Revisiting Time-Space Tradeoffs for
Function Inversion

Spencer Peters

Noah S.D. Siyao Guo Sasha Golovnev

1/23

Function Inversion

» Given a function

(1,2,...,N} = [N]I [N]

2/23

Function Inversion

» Given a function, and a point y in its range,

(12, N} = [N]Iy 0

2/23

Function Inversion

» Given a function, and a point y in its range,
find x with f(x) = y.

{1,2,...,N} =: [N]BXH__.yE[N]

2/23

Function Inversion

» Given a function, and a point y in its range,
find x with f(x) = y.

(12, N} = [N]Bxly €]

2/23

Function Inversion

» Given a function, and a point y in its range,
find x with f(x) = y.

L2 W)= [N]Bxly em
1
f
2
N

2/23

Function Inversion

» Given a function, and a point y in its range,
find x with f(x) = y.

(12, N} = [N]BXIyE[N]

2/23

Function Inversion

» Given a function, and a point y in its range,
find x with f(x) = y.

(12, N} = [N]ley 0

2/23

Function Inversion

» Given a function, and a point y in its range,
find x with f(x) = y.

(12, N} = [N]ley 0

1 1
f'
e 2 permutation f
""i:’) 74
N N

» The study of this black-box function inversion problem was

initiated by Martin Hellman in 1980 [Hel80].

2/23

Hellman’s algorithm

> If f is a permutation,
its graph is a disjoint union of cycles.

\ ir \ /f

3/23

Hellman’s algorithm

> If f is a permutation,
its graph is a disjoint union of cycles.

3/23

Hellman’s algorithm

> If f is a permutation,
its graph is a disjoint union of cycles.

e T AN 4{)
/ \ be[m
\ if Vi

N vl N

3/23

Hellman’s algorithm

> If f is a permutation,
its graph is a disjoint union of cycles.

/ \ f)k be[m

3/23

Hellman’s algorithm

> If f is a permutation,
its graph is a disjoint union of cycles.

3/23

Hellman’s algorithm

> If f is a permutation,
its graph is a disjoint union of cycles.

be (V]

/ B
\ Vi
O—

3/23

Hellman’s algorithm

> If f is a permutation,
its graph is a disjoint union of cycles.

/ \ i dbe "

3/23

Hellman’s algorithm

> If f is a permutation,
its graph is a disjoint union of cycles.

3/23

Hellman’s algorithm

» What if y is on a large cycle?

4/23

Hellman’s algorithm

» What if y is on a large cycle?

\ fr \ /f

4/23

Hellman’s algorithm

» What if y is on a large cycle?

\ fr \ /f

4/23

Hellman’s algorithm

» What if y is on a large cycle?

¥ AN
/ \ Y N
\ if \ /f
N /

» In a preprocessing step, store points uniformly spaced around
each cycle.

4/23

Hellman’s algorithm

» What if y is on a large cycle?

' AN

N /

» In a preprocessing step, store points uniformly spaced around
each cycle.

4/23

Hellman’s algorithm

» What if y is on a large cycle?

-

¥

/f

e

~a
-
e

N /

» In a preprocessing step, store points uniformly spaced around
each cycle.

4/23

Hellman’s algorithm

» What if y is on a large cycle?

-

¥

/f

e

~a
-
e

N /

» In a preprocessing step, store points uniformly spaced around
each cycle.

4/23

Hellman’s algorithm

» What if y is on a large cycle?

' AN

\ fr \ /f

» In a preprocessing step, store points uniformly spaced around
each cycle.

4/23

Hellman’s algorithm

» What if y is on a large cycle?

' AN

\ /df \ /f
N

» In a preprocessing step, store points uniformly spaced around
each cycle.

4/23

Hellman’s algorithm

» What if y is on a large cycle?

' AN

N /

» In a preprocessing step, store points uniformly spaced around
each cycle.

4/23

Analysis

> If we space the stored points T hops apart:

5/23

Analysis

> If we space the stored points T hops apart:

T(=3)
e N
/ é X
€ [N]
\ ff \ /f
N v

5/23

Analysis

> If we space the stored points T hops apart:

(=3)

P

> We need T evaluations of f to invert y.

/f

5/23

Analysis

> If we space the stored points T hops apart:

T(=3)
e
/ X
€ [N]
\ tf Af
N v

> We need T evaluations of f to invert y.

5/23

Analysis

> If we space the stored points T hops apart:
T(=3)

P

¥ AN

/ ée[m / N

\ fr \ /f

O

> We need T evaluations of f to invert y.

5/23

Analysis

> If we space the stored points T hops apart:
T(=3)

P

> We need T evaluations of f to invert y.

5/23

Analysis

> If we space the stored points T hops apart:

(=3)

P

¥ AN

i éDe [N]

ff
N v

—~— 7

> We need T evaluations of f to invert y.

/f

5/23

Analysis

> If we space the stored points T hops apart:

T(=3)
e AN
J T
éDe[N]
fr N /f
N vl

> We need T evaluations of f to invert y.

» \We need to store about N/ T points total.

5/23

Stepping back

» Goal: design a pair of algorithms (P, .A)
such that

Pria « P(f); x + Af(a, y); f(x) = y] > 9/10.

6/23

Stepping back

» Goal: design a pair of algorithms (P, .A)
such that

Pria « P(f); x + Af(a, y); f(x) = y] > 9/10.

» In this model, P and A have unbounded computational
power.

6/23

Stepping back

» Goal: design a pair of algorithms (P, .A)
such that

Pria « P(f); x + Af(a, y); f(x) = y] > 9/10.

» In this model, P and A have unbounded computational
power.

» We aim to minimize the bitlength S of «, and the number of
queries T that A makes to f.

6/23

Application scenarios

» The NSA wants to break cryptography based on a widely used
cryptographic function, such as AES-128.

7/23

Application scenarios

» The NSA wants to break cryptography based on a widely used
cryptographic function, such as AES-128.

» Hackers want to recover passwords from a stolen database of
password hashes (Rainbow Tables)

7/23

Application scenarios

» The NSA wants to break cryptography based on a widely used
cryptographic function, such as AES-128.

» Hackers want to recover passwords from a stolen database of
password hashes (Rainbow Tables)

» Theoretical computer scientists want better algorithms for

+ ’2%(2 "lw/ 1
3-SUM [GGH*20], |- S . 1
L N Lil; L 5 ‘ o w

7/23

Application scenarios

» The NSA wants to break cryptography based on a widely used
cryptographic function, such as AES-128.

» Hackers want to recover passwords from a stolen database of
password hashes (Rainbow Tables)

» Theoretical computer scientists want better algorithms for

]
i
riil “

multiparty pointer jumping [CK19],

7/23

Application scenarios

» The NSA wants to break cryptography based on a widely used
cryptographic function, such as AES-128.

» Hackers want to recover passwords from a stolen database of
password hashes (Rainbow Tables)

» Theoretical computer scientists want better algorithms for

s
NP el | AN

multiparty pointer jumping [CK19],

systematic substring search [CK19], ...

7/23

Beyond Permutations

8/23

Beyond Permutations

Result Applies To Tradeoff Key Point
Hellman 1980 permutations T <N/S S=T<VN

8/23

Beyond Permutations

Result Applies To Tradeoff Key Point
Hellman 1980 permutations T < N/S S=T<VN

Yao 1990 m permutations T > N/S S=T>+N

8/23

Beyond Permutations

Result Applies To

Tradeoff Key Point

Hellman

Yao 1990 H permutations

Slien R0 perdenm ¢

1980 permutations

T<N/S S=TSVN

TZN/S S=TzVN

TSN2/S2 S=T N3

8/23

Beyond Permutations

Result Applies To Tradeoff Key Point
1980 permutations T < N/S S=T<VN

Hellman

Yao 1990 m

Hellman 1980 random f T<N2/S2 S=T<N/3

permutations T > N/S S=T2VN

Fiat-Naor 1991 all functions T<SN3/S3 S=T < N3/4

el

8/23

Beyond Permutations

Result Applies To Tradeoff Key Point

Hellman 1980 permutations T <N/S S=T<VN
Yao 1990 ﬁ permutations T > N/S S=T>+N
Hellman 1980 random f T<N2/S2 S=T < N2/3
Fiat-Naor 1991 all functions T<SN3/S3 S=T < N3/4

el

» Q: Can we improve Fiat-Naor? Can we improve Yao's lower

bound?

8/23

Beyond Permutations

Result Applies To Tradeoff Key Point

Hellman 1980 permutations T <N/S S=T<VN
Yao 1990 m permutations T > N/S S=T>+N
Hellman 1980 random f T<N2/S2 S=T < N2/3
Fiat-Naor 1991 all functions T<SN3/S3 S=T < N3/4

el

» Q: Can we improve Fiat-Naor? Can we improve Yao's lower

bound?

» A: Sort of and sort of!

8/23

Our Results

> Result 1: A simple improvement
to Fiat and Naor's algorithm in the regime T > S.

> Result 2: A tight lower bound for a natural class of
non-adaptive function inversion algorithms.

» Not in this talk: equivalences between variants of function
inversion.

9/23

Result 1: Improving Fiat-Naor

Result Applies To Tradeoff Key Point

Hellman 1980 permutations T SN/S S=T<VN
Yao 1990 m permutations T = N/S S=T>+/N
Hellman 1980 random f T < N?/S2 S=T<N/3
Fiat-Naor 1991 all functions T < N3/S3 S=T< N34

e

10/23

Result 1: Improving Fiat-Naor

Result Applies To Tradeoff Key Point

Hellman 1980 permutations T < N/S S=T<VN
Yao 1990 H permutations T = N/S S=T>+/N
Hellman 1980 random f T < N2/S2 S=T< N3
Fiat-Naor 1991 all functions T < N3/S3 S=T< N34

WAt o

This work

all functions

T <SN3/(S2T) S=T < N3/4

10/23

Result 1: Improving Fiat-Naor

Result Applies To Tradeoff Key Point

Hellman 1980 permutations T < N/S S=T<VN
Yao 1990 ﬁ permutations T = N/S S=T>+/N
Hellman 1980 random f T < N?/S? S=T< N3
Fiat-Naor 1991 all functions T < N3/S3 S=T< N34

WAt o

This work

all functions

T <SN3/(S2T) S=T < N3/4
T S N3/2/S

10/23

Result 1: Improving Fiat-Naor
1x

0.8 ¢
0.6 |

0.4

log(T)/ log(NV)

0.2 ¢

0 02 04 06 08
log(S)/ log(IV)

Arbitrary (Fiat-Naor)
Lower bound (Yao)
Permutations (Hellman)
Random (Hellman)
Trivial

11/23

Result 1: Improving Fiat-Naor
1g

0.8 ¢
0.6 |

0.4 |

log(T)/ log(V)

0.2 ¢

0 02 04 06 08
log(S)/ log(IV)

Arbitrary (Fiat-Naor)
Arbitrary (Our improvement)
Lower bound (Yao)
Permutations (Hellman)
Random (Hellman)
Trivial

11/23

Background: beyond permutations

» Preprocessing stores the endpoints of disjoint paths.

12/23

Background: beyond permutations
» Preprocessing stores the endpoints of disjoint paths.

\\‘ f \\‘ \\\ £
—> — — — — — -

12/23

Background: beyond permutations
» Preprocessing stores the endpoints of disjoint paths.

RS f' RS RN f'
A A A
— e —> — —_— — - — =
v v B ~ v v 3

12/23

Background: beyond permutations

» Preprocessing stores the endpoints of disjoint paths.

12/23

Background: beyond permutations

» Preprocessing stores the endpoints of disjoint paths.

> No longer possible to cover the entire range.

12/23

Background: beyond permutations

» Preprocessing stores the endpoints of disjoint paths.

> No longer possible to cover the entire range.

» But, can still cover a small fraction with disjoint paths.

12/23

Background: beyond permutations

» Preprocessing stores the endpoints of disjoint paths.

> No longer possible to cover the entire range.

» But, can still cover a small fraction with disjoint paths.

» To boost the coverage, observe that inverting g o f on g(y) is

often enough to invert f on y.

12/23

Background: beyond permutations

» Preprocessing stores the endpoints of disjoint paths.

> No longer possible to cover the entire range.
» But, can still cover a small fraction with disjoint paths.
>

To boost the coverage, observe that inverting g o f on g(y) is
often enough to invert f on y.

» So, can repeatedly apply the basic scheme to many
compositions g; o f, for suitably chosen “rerandomization”
functions g;.

12/23

Background: beyond permutations

» Preprocessing stores the endpoints of disjoint paths.

> No longer possible to cover the entire range.
» But, can still cover a small fraction with disjoint paths.
>

To boost the coverage, observe that inverting g o f on g(y) is
often enough to invert f on y.

» So, can repeatedly apply the basic scheme to many
compositions g; o f, for suitably chosen “rerandomization”
functions g;.

» For random functions, Hellman showed (heuristically) this can

be made to work. &

12/23

Background: Fiat-Naor

» Hellman's argument fails for arbitrary functions.

13/23

Background: Fiat-Naor

» Hellman's argument fails for arbitrary functions.

» Arbitrary functions can have “junction points” with many
inverses.

13/23

Background: Fiat-Naor

» Hellman's argument fails for arbitrary functions.

» Arbitrary functions can have “junction points” with many
inverses.

13/23

Background: Fiat-Naor

» Hellman's argument fails for arbitrary functions.

» Arbitrary functions can have “junction points” with many
inverses.

13/23

Background: Fiat-Naor

» Hellman's argument fails for arbitrary functions.

» Arbitrary functions can have “junction points” with many
inverses.

» Paths collide at these points, causing all sorts of problems.

13/23

Background: Fiat-Naor

» Hellman's argument fails for arbitrary functions.

» Arbitrary functions can have “junction points” with many
inverses.

» Paths collide at these points, causing all sorts of problems.

» Fiat and Naor deal with this by storing o = (&, L), where L
contains junction points along with their inverses.

13/23

Background: Fiat-Naor

» Hellman's argument fails for arbitrary functions.

» Arbitrary functions can have “junction points” with many
inverses.

» Paths collide at these points, causing all sorts of problems.

» Fiat and Naor deal with this by storing o = (&, L), where L
contains junction points along with their inverses.

» Intuitively, o/ is the data structure for a restriction of f that
avoids the junction points in L.

13/23

Background: Fiat-Naor

» Hellman's argument fails for arbitrary functions.

» Arbitrary functions can have “junction points” with many
inverses.

» Paths collide at these points, causing all sorts of problems.

» Fiat and Naor deal with this by storing o = (&, L), where L
contains junction points along with their inverses.

» Intuitively, o/ is the data structure for a restriction of f that
avoids the junction points in L.

» More precisely, the “rerandomization” functions are sampled
using rejection sampling so that their range is [N] — L.

13/23

Our Improvement (1)

» Recall that Fiat and Naor's preprocessing and online
algorithms must agree on a list L of “junction points”.

14/23

Our Improvement (1)

» Recall that Fiat and Naor's preprocessing and online

algorithms must agree on a list L of “junction points”.

» We observe that the tradeoff T < N3/S3 comes from

1 N3
T< ..
~L e S?

14/23

Our Improvement (1)

» Recall that Fiat and Naor's preprocessing and online
algorithms must agree on a list L of “junction points”.

» We observe that the tradeoff T < N3/S3 comes from

1 N3
T< ..
~L e S?

» Fiat and Naor get |L| ~ S, but this is the hard limit, since L
needs to fit into S-bit advice a.

14/23

Our Improvement (1)

» Recall that Fiat and Naor's preprocessing and online
algorithms must agree on a list L of “junction points”.

» We observe that the tradeoff T < N3/S3 comes from

1 N3
T< ..
~L e S?

» Fiat and Naor get |L| ~ S, but this is the hard limit, since L
needs to fit into S-bit advice a.

» Or does it?

14/23

Our Improvement (2)

» Fiat and Naor's list L actually consists of
images f(x;) of random points x; ~ [N].

15/23

Our Improvement (2)

» Fiat and Naor's list L actually consists of
images f(x;) of random points x; ~ [N].

» Our idea: Instead of reading L from «, A recovers L by
evaluating f on the same random points x;.

15/23

Our Improvement (2)

» Fiat and Naor's list L actually consists of
images f(x;) of random points x; ~ [N].

» Our idea: Instead of reading L from «, A recovers L by
evaluating f on the same random points x;.

» This allows |L| ~ T, so we can get T < N3/(S2T), or

T < N32/S.

15/23

Our Improvement (2)

» Fiat and Naor's list L actually consists of
images f(x;) of random points x; ~ [N].

» Our idea: Instead of reading L from «, A recovers L by
evaluating f on the same random points x;.

» This allows |L| ~ T, so we can get T < N3/(S2T), or

T < N32/S.

> That's it!

» But I've cheated here...

15/23

Our Improvement (2)

» Fiat and Naor's list L actually consists of
images f(x;) of random points x; ~ [N].

» Our idea: Instead of reading L from «, A recovers L by
evaluating f on the same random points x;.

» This allows |L| ~ T, so we can get T < N3/(S2T), or

T < N32/S.

» That's it!
» But I've cheated here...

» How do .4 and P agree on the same list of random values x;?

15/23

Along the Way: Shared Randomness

> We show that, in the preprocessing model,
one can assume shared randomness without loss of generality.

16/23

Along the Way: Shared Randomness

> We show that, in the preprocessing model,

one can assume shared randomness without loss of generality.

» The proof adapts Newman'’s lemma [New91] ‘E from

communication complexity.

16/23

Along the Way: Shared Randomness

> We show that, in the preprocessing model,

one can assume shared randomness without loss of generality.

» The proof adapts Newman'’s lemma [New91] ‘5 from

communication complexity.

» In practice, can instantiate a random oracle.

16/23

Result 2: Background

» Recall that Yao's lower bound (for inverting arbitrary
functions) hasn't been improved in 30+ years.

17/23

Result 2: Background

» Recall that Yao's lower bound (for inverting arbitrary
functions) hasn't been improved in 30+ years.

» Corrigan-Gibbs and Kogan { [CK19]: any

small improvement = new lower bounds in circuit
complexity.

17/23

Result 2: Background

» Recall that Yao's lower bound (for inverting arbitrary
functions) hasn't been improved in 30+ years.

» Corrigan-Gibbs and Kogan { [CK19]: any

small improvement = new lower bounds in circuit
complexity.

» Even improving Yao's bound just for non-adaptive algorithms
would do it!

17/23

Result 2: Background

» Recall that Yao's lower bound (for inverting arbitrary
functions) hasn't been improved in 30+ years.

» Corrigan-Gibbs and Kogan { [CK19]: any

small improvement = new lower bounds in circuit
complexity.

» Even improving Yao's bound just for non-adaptive algorithms
would do it!

» A is non-adaptive if its evaluation points xi,...,x7 are
chosen up front, before any evaluations of f are seen.

17/23

Result 2: Background

» Recall that Yao's lower bound (for inverting arbitrary
functions) hasn't been improved in 30+ years.

» Corrigan-Gibbs and Kogan { [CK19]: any

small improvement = new lower bounds in circuit
complexity.

» Even improving Yao's bound just for non-adaptive algorithms
would do it!

» A is non-adaptive if its evaluation points xi,...,x7 are
chosen up front, before any evaluations of f are seen.

» Non-adaptive algorithms seem very weak. Hellman's algorithm
is very adaptive.

17/23

Result 2: Background

| 2

Recall that Yao's lower bound (for inverting arbitrary
functions) hasn't been improved in 30+ years.

Corrigan-Gibbs and Kogan { [CK19]: any

small improvement = new lower bounds in circuit
complexity.
Even improving Yao's bound just for non-adaptive algorithms

would do it!

A is non-adaptive if its evaluation points xq,...,x7 are
chosen up front, before any evaluations of f are seen.

Non-adaptive algorithms seem very weak. Hellman's algorithm
is very adaptive.

Corrigan-Gibbs and Kogan speculated that there is no
non-adaptive algorithm with

S =o0(NlogN) and T = o(N).

17/23

A Lower Bound

» We observe that there IS in fact a very simple algorithm, that
(barely!) outperforms the trivial inverter.

18/23

A Lower Bound

» We observe that there IS in fact a very simple algorithm, that
(barely!) outperforms the trivial inverter.

» For each range element, preprocessing stores a
(log(N) — log(T))-bit prefix of one of its inverses.

18/23

A Lower Bound

» We observe that there IS in fact a very simple algorithm, that
(barely!) outperforms the trivial inverter.

» For each range element, preprocessing stores a
(log(N) — log(T))-bit prefix of one of its inverses.

» This implicitly defines T candidate inverses for the online
algorithm to check, achieving the tradeoff
S=0(Nlog(N/T)).

18/23

A Lower Bound

» We observe that there IS in fact a very simple algorithm, that
(barely!) outperforms the trivial inverter.

» For each range element, preprocessing stores a
(log(N) — log(T))-bit prefix of one of its inverses.

» This implicitly defines T candidate inverses for the online
algorithm to check, achieving the tradeoff
S=0(Nlog(N/T)).

» When the online algorithm just (non-adaptively) checks T
candidate inverses determined by the preprocessing o and the
challenge y, we call it a guess-and-check algorithm.

18/23

A Lower Bound

| 2

We observe that there IS in fact a very simple algorithm, that
(barely!) outperforms the trivial inverter.

For each range element, preprocessing stores a
(log(N) — log(T))-bit prefix of one of its inverses.

This implicitly defines T candidate inverses for the online
algorithm to check, achieving the tradeoff
S=0(Nlog(N/T)).

When the online algorithm just (non-adaptively) checks T
candidate inverses determined by the preprocessing o and the
challenge y, we call it a guess-and-check algorithm.

We show that the simple algorithm above is
asymptotically optimal among guess-and-check
algorithms.

18/23

A Lower Bound

» The proof is a compression argument. For simplicity,
assume there exists a guess-and-check algorithm
that always succeeds, with parameters S, T. Then

19/23

A Lower Bound

» The proof is a compression argument. For simplicity,
assume there exists a guess-and-check algorithm
that always succeeds, with parameters S, T. Then

» Theorem: Can encode any permutation f using S+ Nlog T
bits.

19/23

A Lower Bound

» The proof is a compression argument. For simplicity,
assume there exists a guess-and-check algorithm
that always succeeds, with parameters S, T. Then

» Theorem: Can encode any permutation f using S+ Nlog T
bits.

= S+ Nlog T =Q(Nlog N)
= S=Q(Nlog(N/T)).

19/23

A Lower Bound

» The proof is a compression argument. For simplicity,
assume there exists a guess-and-check algorithm
that always succeeds, with parameters S, T. Then

» Theorem: Can encode any permutation f using S+ Nlog T
bits.

= S+ Nlog T =Q(Nlog N)
= S=Q(Nlog(N/T)).

» Proof:
» Encoder computes « + P(f).

19/23

A Lower Bound

» The proof is a compression argument. For simplicity,
assume there exists a guess-and-check algorithm
that always succeeds, with parameters S, T. Then

» Theorem: Can encode any permutation f using S+ Nlog T
bits.

= S+ Nlog T =Q(Nlog N)
= S=Q(Nlog(N/T)).
» Proof:
» Encoder computes « + P(f).

» For each y € [N], encoder runs A(a, y) and receives
X1,...,x7. It writes down the i, € [T] that satisfies

f(x,)=y.

19/23

A Lower Bound

» The proof is a compression argument. For simplicity,
assume there exists a guess-and-check algorithm
that always succeeds, with parameters S, T. Then

» Theorem: Can encode any permutation f using S+ Nlog T
bits.

= S+ Nlog T =Q(Nlog N)
= S=Q(Nlog(N/T)).
» Proof:
» Encoder computes « + P(f).

» For each y € [N], encoder runs A(a, y) and receives

X1,...,x7. It writes down the i, € [T] that satisfies
f(x,)=y.
» Encoding is («, i1, ..., in).

19/23

A Lower Bound

» The proof is a compression argument. For simplicity,
assume there exists a guess-and-check algorithm
that always succeeds, with parameters S, T. Then

» Theorem: Can encode any permutation f using S+ Nlog T
bits.

= S+ Nlog T =Q(Nlog N)
= S=Q(Nlog(N/T)).

» Proof:

>
>

Encoder computes o < P(f).

For each y € [N], encoder runs A(c, y) and receives
X1,...,x7. It writes down the i, € [T] that satisfies

f(x,)=y.

Encoding is (v, i1, ..., in).

For each y, decoder again runs A(«, y) and receives
Xi, ..., x7. It sets 1 (y) = x; .

19/23

Open Problems

» In some sense, only one open problem—

20/23

Open Problems

» In some sense, only one open problem—close the gap!

20/23

Open Problems

» In some sense, only one open problem—close the gap!

» Moonshots:

» Improve Yao's lower bound against (general) non-adaptive
algorithms?

20/23

Open Problems

» In some sense, only one open problem—close the gap!

» Moonshots:

» Improve Yao's lower bound against (general) non-adaptive
algorithms?

» S2T = N? algorithm for worst-case function inversion?

20/23

Open Problems

» In some sense, only one open problem—close the gap!

» Moonshots:

» Improve Yao's lower bound against (general) non-adaptive
algorithms?

» S2T = N? algorithm for worst-case function inversion?

» Possibly more tractable:

» Better algorithms for inverting a small fraction of the range?
That is, improving on De, Trevisan and Tulsiani [DTT10]?

20/23

Open Problems

» In some sense, only one open problem—close the gap!

» Moonshots:

» Improve Yao's lower bound against (general) non-adaptive
algorithms?

» S2T = N? algorithm for worst-case function inversion?

» Possibly more tractable:

» Better algorithms for inverting a small fraction of the range?
That is, improving on De, Trevisan and Tulsiani [DTT10]?

» Better algorithms for inverting injective functions?

20/23

Thank youl!

I'm happy to take additional questions offline.
You can ping me at speters@cs.cornell.edu.

21/23

References |

[§ Henry Corrigan-Gibbs and Dmitry Kogan.
The function-inversion problem: Barriers and opportunities.
In TCC, 2019.

@ Anindya De, Luca Trevisan, and Madhur Tulsiani.
Time space tradeoffs for attacks against one-way functions
and PRGs.
In CRYPTO, 2010.

[§ Alexander Golovnev, Siyao Guo, Thibaut Horel, Sunoo Park,
and Vinod Vaikuntanathan.
Data structures meet cryptography: 3SUM with preprocessing.

In STOC, 2020.

22/23

References |l

[@ Alexander Golovnev, Siyao Guo, Spencer Peters, and Noah
Stephens-Davidowitz.
Revisiting time-space tradeoffs for function inversion.
Available at
https://eccc.weizmann.ac.il/report/2022/145/, 2022.

[@ Martin Hellman.
A cryptanalytic time-memory trade-off.
IEEE Transactions on Information Theory, 26(4):401-406,
1980.

[@ llan Newman.
Private vs. common random bits in communication complexity.

Information processing letters, 39(2):67-71, 1991.

23/23

https://eccc.weizmann.ac.il/report/2022/145/

