
Revisiting Time-Space Tradeoffs for
Function Inversion

Spencer Peters

Noah S.D. Siyao Guo Sasha Golovnev

1 / 23

Function Inversion

▶ Given a function

{1, 2, . . . ,N} =: [N] f [N]

2 / 23

Function Inversion

▶ Given a function, and a point y in its range,

{1, 2, . . . ,N} =: [N] f y ∈ [N]

2 / 23

Function Inversion

▶ Given a function, and a point y in its range,
find x with f (x) = y .

f y ∈ [N]{1, 2, . . . ,N} =: [N] ∋ x

2 / 23

Function Inversion

▶ Given a function, and a point y in its range,
find x with f (x) = y .

f y ∈ [N]{1, 2, . . . ,N} =: [N] ∋ x

1

2

74

...

N

...

74

N

f

2 / 23

Function Inversion

▶ Given a function, and a point y in its range,
find x with f (x) = y .

f y ∈ [N]{1, 2, . . . ,N} =: [N] ∋ x

1

2

74

...

N

...

74

N

f

74

2 / 23

Function Inversion

▶ Given a function, and a point y in its range,
find x with f (x) = y .

f y ∈ [N]{1, 2, . . . ,N} =: [N] ∋ x

1

2

74

...

N

...

74

N

f

74

2

2 / 23

Function Inversion

▶ Given a function, and a point y in its range,
find x with f (x) = y .

f y ∈ [N]{1, 2, . . . ,N} =: [N] ∋ x

1

2

74

...

N

...

74

N

f

74

2

▶ The study of this black-box function inversion problem was

initiated by Martin Hellman in 1980 [Hel80].

2 / 23

Function Inversion

▶ Given a function, and a point y in its range,
find x with f (x) = y .

f y ∈ [N]{1, 2, . . . ,N} =: [N] ∋ x

1

2

74

...

N

...

74

N

f

74

2

1

2

74

...

N

...

74

N

permutation f

▶ The study of this black-box function inversion problem was

initiated by Martin Hellman in 1980 [Hel80].

2 / 23

Hellman’s algorithm

▶ If f is a permutation,
its graph is a disjoint union of cycles.

f f

3 / 23

Hellman’s algorithm

▶ If f is a permutation,
its graph is a disjoint union of cycles.

f f
y ∈ [N]

3 / 23

Hellman’s algorithm

▶ If f is a permutation,
its graph is a disjoint union of cycles.

f f
y ∈ [N]

3 / 23

Hellman’s algorithm

▶ If f is a permutation,
its graph is a disjoint union of cycles.

f f
y ∈ [N]

3 / 23

Hellman’s algorithm

▶ If f is a permutation,
its graph is a disjoint union of cycles.

f f
y ∈ [N]

3 / 23

Hellman’s algorithm

▶ If f is a permutation,
its graph is a disjoint union of cycles.

f f
y ∈ [N]

3 / 23

Hellman’s algorithm

▶ If f is a permutation,
its graph is a disjoint union of cycles.

f f
y ∈ [N]

3 / 23

Hellman’s algorithm

▶ If f is a permutation,
its graph is a disjoint union of cycles.

f f
y ∈ [N]y ∈ [N]

3 / 23

Hellman’s algorithm

▶ What if y is on a large cycle?

4 / 23

Hellman’s algorithm

▶ What if y is on a large cycle?

ff

y ∈ [N]

4 / 23

Hellman’s algorithm

▶ What if y is on a large cycle?

ff

4 / 23

Hellman’s algorithm

▶ What if y is on a large cycle?

ffff

▶ In a preprocessing step, store points uniformly spaced around
each cycle.

4 / 23

Hellman’s algorithm

▶ What if y is on a large cycle?

ffff

y ∈ [N]

▶ In a preprocessing step, store points uniformly spaced around
each cycle.

4 / 23

Hellman’s algorithm

▶ What if y is on a large cycle?

ffff

y ∈ [N]

▶ In a preprocessing step, store points uniformly spaced around
each cycle.

4 / 23

Hellman’s algorithm

▶ What if y is on a large cycle?

ffff

y ∈ [N]

▶ In a preprocessing step, store points uniformly spaced around
each cycle.

4 / 23

Hellman’s algorithm

▶ What if y is on a large cycle?

ffff

y ∈ [N]

▶ In a preprocessing step, store points uniformly spaced around
each cycle.

4 / 23

Hellman’s algorithm

▶ What if y is on a large cycle?

ffff

y ∈ [N]

▶ In a preprocessing step, store points uniformly spaced around
each cycle.

4 / 23

Hellman’s algorithm

▶ What if y is on a large cycle?

ffff

y ∈ [N]y ∈ [N]

▶ In a preprocessing step, store points uniformly spaced around
each cycle.

4 / 23

Analysis

▶ If we space the stored points T hops apart:

f

y ∈ [N]

T (= 3)

f

5 / 23

Analysis

▶ If we space the stored points T hops apart:

f

y ∈ [N]

T (= 3)

f

5 / 23

Analysis

▶ If we space the stored points T hops apart:

f

y ∈ [N]

T (= 3)

f

▶ We need T evaluations of f to invert y .

5 / 23

Analysis

▶ If we space the stored points T hops apart:

f

y ∈ [N]

T (= 3)

f

▶ We need T evaluations of f to invert y .

5 / 23

Analysis

▶ If we space the stored points T hops apart:

f

y ∈ [N]

T (= 3)

f

▶ We need T evaluations of f to invert y .

5 / 23

Analysis

▶ If we space the stored points T hops apart:

f

y ∈ [N]

T (= 3)

f

▶ We need T evaluations of f to invert y .

5 / 23

Analysis

▶ If we space the stored points T hops apart:

f

y ∈ [N]

T (= 3)

y ∈ [N]
f

▶ We need T evaluations of f to invert y .

5 / 23

Analysis

▶ If we space the stored points T hops apart:

f

y ∈ [N]

T (= 3)

y ∈ [N]
f

▶ We need T evaluations of f to invert y .

▶ We need to store about N/T points total.

5 / 23

Stepping back

▶ Goal: design a pair of algorithms (P,A)
such that

Pr[α← P(f); x ← Af (α, y); f (x) = y] ≥ 9/10.

▶ In this model, P and A have unbounded computational
power.

▶ We aim to minimize the bitlength S of α, and the number of
queries T that A makes to f .

6 / 23

Stepping back

▶ Goal: design a pair of algorithms (P,A)
such that

Pr[α← P(f); x ← Af (α, y); f (x) = y] ≥ 9/10.

▶ In this model, P and A have unbounded computational
power.

▶ We aim to minimize the bitlength S of α, and the number of
queries T that A makes to f .

6 / 23

Stepping back

▶ Goal: design a pair of algorithms (P,A)
such that

Pr[α← P(f); x ← Af (α, y); f (x) = y] ≥ 9/10.

▶ In this model, P and A have unbounded computational
power.

▶ We aim to minimize the bitlength S of α, and the number of
queries T that A makes to f .

6 / 23

Application scenarios

▶ The NSA wants to break cryptography based on a widely used
cryptographic function, such as AES-128.

▶ Hackers want to recover passwords from a stolen database of
password hashes (Rainbow Tables)

▶ Theoretical computer scientists want better algorithms for

3-SUM [GGH+20],

multiparty pointer jumping [CK19],

systematic substring search [CK19], ...

7 / 23

Application scenarios

▶ The NSA wants to break cryptography based on a widely used
cryptographic function, such as AES-128.

▶ Hackers want to recover passwords from a stolen database of
password hashes (Rainbow Tables)

▶ Theoretical computer scientists want better algorithms for

3-SUM [GGH+20],

multiparty pointer jumping [CK19],

systematic substring search [CK19], ...

7 / 23

Application scenarios

▶ The NSA wants to break cryptography based on a widely used
cryptographic function, such as AES-128.

▶ Hackers want to recover passwords from a stolen database of
password hashes (Rainbow Tables)

▶ Theoretical computer scientists want better algorithms for

3-SUM [GGH+20],

multiparty pointer jumping [CK19],

systematic substring search [CK19], ...

7 / 23

Application scenarios

▶ The NSA wants to break cryptography based on a widely used
cryptographic function, such as AES-128.

▶ Hackers want to recover passwords from a stolen database of
password hashes (Rainbow Tables)

▶ Theoretical computer scientists want better algorithms for

3-SUM [GGH+20],

multiparty pointer jumping [CK19],

systematic substring search [CK19], ...

7 / 23

Application scenarios

▶ The NSA wants to break cryptography based on a widely used
cryptographic function, such as AES-128.

▶ Hackers want to recover passwords from a stolen database of
password hashes (Rainbow Tables)

▶ Theoretical computer scientists want better algorithms for

3-SUM [GGH+20],

multiparty pointer jumping [CK19],

systematic substring search [CK19], ...

7 / 23

Beyond Permutations

Result Applies To Tradeoff Key Point

Hellman 1980 permutations T ≲ N/S S = T ≲
√
N

Yao 1990 permutations T ≳ N/S S = T ≳
√
N

Hellman 1980 random f T ≲ N2/S2 S = T ≲ N2/3

Fiat-Naor 1991 all functions T ≲ N3/S3 S = T ≲ N3/4

▶ Q: Can we improve Fiat-Naor? Can we improve Yao’s lower
bound?

▶ A: Sort of and sort of!

8 / 23

Beyond Permutations

Result Applies To Tradeoff Key Point

Hellman 1980 permutations T ≲ N/S S = T ≲
√
N

Yao 1990 permutations T ≳ N/S S = T ≳
√
N

Hellman 1980 random f T ≲ N2/S2 S = T ≲ N2/3

Fiat-Naor 1991 all functions T ≲ N3/S3 S = T ≲ N3/4

▶ Q: Can we improve Fiat-Naor? Can we improve Yao’s lower
bound?

▶ A: Sort of and sort of!

8 / 23

Beyond Permutations

Result Applies To Tradeoff Key Point

Hellman 1980 permutations T ≲ N/S S = T ≲
√
N

Yao 1990 permutations T ≳ N/S S = T ≳
√
N

Hellman 1980 random f T ≲ N2/S2 S = T ≲ N2/3

Fiat-Naor 1991 all functions T ≲ N3/S3 S = T ≲ N3/4

▶ Q: Can we improve Fiat-Naor? Can we improve Yao’s lower
bound?

▶ A: Sort of and sort of!

8 / 23

Beyond Permutations

Result Applies To Tradeoff Key Point

Hellman 1980 permutations T ≲ N/S S = T ≲
√
N

Yao 1990 permutations T ≳ N/S S = T ≳
√
N

Hellman 1980 random f T ≲ N2/S2 S = T ≲ N2/3

Fiat-Naor 1991 all functions T ≲ N3/S3 S = T ≲ N3/4

▶ Q: Can we improve Fiat-Naor? Can we improve Yao’s lower
bound?

▶ A: Sort of and sort of!

8 / 23

Beyond Permutations

Result Applies To Tradeoff Key Point

Hellman 1980 permutations T ≲ N/S S = T ≲
√
N

Yao 1990 permutations T ≳ N/S S = T ≳
√
N

Hellman 1980 random f T ≲ N2/S2 S = T ≲ N2/3

Fiat-Naor 1991 all functions T ≲ N3/S3 S = T ≲ N3/4

▶ Q: Can we improve Fiat-Naor? Can we improve Yao’s lower
bound?

▶ A: Sort of and sort of!

8 / 23

Beyond Permutations

Result Applies To Tradeoff Key Point

Hellman 1980 permutations T ≲ N/S S = T ≲
√
N

Yao 1990 permutations T ≳ N/S S = T ≳
√
N

Hellman 1980 random f T ≲ N2/S2 S = T ≲ N2/3

Fiat-Naor 1991 all functions T ≲ N3/S3 S = T ≲ N3/4

▶ Q: Can we improve Fiat-Naor? Can we improve Yao’s lower
bound?

▶ A: Sort of and sort of!

8 / 23

Beyond Permutations

Result Applies To Tradeoff Key Point

Hellman 1980 permutations T ≲ N/S S = T ≲
√
N

Yao 1990 permutations T ≳ N/S S = T ≳
√
N

Hellman 1980 random f T ≲ N2/S2 S = T ≲ N2/3

Fiat-Naor 1991 all functions T ≲ N3/S3 S = T ≲ N3/4

▶ Q: Can we improve Fiat-Naor? Can we improve Yao’s lower
bound?

▶ A: Sort of and sort of!

8 / 23

Our Results

▶ Result 1: A simple improvement
to Fiat and Naor’s algorithm in the regime T > S .

▶ Result 2: A tight lower bound for a natural class of
non-adaptive function inversion algorithms.

▶ Not in this talk: equivalences between variants of function
inversion.

9 / 23

Result 1: Improving Fiat-Naor

Result Applies To Tradeoff Key Point

Hellman 1980 permutations T ≲ N/S S = T ≲
√
N

Yao 1990 permutations T ≳ N/S S = T ≳
√
N

Hellman 1980 random f T ≲ N2/S2 S = T ≲ N2/3

Fiat-Naor 1991 all functions T ≲ N3/S3 S = T ≲ N3/4

This work all functions T ≲ N3/(S2T) S = T ≲ N3/4

T ≲ N3/2/S

10 / 23

Result 1: Improving Fiat-Naor

Result Applies To Tradeoff Key Point

Hellman 1980 permutations T ≲ N/S S = T ≲
√
N

Yao 1990 permutations T ≳ N/S S = T ≳
√
N

Hellman 1980 random f T ≲ N2/S2 S = T ≲ N2/3

Fiat-Naor 1991 all functions T ≲ N3/S3 S = T ≲ N3/4

This work all functions T ≲ N3/(S2T) S = T ≲ N3/4

T ≲ N3/2/S

10 / 23

Result 1: Improving Fiat-Naor

Result Applies To Tradeoff Key Point

Hellman 1980 permutations T ≲ N/S S = T ≲
√
N

Yao 1990 permutations T ≳ N/S S = T ≳
√
N

Hellman 1980 random f T ≲ N2/S2 S = T ≲ N2/3

Fiat-Naor 1991 all functions T ≲ N3/S3 S = T ≲ N3/4

This work all functions T ≲ N3/(S2T) S = T ≲ N3/4

T ≲ N3/2/S

10 / 23

Result 1: Improving Fiat-Naor

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

log(S)/ log(N)

lo
g
(T

)/
lo
g
(N

)
Arbitrary (Fiat-Naor)

Lower bound (Yao)

Permutations (Hellman)

Random (Hellman)

Trivial

11 / 23

Result 1: Improving Fiat-Naor

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

S = T

log(S)/ log(N)

lo
g
(T

)/
lo
g
(N

)
Arbitrary (Fiat-Naor)

Arbitrary (Our improvement)

Lower bound (Yao)

Permutations (Hellman)

Random (Hellman)

Trivial

11 / 23

Background: beyond permutations

▶ Preprocessing stores the endpoints of disjoint paths.

f f

▶ No longer possible to cover the entire range.

▶ But, can still cover a small fraction with disjoint paths.

▶ To boost the coverage, observe that inverting g ◦ f on g(y) is
often enough to invert f on y .

▶ So, can repeatedly apply the basic scheme to many
compositions gi ◦ f , for suitably chosen “rerandomization”
functions gi .

▶ For random functions, Hellman showed (heuristically) this can

be made to work.

12 / 23

Background: beyond permutations

▶ Preprocessing stores the endpoints of disjoint paths.

f f

▶ No longer possible to cover the entire range.

▶ But, can still cover a small fraction with disjoint paths.

▶ To boost the coverage, observe that inverting g ◦ f on g(y) is
often enough to invert f on y .

▶ So, can repeatedly apply the basic scheme to many
compositions gi ◦ f , for suitably chosen “rerandomization”
functions gi .

▶ For random functions, Hellman showed (heuristically) this can

be made to work.

12 / 23

Background: beyond permutations

▶ Preprocessing stores the endpoints of disjoint paths.

f ff f

▶ No longer possible to cover the entire range.

▶ But, can still cover a small fraction with disjoint paths.

▶ To boost the coverage, observe that inverting g ◦ f on g(y) is
often enough to invert f on y .

▶ So, can repeatedly apply the basic scheme to many
compositions gi ◦ f , for suitably chosen “rerandomization”
functions gi .

▶ For random functions, Hellman showed (heuristically) this can

be made to work.

12 / 23

Background: beyond permutations

▶ Preprocessing stores the endpoints of disjoint paths.

f ff f

▶ No longer possible to cover the entire range.

▶ But, can still cover a small fraction with disjoint paths.

▶ To boost the coverage, observe that inverting g ◦ f on g(y) is
often enough to invert f on y .

▶ So, can repeatedly apply the basic scheme to many
compositions gi ◦ f , for suitably chosen “rerandomization”
functions gi .

▶ For random functions, Hellman showed (heuristically) this can

be made to work.

12 / 23

Background: beyond permutations

▶ Preprocessing stores the endpoints of disjoint paths.

f ff f

▶ No longer possible to cover the entire range.

▶ But, can still cover a small fraction with disjoint paths.

▶ To boost the coverage, observe that inverting g ◦ f on g(y) is
often enough to invert f on y .

▶ So, can repeatedly apply the basic scheme to many
compositions gi ◦ f , for suitably chosen “rerandomization”
functions gi .

▶ For random functions, Hellman showed (heuristically) this can

be made to work.

12 / 23

Background: beyond permutations

▶ Preprocessing stores the endpoints of disjoint paths.

f ff f

▶ No longer possible to cover the entire range.

▶ But, can still cover a small fraction with disjoint paths.

▶ To boost the coverage, observe that inverting g ◦ f on g(y) is
often enough to invert f on y .

▶ So, can repeatedly apply the basic scheme to many
compositions gi ◦ f , for suitably chosen “rerandomization”
functions gi .

▶ For random functions, Hellman showed (heuristically) this can

be made to work.

12 / 23

Background: beyond permutations

▶ Preprocessing stores the endpoints of disjoint paths.

f ff f

▶ No longer possible to cover the entire range.

▶ But, can still cover a small fraction with disjoint paths.

▶ To boost the coverage, observe that inverting g ◦ f on g(y) is
often enough to invert f on y .

▶ So, can repeatedly apply the basic scheme to many
compositions gi ◦ f , for suitably chosen “rerandomization”
functions gi .

▶ For random functions, Hellman showed (heuristically) this can

be made to work.

12 / 23

Background: beyond permutations

▶ Preprocessing stores the endpoints of disjoint paths.

f ff f

▶ No longer possible to cover the entire range.

▶ But, can still cover a small fraction with disjoint paths.

▶ To boost the coverage, observe that inverting g ◦ f on g(y) is
often enough to invert f on y .

▶ So, can repeatedly apply the basic scheme to many
compositions gi ◦ f , for suitably chosen “rerandomization”
functions gi .

▶ For random functions, Hellman showed (heuristically) this can

be made to work.

12 / 23

Background: beyond permutations

▶ Preprocessing stores the endpoints of disjoint paths.

f ff f

▶ No longer possible to cover the entire range.

▶ But, can still cover a small fraction with disjoint paths.

▶ To boost the coverage, observe that inverting g ◦ f on g(y) is
often enough to invert f on y .

▶ So, can repeatedly apply the basic scheme to many
compositions gi ◦ f , for suitably chosen “rerandomization”
functions gi .

▶ For random functions, Hellman showed (heuristically) this can

be made to work.

12 / 23

Background: Fiat-Naor

▶ Hellman’s argument fails for arbitrary functions.

▶ Arbitrary functions can have “junction points” with many
inverses.

▶ Paths collide at these points, causing all sorts of problems.

▶ Fiat and Naor deal with this by storing α = (α′, L), where L
contains junction points along with their inverses.

▶ Intuitively, α′ is the data structure for a restriction of f that
avoids the junction points in L.

▶ More precisely, the “rerandomization” functions are sampled
using rejection sampling so that their range is [N]− L.

13 / 23

Background: Fiat-Naor

▶ Hellman’s argument fails for arbitrary functions.

▶ Arbitrary functions can have “junction points” with many
inverses.

▶ Paths collide at these points, causing all sorts of problems.

▶ Fiat and Naor deal with this by storing α = (α′, L), where L
contains junction points along with their inverses.

▶ Intuitively, α′ is the data structure for a restriction of f that
avoids the junction points in L.

▶ More precisely, the “rerandomization” functions are sampled
using rejection sampling so that their range is [N]− L.

13 / 23

Background: Fiat-Naor

▶ Hellman’s argument fails for arbitrary functions.

▶ Arbitrary functions can have “junction points” with many
inverses.

▶ Paths collide at these points, causing all sorts of problems.

▶ Fiat and Naor deal with this by storing α = (α′, L), where L
contains junction points along with their inverses.

▶ Intuitively, α′ is the data structure for a restriction of f that
avoids the junction points in L.

▶ More precisely, the “rerandomization” functions are sampled
using rejection sampling so that their range is [N]− L.

13 / 23

Background: Fiat-Naor

▶ Hellman’s argument fails for arbitrary functions.

▶ Arbitrary functions can have “junction points” with many
inverses.

▶ Paths collide at these points, causing all sorts of problems.

▶ Fiat and Naor deal with this by storing α = (α′, L), where L
contains junction points along with their inverses.

▶ Intuitively, α′ is the data structure for a restriction of f that
avoids the junction points in L.

▶ More precisely, the “rerandomization” functions are sampled
using rejection sampling so that their range is [N]− L.

13 / 23

Background: Fiat-Naor

▶ Hellman’s argument fails for arbitrary functions.

▶ Arbitrary functions can have “junction points” with many
inverses.

▶ Paths collide at these points, causing all sorts of problems.

▶ Fiat and Naor deal with this by storing α = (α′, L), where L
contains junction points along with their inverses.

▶ Intuitively, α′ is the data structure for a restriction of f that
avoids the junction points in L.

▶ More precisely, the “rerandomization” functions are sampled
using rejection sampling so that their range is [N]− L.

13 / 23

Background: Fiat-Naor

▶ Hellman’s argument fails for arbitrary functions.

▶ Arbitrary functions can have “junction points” with many
inverses.

▶ Paths collide at these points, causing all sorts of problems.

▶ Fiat and Naor deal with this by storing α = (α′, L), where L
contains junction points along with their inverses.

▶ Intuitively, α′ is the data structure for a restriction of f that
avoids the junction points in L.

▶ More precisely, the “rerandomization” functions are sampled
using rejection sampling so that their range is [N]− L.

13 / 23

Background: Fiat-Naor

▶ Hellman’s argument fails for arbitrary functions.

▶ Arbitrary functions can have “junction points” with many
inverses.

▶ Paths collide at these points, causing all sorts of problems.

▶ Fiat and Naor deal with this by storing α = (α′, L), where L
contains junction points along with their inverses.

▶ Intuitively, α′ is the data structure for a restriction of f that
avoids the junction points in L.

▶ More precisely, the “rerandomization” functions are sampled
using rejection sampling so that their range is [N]− L.

13 / 23

Background: Fiat-Naor

▶ Hellman’s argument fails for arbitrary functions.

▶ Arbitrary functions can have “junction points” with many
inverses.

▶ Paths collide at these points, causing all sorts of problems.

▶ Fiat and Naor deal with this by storing α = (α′, L), where L
contains junction points along with their inverses.

▶ Intuitively, α′ is the data structure for a restriction of f that
avoids the junction points in L.

▶ More precisely, the “rerandomization” functions are sampled
using rejection sampling so that their range is [N]− L.

13 / 23

Our Improvement (1)

▶ Recall that Fiat and Naor’s preprocessing and online
algorithms must agree on a list L of “junction points”.

▶ We observe that the tradeoff T ≲ N3/S3 comes from

T ≲
1

|L|
· N

3

S2
.

▶ Fiat and Naor get |L| ≃ S , but this is the hard limit, since L
needs to fit into S-bit advice α.

▶ Or does it?

14 / 23

Our Improvement (1)

▶ Recall that Fiat and Naor’s preprocessing and online
algorithms must agree on a list L of “junction points”.

▶ We observe that the tradeoff T ≲ N3/S3 comes from

T ≲
1

|L|
· N

3

S2
.

▶ Fiat and Naor get |L| ≃ S , but this is the hard limit, since L
needs to fit into S-bit advice α.

▶ Or does it?

14 / 23

Our Improvement (1)

▶ Recall that Fiat and Naor’s preprocessing and online
algorithms must agree on a list L of “junction points”.

▶ We observe that the tradeoff T ≲ N3/S3 comes from

T ≲
1

|L|
· N

3

S2
.

▶ Fiat and Naor get |L| ≃ S , but this is the hard limit, since L
needs to fit into S-bit advice α.

▶ Or does it?

14 / 23

Our Improvement (1)

▶ Recall that Fiat and Naor’s preprocessing and online
algorithms must agree on a list L of “junction points”.

▶ We observe that the tradeoff T ≲ N3/S3 comes from

T ≲
1

|L|
· N

3

S2
.

▶ Fiat and Naor get |L| ≃ S , but this is the hard limit, since L
needs to fit into S-bit advice α.

▶ Or does it?

14 / 23

Our Improvement (2)

▶ Fiat and Naor’s list L actually consists of
images f (xi) of random points xi ∼ [N].

▶ Our idea: Instead of reading L from α, A recovers L by
evaluating f on the same random points xi .

▶ This allows |L| ≃ T , so we can get T ≲ N3/(S2T), or

T ≲ N3/2/S .

▶ That’s it!

▶ But I’ve cheated here...

▶ How do A and P agree on the same list of random values xi?

15 / 23

Our Improvement (2)

▶ Fiat and Naor’s list L actually consists of
images f (xi) of random points xi ∼ [N].

▶ Our idea: Instead of reading L from α, A recovers L by
evaluating f on the same random points xi .

▶ This allows |L| ≃ T , so we can get T ≲ N3/(S2T), or

T ≲ N3/2/S .

▶ That’s it!

▶ But I’ve cheated here...

▶ How do A and P agree on the same list of random values xi?

15 / 23

Our Improvement (2)

▶ Fiat and Naor’s list L actually consists of
images f (xi) of random points xi ∼ [N].

▶ Our idea: Instead of reading L from α, A recovers L by
evaluating f on the same random points xi .

▶ This allows |L| ≃ T , so we can get T ≲ N3/(S2T), or

T ≲ N3/2/S .

▶ That’s it!

▶ But I’ve cheated here...

▶ How do A and P agree on the same list of random values xi?

15 / 23

Our Improvement (2)

▶ Fiat and Naor’s list L actually consists of
images f (xi) of random points xi ∼ [N].

▶ Our idea: Instead of reading L from α, A recovers L by
evaluating f on the same random points xi .

▶ This allows |L| ≃ T , so we can get T ≲ N3/(S2T), or

T ≲ N3/2/S .

▶ That’s it!

▶ But I’ve cheated here...

▶ How do A and P agree on the same list of random values xi?

15 / 23

Our Improvement (2)

▶ Fiat and Naor’s list L actually consists of
images f (xi) of random points xi ∼ [N].

▶ Our idea: Instead of reading L from α, A recovers L by
evaluating f on the same random points xi .

▶ This allows |L| ≃ T , so we can get T ≲ N3/(S2T), or

T ≲ N3/2/S .

▶ That’s it!

▶ But I’ve cheated here...

▶ How do A and P agree on the same list of random values xi?

15 / 23

Along the Way: Shared Randomness

▶ We show that, in the preprocessing model,
one can assume shared randomness without loss of generality.

▶ The proof adapts Newman’s lemma [New91] from

communication complexity.

▶ In practice, can instantiate a random oracle.

16 / 23

Along the Way: Shared Randomness

▶ We show that, in the preprocessing model,
one can assume shared randomness without loss of generality.

▶ The proof adapts Newman’s lemma [New91] from

communication complexity.

▶ In practice, can instantiate a random oracle.

16 / 23

Along the Way: Shared Randomness

▶ We show that, in the preprocessing model,
one can assume shared randomness without loss of generality.

▶ The proof adapts Newman’s lemma [New91] from

communication complexity.

▶ In practice, can instantiate a random oracle.

16 / 23

Result 2: Background

▶ Recall that Yao’s lower bound (for inverting arbitrary
functions) hasn’t been improved in 30+ years.

▶ Corrigan-Gibbs and Kogan [CK19]: any

small improvement =⇒ new lower bounds in circuit
complexity.

▶ Even improving Yao’s bound just for non-adaptive algorithms
would do it!

▶ A is non-adaptive if its evaluation points x1, . . . , xT are
chosen up front, before any evaluations of f are seen.

▶ Non-adaptive algorithms seem very weak. Hellman’s algorithm
is very adaptive.

▶ Corrigan-Gibbs and Kogan speculated that there is no
non-adaptive algorithm with

S = o(N logN) and T = o(N).

17 / 23

Result 2: Background

▶ Recall that Yao’s lower bound (for inverting arbitrary
functions) hasn’t been improved in 30+ years.

▶ Corrigan-Gibbs and Kogan [CK19]: any

small improvement =⇒ new lower bounds in circuit
complexity.

▶ Even improving Yao’s bound just for non-adaptive algorithms
would do it!

▶ A is non-adaptive if its evaluation points x1, . . . , xT are
chosen up front, before any evaluations of f are seen.

▶ Non-adaptive algorithms seem very weak. Hellman’s algorithm
is very adaptive.

▶ Corrigan-Gibbs and Kogan speculated that there is no
non-adaptive algorithm with

S = o(N logN) and T = o(N).

17 / 23

Result 2: Background

▶ Recall that Yao’s lower bound (for inverting arbitrary
functions) hasn’t been improved in 30+ years.

▶ Corrigan-Gibbs and Kogan [CK19]: any

small improvement =⇒ new lower bounds in circuit
complexity.

▶ Even improving Yao’s bound just for non-adaptive algorithms
would do it!

▶ A is non-adaptive if its evaluation points x1, . . . , xT are
chosen up front, before any evaluations of f are seen.

▶ Non-adaptive algorithms seem very weak. Hellman’s algorithm
is very adaptive.

▶ Corrigan-Gibbs and Kogan speculated that there is no
non-adaptive algorithm with

S = o(N logN) and T = o(N).

17 / 23

Result 2: Background

▶ Recall that Yao’s lower bound (for inverting arbitrary
functions) hasn’t been improved in 30+ years.

▶ Corrigan-Gibbs and Kogan [CK19]: any

small improvement =⇒ new lower bounds in circuit
complexity.

▶ Even improving Yao’s bound just for non-adaptive algorithms
would do it!

▶ A is non-adaptive if its evaluation points x1, . . . , xT are
chosen up front, before any evaluations of f are seen.

▶ Non-adaptive algorithms seem very weak. Hellman’s algorithm
is very adaptive.

▶ Corrigan-Gibbs and Kogan speculated that there is no
non-adaptive algorithm with

S = o(N logN) and T = o(N).

17 / 23

Result 2: Background

▶ Recall that Yao’s lower bound (for inverting arbitrary
functions) hasn’t been improved in 30+ years.

▶ Corrigan-Gibbs and Kogan [CK19]: any

small improvement =⇒ new lower bounds in circuit
complexity.

▶ Even improving Yao’s bound just for non-adaptive algorithms
would do it!

▶ A is non-adaptive if its evaluation points x1, . . . , xT are
chosen up front, before any evaluations of f are seen.

▶ Non-adaptive algorithms seem very weak. Hellman’s algorithm
is very adaptive.

▶ Corrigan-Gibbs and Kogan speculated that there is no
non-adaptive algorithm with

S = o(N logN) and T = o(N).

17 / 23

Result 2: Background

▶ Recall that Yao’s lower bound (for inverting arbitrary
functions) hasn’t been improved in 30+ years.

▶ Corrigan-Gibbs and Kogan [CK19]: any

small improvement =⇒ new lower bounds in circuit
complexity.

▶ Even improving Yao’s bound just for non-adaptive algorithms
would do it!

▶ A is non-adaptive if its evaluation points x1, . . . , xT are
chosen up front, before any evaluations of f are seen.

▶ Non-adaptive algorithms seem very weak. Hellman’s algorithm
is very adaptive.

▶ Corrigan-Gibbs and Kogan speculated that there is no
non-adaptive algorithm with

S = o(N logN) and T = o(N).
17 / 23

A Lower Bound

▶ We observe that there IS in fact a very simple algorithm, that
(barely!) outperforms the trivial inverter.

▶ For each range element, preprocessing stores a
(log(N)− log(T))-bit prefix of one of its inverses.

▶ This implicitly defines T candidate inverses for the online
algorithm to check, achieving the tradeoff
S = O(N log(N/T)).

▶ When the online algorithm just (non-adaptively) checks T
candidate inverses determined by the preprocessing α and the
challenge y , we call it a guess-and-check algorithm.

▶ We show that the simple algorithm above is
asymptotically optimal among guess-and-check
algorithms.

18 / 23

A Lower Bound

▶ We observe that there IS in fact a very simple algorithm, that
(barely!) outperforms the trivial inverter.

▶ For each range element, preprocessing stores a
(log(N)− log(T))-bit prefix of one of its inverses.

▶ This implicitly defines T candidate inverses for the online
algorithm to check, achieving the tradeoff
S = O(N log(N/T)).

▶ When the online algorithm just (non-adaptively) checks T
candidate inverses determined by the preprocessing α and the
challenge y , we call it a guess-and-check algorithm.

▶ We show that the simple algorithm above is
asymptotically optimal among guess-and-check
algorithms.

18 / 23

A Lower Bound

▶ We observe that there IS in fact a very simple algorithm, that
(barely!) outperforms the trivial inverter.

▶ For each range element, preprocessing stores a
(log(N)− log(T))-bit prefix of one of its inverses.

▶ This implicitly defines T candidate inverses for the online
algorithm to check, achieving the tradeoff
S = O(N log(N/T)).

▶ When the online algorithm just (non-adaptively) checks T
candidate inverses determined by the preprocessing α and the
challenge y , we call it a guess-and-check algorithm.

▶ We show that the simple algorithm above is
asymptotically optimal among guess-and-check
algorithms.

18 / 23

A Lower Bound

▶ We observe that there IS in fact a very simple algorithm, that
(barely!) outperforms the trivial inverter.

▶ For each range element, preprocessing stores a
(log(N)− log(T))-bit prefix of one of its inverses.

▶ This implicitly defines T candidate inverses for the online
algorithm to check, achieving the tradeoff
S = O(N log(N/T)).

▶ When the online algorithm just (non-adaptively) checks T
candidate inverses determined by the preprocessing α and the
challenge y , we call it a guess-and-check algorithm.

▶ We show that the simple algorithm above is
asymptotically optimal among guess-and-check
algorithms.

18 / 23

A Lower Bound

▶ We observe that there IS in fact a very simple algorithm, that
(barely!) outperforms the trivial inverter.

▶ For each range element, preprocessing stores a
(log(N)− log(T))-bit prefix of one of its inverses.

▶ This implicitly defines T candidate inverses for the online
algorithm to check, achieving the tradeoff
S = O(N log(N/T)).

▶ When the online algorithm just (non-adaptively) checks T
candidate inverses determined by the preprocessing α and the
challenge y , we call it a guess-and-check algorithm.

▶ We show that the simple algorithm above is
asymptotically optimal among guess-and-check
algorithms.

18 / 23

A Lower Bound

▶ The proof is a compression argument. For simplicity,
assume there exists a guess-and-check algorithm
that always succeeds, with parameters S ,T . Then

▶ Theorem: Can encode any permutation f using S + N logT
bits.

=⇒ S + N logT = Ω(N logN)

=⇒ S = Ω(N log(N/T)).

▶ Proof:
▶ Encoder computes α← P(f).
▶ For each y ∈ [N], encoder runs A(α, y) and receives

x1, . . . , xT . It writes down the iy ∈ [T] that satisfies
f (xiy) = y .

▶ Encoding is (α, i1, . . . , iN).

▶ For each y , decoder again runs A(α, y) and receives
x1, . . . , xT . It sets f

−1(y) = xiy .

19 / 23

A Lower Bound

▶ The proof is a compression argument. For simplicity,
assume there exists a guess-and-check algorithm
that always succeeds, with parameters S ,T . Then

▶ Theorem: Can encode any permutation f using S + N logT
bits.

=⇒ S + N logT = Ω(N logN)

=⇒ S = Ω(N log(N/T)).

▶ Proof:
▶ Encoder computes α← P(f).
▶ For each y ∈ [N], encoder runs A(α, y) and receives

x1, . . . , xT . It writes down the iy ∈ [T] that satisfies
f (xiy) = y .

▶ Encoding is (α, i1, . . . , iN).

▶ For each y , decoder again runs A(α, y) and receives
x1, . . . , xT . It sets f

−1(y) = xiy .

19 / 23

A Lower Bound

▶ The proof is a compression argument. For simplicity,
assume there exists a guess-and-check algorithm
that always succeeds, with parameters S ,T . Then

▶ Theorem: Can encode any permutation f using S + N logT
bits.

=⇒ S + N logT = Ω(N logN)

=⇒ S = Ω(N log(N/T)).

▶ Proof:
▶ Encoder computes α← P(f).
▶ For each y ∈ [N], encoder runs A(α, y) and receives

x1, . . . , xT . It writes down the iy ∈ [T] that satisfies
f (xiy) = y .

▶ Encoding is (α, i1, . . . , iN).

▶ For each y , decoder again runs A(α, y) and receives
x1, . . . , xT . It sets f

−1(y) = xiy .

19 / 23

A Lower Bound

▶ The proof is a compression argument. For simplicity,
assume there exists a guess-and-check algorithm
that always succeeds, with parameters S ,T . Then

▶ Theorem: Can encode any permutation f using S + N logT
bits.

=⇒ S + N logT = Ω(N logN)

=⇒ S = Ω(N log(N/T)).

▶ Proof:
▶ Encoder computes α← P(f).

▶ For each y ∈ [N], encoder runs A(α, y) and receives
x1, . . . , xT . It writes down the iy ∈ [T] that satisfies
f (xiy) = y .

▶ Encoding is (α, i1, . . . , iN).

▶ For each y , decoder again runs A(α, y) and receives
x1, . . . , xT . It sets f

−1(y) = xiy .

19 / 23

A Lower Bound

▶ The proof is a compression argument. For simplicity,
assume there exists a guess-and-check algorithm
that always succeeds, with parameters S ,T . Then

▶ Theorem: Can encode any permutation f using S + N logT
bits.

=⇒ S + N logT = Ω(N logN)

=⇒ S = Ω(N log(N/T)).

▶ Proof:
▶ Encoder computes α← P(f).
▶ For each y ∈ [N], encoder runs A(α, y) and receives

x1, . . . , xT . It writes down the iy ∈ [T] that satisfies
f (xiy) = y .

▶ Encoding is (α, i1, . . . , iN).

▶ For each y , decoder again runs A(α, y) and receives
x1, . . . , xT . It sets f

−1(y) = xiy .

19 / 23

A Lower Bound

▶ The proof is a compression argument. For simplicity,
assume there exists a guess-and-check algorithm
that always succeeds, with parameters S ,T . Then

▶ Theorem: Can encode any permutation f using S + N logT
bits.

=⇒ S + N logT = Ω(N logN)

=⇒ S = Ω(N log(N/T)).

▶ Proof:
▶ Encoder computes α← P(f).
▶ For each y ∈ [N], encoder runs A(α, y) and receives

x1, . . . , xT . It writes down the iy ∈ [T] that satisfies
f (xiy) = y .

▶ Encoding is (α, i1, . . . , iN).

▶ For each y , decoder again runs A(α, y) and receives
x1, . . . , xT . It sets f

−1(y) = xiy .

19 / 23

A Lower Bound

▶ The proof is a compression argument. For simplicity,
assume there exists a guess-and-check algorithm
that always succeeds, with parameters S ,T . Then

▶ Theorem: Can encode any permutation f using S + N logT
bits.

=⇒ S + N logT = Ω(N logN)

=⇒ S = Ω(N log(N/T)).

▶ Proof:
▶ Encoder computes α← P(f).
▶ For each y ∈ [N], encoder runs A(α, y) and receives

x1, . . . , xT . It writes down the iy ∈ [T] that satisfies
f (xiy) = y .

▶ Encoding is (α, i1, . . . , iN).

▶ For each y , decoder again runs A(α, y) and receives
x1, . . . , xT . It sets f

−1(y) = xiy .
19 / 23

Open Problems

▶ In some sense, only one open problem–

close the gap!

▶ Moonshots:
▶ Improve Yao’s lower bound against (general) non-adaptive

algorithms?

▶ S2T = N2 algorithm for worst-case function inversion?

▶ Possibly more tractable:
▶ Better algorithms for inverting a small fraction of the range?

That is, improving on De, Trevisan and Tulsiani [DTT10]?

▶ Better algorithms for inverting injective functions?

20 / 23

Open Problems

▶ In some sense, only one open problem–close the gap!

▶ Moonshots:
▶ Improve Yao’s lower bound against (general) non-adaptive

algorithms?

▶ S2T = N2 algorithm for worst-case function inversion?

▶ Possibly more tractable:
▶ Better algorithms for inverting a small fraction of the range?

That is, improving on De, Trevisan and Tulsiani [DTT10]?

▶ Better algorithms for inverting injective functions?

20 / 23

Open Problems

▶ In some sense, only one open problem–close the gap!

▶ Moonshots:
▶ Improve Yao’s lower bound against (general) non-adaptive

algorithms?

▶ S2T = N2 algorithm for worst-case function inversion?

▶ Possibly more tractable:
▶ Better algorithms for inverting a small fraction of the range?

That is, improving on De, Trevisan and Tulsiani [DTT10]?

▶ Better algorithms for inverting injective functions?

20 / 23

Open Problems

▶ In some sense, only one open problem–close the gap!

▶ Moonshots:
▶ Improve Yao’s lower bound against (general) non-adaptive

algorithms?

▶ S2T = N2 algorithm for worst-case function inversion?

▶ Possibly more tractable:
▶ Better algorithms for inverting a small fraction of the range?

That is, improving on De, Trevisan and Tulsiani [DTT10]?

▶ Better algorithms for inverting injective functions?

20 / 23

Open Problems

▶ In some sense, only one open problem–close the gap!

▶ Moonshots:
▶ Improve Yao’s lower bound against (general) non-adaptive

algorithms?

▶ S2T = N2 algorithm for worst-case function inversion?

▶ Possibly more tractable:
▶ Better algorithms for inverting a small fraction of the range?

That is, improving on De, Trevisan and Tulsiani [DTT10]?

▶ Better algorithms for inverting injective functions?

20 / 23

Open Problems

▶ In some sense, only one open problem–close the gap!

▶ Moonshots:
▶ Improve Yao’s lower bound against (general) non-adaptive

algorithms?

▶ S2T = N2 algorithm for worst-case function inversion?

▶ Possibly more tractable:
▶ Better algorithms for inverting a small fraction of the range?

That is, improving on De, Trevisan and Tulsiani [DTT10]?

▶ Better algorithms for inverting injective functions?

20 / 23

Thank you!

I’m happy to take additional questions offline.
You can ping me at speters@cs.cornell.edu.

21 / 23

References I

Henry Corrigan-Gibbs and Dmitry Kogan.
The function-inversion problem: Barriers and opportunities.
In TCC, 2019.

Anindya De, Luca Trevisan, and Madhur Tulsiani.
Time space tradeoffs for attacks against one-way functions
and PRGs.
In CRYPTO, 2010.

Alexander Golovnev, Siyao Guo, Thibaut Horel, Sunoo Park,
and Vinod Vaikuntanathan.
Data structures meet cryptography: 3SUM with preprocessing.

In STOC, 2020.

22 / 23

References II

Alexander Golovnev, Siyao Guo, Spencer Peters, and Noah
Stephens-Davidowitz.
Revisiting time-space tradeoffs for function inversion.
Available at
https://eccc.weizmann.ac.il/report/2022/145/, 2022.

Martin Hellman.
A cryptanalytic time-memory trade-off.
IEEE Transactions on Information Theory, 26(4):401–406,
1980.

Ilan Newman.
Private vs. common random bits in communication complexity.

Information processing letters, 39(2):67–71, 1991.

23 / 23

https://eccc.weizmann.ac.il/report/2022/145/

