fewer rounds

■ Fewer constraints

■ Friday, Rescue,
Griffin, Anemoi

Type 3
“lookups”

■ Lookup tables

y “ T rxs

■ Very fast

■ Even fewer rounds

■ Constraints depend on
scheme

■ Reinforced

Concrete, Tip5,
Monolith

3 / 19

& Constraints: The Nonlinear Layer

S

S

S

S

S

S

S

S

S

S

S

S

. . .

. . .

S

S

Classical SPN
(e.g., SHARK in 1996)

S

S

S

S

. . .

. . .

Identity
+

Affine Layers

Partial SPN
(e.g., Zorro in 2013 and LowMC in 2015)

S

S 1

S

S 1

S

S 1

S

S 1

S

S 1

S

S 1

S

S 1

S

S 1

S

S 1

S

S 1

S

S 1

S

S 1

. . .

. . .

. . .

. . .

S

S 1

S

S 1

Different rounds/steps
(e.g., Rescue in 2019)

4 / 19

& Constraints: The Nonlinear Layer cont.

■ Focus on SPN instantiated with power maps

§ We need degree ě 3 for the S-boxes (invertibility)

§ Most practically used primes even need degree P t5, 7u

■ For degree 7: 4t multiplications for t words

■ Performance with low-degree functions?

§ Large number of rounds to reach maximum degree

Ñ Many linear layers, high latency

■ Mix rounds with xd and rounds with x1{d like Rescue?

§ Multiple x1{d per round quite expensive . . .

5 / 19

& Constraints: The Nonlinear Layer cont.

■ Focus on SPN instantiated with power maps

§ We need degree ě 3 for the S-boxes (invertibility)

§ Most practically used primes even need degree P t5, 7u

■ For degree 7: 4t multiplications for t words

■ Performance with low-degree functions?

§ Large number of rounds to reach maximum degree

Ñ Many linear layers, high latency

■ Mix rounds with xd and rounds with x1{d like Rescue?

§ Multiple x1{d per round quite expensive . . .

5 / 19

ü Observations

■ SPN

§ x ÞÑ xd and x ÞÑ x1{d can be included in a single round, e.g.

x0 ÞÑ x0
d , x1 ÞÑ x1

1{d

for state with two elements

§ Only needed for 2 elements (instead of entire state)

■ Feistel

§ Allows for lower degrees (e.g., non-invertible x ÞÑ x2)

§ Instead of addition in original Feistel, consider multiplication

Ñ Nonlinear diffusion, better protection against attacks

6 / 19

ü Observations

■ SPN

§ x ÞÑ xd and x ÞÑ x1{d can be included in a single round, e.g.

x0 ÞÑ x0
d , x1 ÞÑ x1

1{d

for state with two elements

§ Only needed for 2 elements (instead of entire state)

■ Feistel

§ Allows for lower degrees (e.g., non-invertible x ÞÑ x2)

§ Instead of addition in original Feistel, consider multiplication

Ñ Nonlinear diffusion, better protection against attacks

6 / 19

Horst – Multiplicative Feistel

■ Representation over F2

px , yq ÞÑ px , y ¨ G pxq
looomooon

Multiplication

`F pxqq

for G pxq ‰ 0

■ Generalization over Ft

px0, . . . , xt´1q ÞÑ px0, x1 ¨ G1px0q ` F1px0q, x2 ¨ G2px0, x1q ` F2px0, x1q, . . . q

§ Setting Gi p¨q “ 1 results in classical Feistel

■ How to choose G for invertibility?

7 / 19

Horst – Multiplicative Feistel

■ Representation over F2

px , yq ÞÑ px , y ¨ G pxq
looomooon

Multiplication

`F pxqq

for G pxq ‰ 0

■ Generalization over Ft

px0, . . . , xt´1q ÞÑ px0, x1 ¨ G1px0q ` F1px0q, x2 ¨ G2px0, x1q ` F2px0, x1q, . . . q

§ Setting Gi p¨q “ 1 results in classical Feistel

■ How to choose G for invertibility?

7 / 19

Horst – Multiplicative Feistel cont.

■ Low-degree monomial does not work (since then G p0q “ 0)

■ Exploit fact that x ÞÑ x2 is not a permutation in Fp

■ Choose α, β such that

α2 ´ 4β ‰ w2 @w P Fp

■ Then G pxq “ x2 ` αx ` β “ 0 has no solutions, hence G pxq ‰ 0 for each x

Ñ Degree-2 function for G

8 / 19

� Merging SPN and Horst: Griffin-π

SPN:

#

y0 “ x0
1{d

y1 “ x1
d

Horst:

$

’

’

’

’

&

’

’

’

’

%

y2 “ x2 ¨
`

L2py0, y1, 0q2 ` α2 ¨ L2py0, y1, 0q ` β2
˘

y3 “ x3 ¨
`

L3py0, y1, x2q2 ` α3 ¨ L3py0, y1, x2q ` β3
˘

...

yt´1 “ xt´1 ¨
`

Lt´1py0, y1, xt´2q2 ` αt´1 ¨ Lt´1py0, y1, xt´2q ` βt´1

˘

■ Li is linear in the inputs

9 / 19

� Merging SPN and Horst: Griffin-π

SPN:

#

y0 “ x0
1{d

y1 “ x1
d

Horst:

$

’

’

’

’

&

’

’

’

’

%

y2 “ x2 ¨
`

L2py0, y1, 0q2 ` α2 ¨ L2py0, y1, 0q ` β2
˘

y3 “ x3 ¨
`

L3py0, y1, x2q2 ` α3 ¨ L3py0, y1, x2q ` β3
˘

...

yt´1 “ xt´1 ¨
`

Lt´1py0, y1, xt´2q2 ` αt´1 ¨ Lt´1py0, y1, xt´2q ` βt´1

˘

■ Li is linear in the inputs

9 / 19

◎ What do we achieve?

■ Fast degree growth in both directions due to y0, y1

§ Constraints of degree d

■ Horst part: no degree 2, but. . .

§ Horst leads to degree 3 (independent of d and p)

Ñ Seems algebraically stronger than classical Feistel

10 / 19

◎ What do we achieve?

■ Fast degree growth in both directions due to y0, y1

§ Constraints of degree d

■ Horst part: no degree 2, but. . .

§ Horst leads to degree 3 (independent of d and p)

Ñ Seems algebraically stronger than classical Feistel

10 / 19

� Algebraic Security of Griffin-π with Feistel

■ Two Gröbner basis strategies

■ Intermediate variables

§ Practical degree of regularity dreg constant for any number of rounds

§ Does not mean it is insecure, but potentially harder to analyze

■ No intermediate variables (only for x ÞÑ x1{d in SPN part)

§ Reduced degree of regularity due to missing multiplication

§ Faster Gröbner basis computation than with Horst when using same degrees

Ñ Suggests Horst is algebraically stronger and more efficient than Feistel

■ Formal analysis left as open problem

11 / 19

� Algebraic Security of Griffin-π with Feistel

■ Two Gröbner basis strategies

■ Intermediate variables

§ Practical degree of regularity dreg constant for any number of rounds

§ Does not mean it is insecure, but potentially harder to analyze

■ No intermediate variables (only for x ÞÑ x1{d in SPN part)

§ Reduced degree of regularity due to missing multiplication

§ Faster Gröbner basis computation than with Horst when using same degrees

Ñ Suggests Horst is algebraically stronger and more efficient than Feistel

■ Formal analysis left as open problem

11 / 19

3 Griffin-π Specification

■ Affine layer

§ Multiplication by efficient matrix M with small values

§ Round constant addition

§ Good for plain performance, full diffusion

■ Nonlinear layer

§ Defined by

yi “

$

’

’

’

&

’

’

’

%

x0
1{d if i “ 0,

x1
d if i “ 1,

x2 ¨
`

pLi py0, y1, 0qq2 ` α2 ¨ Li py0, y1, 0q ` β2

˘

if i “ 2,

xi ¨
`

pLi py0, y1, xi´1qq2 ` αi ¨ Li py0, y1, xi´1q ` βi

˘

otherwise.

12 / 19

3 Griffin-π Specification

■ Affine layer

§ Multiplication by efficient matrix M with small values

§ Round constant addition

§ Good for plain performance, full diffusion

■ Nonlinear layer

§ Defined by

yi “

$

’

’

’

&

’

’

’

%

x0
1{d if i “ 0,

x1
d if i “ 1,

x2 ¨
`

pLi py0, y1, 0qq2 ` α2 ¨ Li py0, y1, 0q ` β2

˘

if i “ 2,

xi ¨
`

pLi py0, y1, xi´1qq2 ` αi ¨ Li py0, y1, xi´1q ` βi

˘

otherwise.

12 / 19

3 Griffin Hash Function

■ Sponge function

M S M

cp0q P Ft
p

S M

cp1q P Ft
p

S M

cp2q P Ft
p

¨ ¨ ¨ S M

cpR´2q P Ft
p

IV

m1

Gπ

m2

Gπ

m3

Gπ

m4

¨ ¨ ¨

¨ ¨ ¨

¨ ¨ ¨

¨ ¨ ¨

Gπ

h1

Gπ

h2

■ Compression function

x P Ft
p ÞÑ Cpxq :“ TrnpGπpxq ` xq P Fn

p

13 / 19

� Griffin-π Security

■ Statistical attacks

§ No straightforward application for wide-trail strategy (alignment)

§ Simple argument thanks to large field size

■ Algebraic attacks

§ Often the strongest attacks against these schemes

§ Higher-order diff., interpolation avoided by high degrees, density

§ Various strategies for Gröbner basis attacks

§ Non-aligned approach seems good here

■ « 10 rounds for practically relevant instances

14 / 19

� Griffin-π Security

■ Statistical attacks

§ No straightforward application for wide-trail strategy (alignment)

§ Simple argument thanks to large field size

■ Algebraic attacks

§ Often the strongest attacks against these schemes

§ Higher-order diff., interpolation avoided by high degrees, density

§ Various strategies for Gröbner basis attacks

§ Non-aligned approach seems good here

■ « 10 rounds for practically relevant instances

14 / 19

A Griffin Performance

■ Much better SNARK performance than competitors

■ Similar STARK performance as currently best constructions

§ Better plain performance than close competitors

■ Scales well with larger state sizes

§ Only one expensive x ÞÑ x1{d computation per round

§ Efficient linear layer

15 / 19

A Griffin Performance in SNARKs

■ Security level of 128 bits

■ bellman ce library generating Groth16 [Gro16] proofs

Permutation
State size t

3 4 8 12
Prove R1CS Prove R1CS Prove R1CS Prove R1CS

Griffin 39.08 96 42.46 110 60.54 162 82.29 234
Neptune [GOPS22] – – 71.41 228 95.99 264 121.04 306
Poseidon [GKR+21] 74.98 240 87.99 264 108.22 363 131.89 459
Rescue-Prime [SAD20] 76.09 252 76.70 264 94.00 384 138.94 576
GMiMCerf [AGP+19] 172.78 678 179.11 684 189.07 708 252.36 942
Anemoi [BBC+22] – – n/a 120 n/a 200 n/a 300

16 / 19

Á Conclusion

■ Focus on proof performance in various frameworks

§ Round function built specifically for this purpose

■ New design strategy for permutations

§ Merge advantages of SPN and Horst

■ Griffin used in various projects

§ Winterfell by Facebook1

■ Future work

§ Non-aligned schemes against algebraic attacks?

§ Horst vs. Feistel

1https://github.com/facebook/winterfell/tree/main/crypto/src/hash
17 / 19

https://github.com/facebook/winterfell/tree/main/crypto/src/hash

Questions?

18 / 19

References I

[AGP+19] Martin R. Albrecht, Lorenzo Grassi, Léo Perrin, Sebastian Ramacher, Christian Rechberger,
Dragos Rotaru, Arnab Roy, and Markus Schofnegger. “Feistel Structures for MPC, and
More”. In: ESORICS 2019. Vol. 11736. LNCS. 2019, pp. 151–171.

[BBC+22] Clémence Bouvier, Pierre Briaud, Pyrros Chaidos, Léo Perrin, Robin Salen,
Vesselin Velichkov, and Danny Willems. “New Design Techniques for Efficient
Arithmetization-Oriented Hash Functions: Anemoi Permutations and Jive Compression
Mode”. In: IACR Cryptol. ePrint Arch. (2022), p. 840.

[GKR+21] Lorenzo Grassi, Dmitry Khovratovich, Christian Rechberger, Arnab Roy, and
Markus Schofnegger. “Poseidon: A New Hash Function for Zero-Knowledge Proof
Systems”. In: USENIX Security Symposium. USENIX Association, 2021, pp. 519–535.

[GOPS22] Lorenzo Grassi, Silvia Onofri, Marco Pedicini, and Luca Sozzi. “Invertible Quadratic
Non-Linear Layers for MPC-/FHE-/ZK-Friendly Schemes over Fnp: Application to
Poseidon”. In: IACR Trans. Symmetric Cryptol. 2022.3 (2022), pp. 20–72.

[Gro16] Jens Groth. “On the Size of Pairing-Based Non-interactive Arguments”. In: EUROCRYPT
(2). Vol. 9666. Lecture Notes in Computer Science. Springer, 2016, pp. 305–326.

[SAD20] Alan Szepieniec, Tomer Ashur, and Siemen Dhooghe. Rescue-Prime: a Standard
Specification (SoK). Cryptology ePrint Archive, Report 2020/1143. 2020.

19 / 19

	References

