Compact Lattice Gadget and Its Applications to Hash-and-Sign Signatures

Yang Yu, Huiwen Jia, Xiaoyun Wang

CRYPTO 2023

We develop a new lattice gadget trapdoor framework

- Compact gadget: short & fat gadget matrix \Rightarrow square one
- Semi-random sampler: deterministic decoding + random sampling

As applications, we design practical lattice signature schemes

Background

Lattice-based cryptography is a promising post-quantum alternative!

Practical efficiency for the basic encryption and signatures

• 3 of 4 NIST PQC algorithms for standardization are lattice-based

Powerful versatility for advanced cryptographic applications

• IBE/ABE/FE, group/ring signatures, FHE...

Ajtai's function $f_A(\mathbf{x}) = \mathbf{A}\mathbf{x} \mod Q$, where $\mathbf{A} \in \mathbb{Z}_Q^{n \times m}$ and \mathbf{x} is short • f_A is hard to invert if SIS is hard¹

SIS

Given random $\mathbf{A} \in \mathbb{Z}_Q^{n \times m}$, $\beta > 0$, find **s** such that $\mathbf{As} = 0 \mod Q$, $\|\mathbf{s}\| \le \beta$.

•
$$f_{\mathbf{A}}^{-1} \Leftrightarrow \mathsf{CVP} \text{ on } \Lambda_Q^{\perp}(\mathbf{A}) = \{\mathbf{x} \in \mathbb{Z}^m : \mathbf{A}\mathbf{x} = \mathbf{0} \mod Q\}$$

¹Generating hard instances of lattice problems (extended abstract). STOC'96. Miklós Ajtai.

Ajtai's function $f_A(\mathbf{x}) = \mathbf{A}\mathbf{x} \mod Q$, where $\mathbf{A} \in \mathbb{Z}_Q^{n \times m}$ and \mathbf{x} is short • f_A is hard to invert if SIS is hard¹

SIS

Given random $\mathbf{A} \in \mathbb{Z}_Q^{n \times m}$, $\beta > 0$, find \mathbf{s} such that $\mathbf{As} = 0 \mod Q$, $\|\mathbf{s}\| \le \beta$.

•
$$f_{\mathbf{A}}^{-1} \Leftrightarrow \mathsf{CVP} \text{ on } \Lambda_Q^{\perp}(\mathbf{A}) = \{\mathbf{x} \in \mathbb{Z}^m : \mathbf{A}\mathbf{x} = \mathbf{0} \mod Q\}$$

Trapdoor inversion: f_{A}^{-1} is easy with a trapdoor **T**

¹Generating hard instances of lattice problems (extended abstract). STOC'96. Miklós Ajtai.

In early proposals², **T** is a short basis of $\Lambda_Q^{\perp}(\mathbf{A})$ and $f_{\mathbf{A}}^{-1}$ is implemented by deterministic Babai's CVP algorithms.

²Public-key cryptosystems from lattice reduction problems. Crypto'97. Goldreich, Goldwasser, Halevi.

NTRUSIGN: digital signatures using the NTRU lattice. CT-RSA'03. Hoffstein, Howgrave-Graham, Pipher, Silverman, Whyte.

Insecure Trapdoor Inversion

In early proposals², **T** is a short basis of $\Lambda_Q^{\perp}(\mathbf{A})$ and $f_{\mathbf{A}}^{-1}$ is implemented by deterministic Babai's CVP algorithms.

Preimages leak some information of $T \Rightarrow$ broken by statistical attacks³

²Public-key cryptosystems from lattice reduction problems. Crypto'97. Goldreich, Goldwasser, Halevi.

 $[\]label{eq:NTRUSIGN: digital signatures using the NTRU lattice. \ CT-RSA'03. \ Hoffstein, \ Howgrave-Graham, \ Pipher, \ Silverman, \ Whyte.$

³Learning a parallelepiped: Cryptanalysis of GGH and NTRU signatures. Eurocrypt'06. Nguyen, Regev. Learning a zonotope and more: Cryptanalysis of NTRUSign countermeasures. Asiacrypt'12. Ducas, Nguyen. Learning strikes again: the case of the DRS signature scheme. Asiacrypt'18. Yu, Ducas

In 2008, Gentry, Peikert and Vaikuntanathan proposed a provably secure lattice trapdoor framework $\!\!\!^4.$

- Idea: randomizing the rounding to get Gaussian preimages
- Gaussian dist. independent of $T \Rightarrow$ zero-knowledge for security proof

⁴Trapdoors for Hard Lattices and New Cryptographic Constructions. STOC'08. Gentry, Peikert, Vaikuntanathan.

GPV Trapdoor Framework

In 2008, Gentry, Peikert and Vaikuntanathan proposed a provably secure lattice trapdoor framework 4 .

- Idea: randomizing the rounding to get Gaussian preimages
- Gaussian dist. independent of $T \Rightarrow$ zero-knowledge for security proof

Trapdoor inversion ⇔ lattice Gaussian sampling (trapdoor sampling)

⁴Trapdoors for Hard Lattices and New Cryptographic Constructions. STOC'08. Gentry, Peikert, Vaikuntanathan.

GPV Instantiations

GPV Instantiations

This work aims to improve the practicality of gadget-based GPV!

Previous Gadget Trapdoors

In 2012, Micciancio and Peikert proposed an elegant trapdoor framework⁵, in which $\mathbf{AT} = \mathbf{G} \mod Q$ and $\mathbf{G} \in \mathbb{Z}^{n \times nk}$ is the gadget matrix

- T is a "linear relation" instead of a full basis
- $f_{\mathsf{A}}^{-1} \to f_{\mathsf{G}}^{-1}$ (gadget sampling)

⁵Trapdoors for lattices: Simpler, tighter, faster, smaller. Eurocrypt'12. Micciancio, Peikert

Gadget Trapdoor

In 2012, Micciancio and Peikert proposed an elegant trapdoor framework⁵, in which $\mathbf{AT} = \mathbf{G} \mod Q$ and $\mathbf{G} \in \mathbb{Z}^{n \times nk}$ is the gadget matrix

• T is a "linear relation" instead of a full basis

•
$$f_{A}^{-1} \rightarrow f_{G}^{-1}$$
 (gadget sampling)

Gadget matrix
$$\mathbf{G} = \begin{pmatrix} g & g \\ & & g \end{pmatrix}$$
, therefore $f_{\mathbf{G}}^{-1} \Rightarrow f_{\mathbf{g}}^{-1}$
• $\mathbf{g} = (1, b, \cdots, b^{k-1})$ with $b^k \ge Q$
• $\Lambda_q^{\perp}(\mathbf{g})$ has a well-structured basis $\Rightarrow f_{\mathbf{g}}^{-1}$ is simple and fast

⁵Trapdoors for lattices: Simpler, tighter, faster, smaller. Eurocrypt'12. Micciancio, Peikert

Micciancio-Peikert Trapdoor Inversion

Micciancio-Peikert gadget trapdoor

 $\mathbf{AT} = \mathbf{G} \mod \mathbf{Q}$

High-level overview: Gaussian linear transformation + Perturbation⁶

- (Perturbation sampling) Sample **p** from $D_{\mathbb{Z}^m,\sqrt{\Sigma_p}}$ where $\Sigma_n = s^2 \mathbf{I}_m - r^2 \mathbf{T} \mathbf{T}^t$
- 2 Compute $\mathbf{u}' = \mathbf{u} \mathbf{A}\mathbf{p} \mod Q$
- (Gadget sampling) Sample \mathbf{x}' from $D_{\Lambda_{\alpha,r}^{\perp}(\mathbf{G}),r}$ by $f_{\mathbf{g}}^{-1}$
- Output the preimage $\mathbf{x} = \mathbf{p} + \mathbf{T}\mathbf{x}' \mod Q$

^bAn efficient and parallel Gaussian sampler for lattices. CRYPTO 2010. Chris Peikert

Micciancio-Peikert trapdoor suffers from very large sizes due to the wide G

Micciancio-Peikert trapdoor suffers from very large sizes due to the wide G

In 2019, Chen, Genise and Mukherjee proposed the approximate gadget trapdoor 7 greatly reducing the sizes.

 compute (x, e) such that Ax = u - e mod Q instead of an exact preimage x such that Ax = u mod Q

⁷Approximate trapdoors for lattices and smaller hash-and-sign signatures. Asiacrypt'19. Chen, Genise, Mukherjee.

Micciancio-Peikert trapdoor suffers from very large sizes due to the wide G

In 2019, Chen, Genise and Mukherjee proposed the approximate gadget $trapdoor^7$ greatly reducing the sizes.

 compute (x, e) such that Ax = u - e mod Q instead of an exact preimage x such that Ax = u mod Q

Idea: using a truncated gadget $\mathbf{f} = (b^{\prime}, \cdots, b^{k-1})$

• $AT = G \mod Q \Rightarrow AT = F \mod Q$

⁷Approximate trapdoors for lattices and smaller hash-and-sign signatures. Asiacrypt'19. Chen, Genise, Mukherjee.

Chen-Genise-Mukherjee Trapdoor Inversion

CGM approximate gadget trapdoor

 $AT = F \mod Q$

High-level overview: Gx = Fx' + e

- (Perturbation sampling) Sample **p** from $D_{\mathbb{Z}^m,\sqrt{\Sigma_p}}$ where $\Sigma_p = s^2 \mathbf{I}_m - r^2 \mathbf{T} \mathbf{T}^t$
- **2** Compute $\mathbf{u}' = \mathbf{u} \mathbf{A}\mathbf{p} \mod Q$
- (*Gadget sampling*) Sample \mathbf{x}' from $D_{\Lambda_{O,\mu'}^{\perp}(G),r}$
- (Preimage truncation) Let x' = (x'₁,...,x'_n) with x'_i ∈ Z^k. Set x''_i as the last (k − l) entries of x'_i and x'' = (x''₁,...,x''_n)
- Output the preimage $\mathbf{x} = \mathbf{p} + \mathbf{T}\mathbf{x}'' \mod Q$

Chen-Genise-Mukherjee reduces the sizes by more than one half.

However, the gadget-based schemes are still far large.

 \bullet the size of gadget-based signatures $> 2\times$ Dilithium, $5\times$ Falcon

Compact Gadget for Approximate Trapdoor

We want to use an $n \times n$ matrix as the gadget to minimize the size.

We want to use an $n \times n$ matrix as the gadget to minimize the size.

The compact gadget: $\mathbf{P}, \mathbf{Q} \in \mathbb{Z}^{n \times n}$ such that $\mathbf{P}\mathbf{Q} = \mathbf{Q} \cdot \mathbf{I}$

The trapdoor: $\mathbf{AT} = \mathbf{P} \mod Q$

- LWE-based: $\mathbf{A} = [\mathbf{I} \mid \overline{\mathbf{A}} \mid \mathbf{P} + \overline{\mathbf{A}}\mathbf{S} + \mathbf{E}], \ \mathbf{T} = [-\mathbf{E}^t \mid -\mathbf{S}^t \mid \mathbf{I}]^t;$
- NTRU-based: $\mathbf{A} = [\mathbf{I} \mid (\mathbf{P} \mathbf{F}) \cdot \mathbf{G}^{-1}]$ and $\mathbf{T} = [\mathbf{F}^t \mid \mathbf{G}^t]^t$.

The core is to (approximately) invert $f_{\mathbf{P}}$: $\mathbf{P}\mathbf{x} = \mathbf{u} - \mathbf{e} \mod Q$

- Oeterministic error decoding: The sampler first computes an error e such that u − e = Pc ∈ L(P) with deterministic lattice decoding.
- **Q** Random preimage sampling: Then the sampler generates a short preimage x ∈ L(Q) + c with Gaussian sampling.

Correctness: $\mathbf{Px} = \mathbf{P}(\mathbf{Qv} + \mathbf{c}) = Q\mathbf{v} + \mathbf{u} - \mathbf{e} = \mathbf{u} - \mathbf{e} \mod Q$

The core is to (approximately) invert $f_{\mathbf{P}}$: $\mathbf{P}\mathbf{x} = \mathbf{u} - \mathbf{e} \mod Q$

- Oeterministic error decoding: The sampler first computes an error e such that u − e = Pc ∈ L(P) with deterministic lattice decoding.
- **Q** Random preimage sampling: Then the sampler generates a short preimage x ∈ L(Q) + c with Gaussian sampling.

Correctness: $\mathbf{Px} = \mathbf{P}(\mathbf{Qv} + \mathbf{c}) = Q\mathbf{v} + \mathbf{u} - \mathbf{e} = \mathbf{u} - \mathbf{e} \mod Q$

Simulating the Gadget Sampling

For uniformly random u, the gadget sampling procedure is simulatable

Lemma

Let $\mathbf{P}, \mathbf{Q} \in \mathbb{Z}^{n \times n}$ such that $\mathbf{P}\mathbf{Q} = Q \cdot \mathbf{I}_n$ and $r \ge \eta_{\epsilon}(\mathcal{L}(\mathbf{Q}))$ with some negligible $\epsilon > 0$. Let $\chi_{\mathbf{e}}$ be the distribution of $(\mathbf{v} \mod \mathcal{L}(\mathbf{P})) \in E(\mathbf{P})$ where $\mathbf{v} \leftarrow U(\mathbb{Z}^n_{\Omega})$. Then the following two distributions are statistically close.

- First sample $\mathbf{u}' \leftarrow U(\mathbb{Z}_Q^n)$, then sample $\mathbf{x}' \leftarrow \text{GadgetSamp}(\mathbf{u}', r, \mathbf{P}, \mathbf{Q})$, compute $\mathbf{e} = (\mathbf{u}' \mod \mathcal{L}(\mathbf{P}))$, output $(\mathbf{x}', \mathbf{u}', \mathbf{e})$;
- General Section 2 First sample e ← χ_e , then sample x' ← $D_{\mathbb{Z}^n,r}$, set
 $u' = e + Px' \mod Q$, output (x', u', e).

Algorithm 1: PreSamp(A, T, u, r, s)

Input: $(\mathbf{A}, \mathbf{T}) \in \mathbb{Z}_Q^{n \times m} \times \mathbb{Z}^{m \times n}$ such that $\mathbf{AT} = \mathbf{P} \mod Q$, $\mathbf{u} \in \mathbb{Z}_Q^n$, $r \ge \eta_{\epsilon}(\mathcal{L}(\mathbf{Q}))$ and $s^2 \mathbf{I}_m \succ r^2 \mathbf{TT}^t$ Output: an approximate preimage \mathbf{x} of \mathbf{u} for \mathbf{A} . 1: $\mathbf{p} \leftarrow D_{\mathbb{Z}^m, \sqrt{\Sigma_p}}$ where $\Sigma_p = s^2 \mathbf{I}_m - r^2 \mathbf{TT}^t$ 2: $\mathbf{u}' = \mathbf{u} - \mathbf{Ap} \mod Q$ 3: $\mathbf{x}' \leftarrow \text{GadgetSamp}(\mathbf{u}', r, \mathbf{P}, \mathbf{Q})$ 4: return $\mathbf{x} = \mathbf{p} + \mathbf{Tx}'$

The error item $(\mathbf{u} - \mathbf{A}\mathbf{x}) \mod Q$ is exactly $(\mathbf{u}' - \mathbf{P}\mathbf{x}') \mod Q$

Simulating the Trapdoor Sampling

Theorem

Let $\mathbf{P}, \mathbf{Q} \in \mathbb{Z}^{n \times n}$ such that $\mathbf{P}\mathbf{Q} = Q \cdot \mathbf{I}_n$. Let (\mathbf{A}, \mathbf{T}) be a matrix-trapdoor pair, (r, s) satisfying $s^2 \ge (r^2 + \eta_{\epsilon}(\mathbb{Z}^n)^2) \cdot (s_1(\mathbf{T})^2 + 1)$ and $r \ge \eta_{\epsilon}(\mathcal{L}(\mathbf{Q}))$. Then the following two distributions are statistically indistinguishable:

$$\{(\mathsf{A},\mathsf{x},\mathsf{u},\mathsf{e}): \ \mathsf{u} \leftarrow U(\mathbb{Z}_Q^n), \ \mathsf{x} \leftarrow \mathsf{PreSamp}(\mathsf{A},\mathsf{T},\mathsf{u},r,s), \ \mathsf{e} = \mathsf{u} - \mathsf{A}\mathsf{x} \ \mathsf{mod} \ Q\}$$

 $\{(\mathbf{A}, \mathbf{x}, \mathbf{u}, \mathbf{e}): \mathbf{x} \leftarrow D_{\mathbb{Z}^m, \mathbf{s}}, \mathbf{e} \leftarrow \chi_{\mathbf{e}}, \mathbf{u} = \mathbf{A}\mathbf{x} + \mathbf{e} \mod Q\}.$

The proof follows from the gadget sampling simulation and Gaussian linear transformation lemmas.

Comparison

We focus on the simplest instantiation $(\mathbf{P} = p \cdot \mathbf{I}, \mathbf{Q} = q \cdot \mathbf{I})$

	Gadget	Q	m′	$\ \mathbf{x}'\ /\sqrt{m'}$	$\ \mathbf{e}\ /\sqrt{n}$
MP12	$\mathbf{I}_n\otimes \mathbf{g}^t, \mathbf{g}=(1, b, \cdots, b^{k-1})$	$(b^{k-1}, b^k]$	nk	$pprox \sqrt{(b^2+1)}\eta$	0
CGM19	$\mathbf{I}_n\otimes\mathbf{f}^t,\mathbf{f}=(b^l,\cdots,b^{k-1})$	$(b^{k-1}, b^k]$	n(k-l)	$pprox \sqrt{(b^2+1)}\eta$	$pprox {\it b}'\eta$
Ours	$p \cdot \mathbf{I}_n$	pq	n	$pprox q\eta$	$pprox \sqrt{rac{p^2-1}{12}}$

Comparison

We focus on the simplest instantiation $(\mathbf{P} = p \cdot \mathbf{I}, \mathbf{Q} = q \cdot \mathbf{I})$

	Gadget	Q	m′	$\ \mathbf{x}'\ /\sqrt{m'}$	$\ \mathbf{e}\ /\sqrt{n}$
MP12	$\mathbf{I}_n\otimes \mathbf{g}^t, \ \mathbf{g}=(1,b,\cdots,b^{k-1})$	$(b^{k-1}, b^k]$	nk	$pprox \sqrt{(b^2+1)}\eta$	0
CGM19		$(b^{k-1},b^k]$	n(k-l)	$pprox \sqrt{(b^2+1)}\eta$	$pprox b'\eta$
Ours	$p \cdot \mathbf{I}_n$	pq	п	$pprox q\eta$	$pprox \sqrt{rac{p^2-1}{12}}$

- Gadget Dim.: $kn \rightarrow (k l)n \rightarrow n \Rightarrow$ better compactness
- #integer sampling: $kn \rightarrow kn \rightarrow n \Rightarrow$ better efficiency
- preimage and error sizes depend on q and p separately

Practical Lattice Signatures

We design three lattice signature schemes based on compact gadgets

- Robin NTRU based
- Eagle Ring LWE based
- HuFu LWE based

Robin

Robin is much simpler than Falcon and Mitaka

- no complex NTRU trapdoor generation
- simpler (and faster) signing
- support a fully integral implementation

	Security level	pk (in bytes)	sig (in bytes)
Falcon-512	NIST-I	896	643
Mitaka-648	NIST-I	972	807
Robin-701	NIST-I	1227	992
Mitaka-864	NIST-III	1512	1148
Robin-1061	NIST-III	1990	1527
Falcon-1024	NIST-V	1792	1249
Mitaka-1024	NIST-V	1792	1376
Robin-1279	NIST-V	2399	1862

Eagle

Eagle is an efficient Ring LWE based hash-and-sign

- 30 40% as large as CGM19
- even smaller than Dilithium

	Security (C/Q)	<i>pk</i> (in bytes)	sig (in bytes)
Dilithium 1^-	89 / 81	992	1843
CGM19	79 / 71	2720	2753
Eagle-512	79 / 71	928	1406
Dilithium 3	176 / 159	1952	3293
CGM19	180 / 164	7712	7172
Eagle-1024	176 / 160	1952	3052

HuFu is an LWE-based scheme submitted to NIST

- strong security assurance
- easy implementation & online/offline
- short signatures & fast speed
- extended applications

	Security level	<i>sig</i> (in bytes)	pk (in kilobytes)
HuFu-1	NIST-I	2455	1059
HuFu-3	NIST-III	3540	2177
HuFu-5	NIST-V	4520	3573

Ending

We improve the practicality of lattice gadget trapdoors

- Compact gadget \Rightarrow smaller size
- Semi-random sampler \Rightarrow faster speed
- Practical lattice signatures are instantiated

Future works

- Better gadget constructions
- Better samplers
- More applications

Thank you!