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▶ The study of this black-box function inversion problem was

initiated by Martin Hellman in 1980 [Hel80].

2 / 23



Function Inversion

▶ Given a function, and a point y in its range,
find x with f (x) = y .

f y ∈ [N]{1, 2, . . . ,N} =: [N] ∋ x

1

2

74

...

N

...

74

N

f

74

2

1

2

74

...

N

...

74

N

permutation f

▶ The study of this black-box function inversion problem was

initiated by Martin Hellman in 1980 [Hel80].

2 / 23



Hellman’s algorithm

▶ If f is a permutation,
its graph is a disjoint union of cycles.
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Analysis

▶ If we space the stored points T hops apart:

f

y ∈ [N]

T (= 3)
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Analysis

▶ If we space the stored points T hops apart:

f

y ∈ [N]

T (= 3)

y ∈ [N]
f

▶ We need T evaluations of f to invert y .

▶ We need to store about N/T points total.

5 / 23



Stepping back

▶ Goal: design a pair of algorithms (P,A)
such that

Pr[α← P(f ); x ← Af (α, y); f (x) = y ] ≥ 9/10.

▶ In this model, P and A have unbounded computational
power.

▶ We aim to minimize the bitlength S of α, and the number of
queries T that A makes to f .
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Application scenarios

▶ The NSA wants to break cryptography based on a widely used
cryptographic function, such as AES-128.

▶ Hackers want to recover passwords from a stolen database of
password hashes (Rainbow Tables)

▶ Theoretical computer scientists want better algorithms for

3-SUM [GGH+20],

multiparty pointer jumping [CK19],

systematic substring search [CK19], ...
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Beyond Permutations

Result Applies To Tradeoff Key Point

Hellman 1980 permutations T ≲ N/S S = T ≲
√
N

Yao 1990 permutations T ≳ N/S S = T ≳
√
N

Hellman 1980 random f T ≲ N2/S2 S = T ≲ N2/3

Fiat-Naor 1991 all functions T ≲ N3/S3 S = T ≲ N3/4

▶ Q: Can we improve Fiat-Naor? Can we improve Yao’s lower
bound?

▶ A: Sort of and sort of!
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Our Results

▶ Result 1: A simple improvement
to Fiat and Naor’s algorithm in the regime T > S .

▶ Result 2: A tight lower bound for a natural class of
non-adaptive function inversion algorithms.

▶ Not in this talk: equivalences between variants of function
inversion.
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Background: beyond permutations

▶ Preprocessing stores the endpoints of disjoint paths.

f f

▶ No longer possible to cover the entire range.

▶ But, can still cover a small fraction with disjoint paths.

▶ To boost the coverage, observe that inverting g ◦ f on g(y) is
often enough to invert f on y .

▶ So, can repeatedly apply the basic scheme to many
compositions gi ◦ f , for suitably chosen “rerandomization”
functions gi .

▶ For random functions, Hellman showed (heuristically) this can

be made to work.

12 / 23



Background: beyond permutations

▶ Preprocessing stores the endpoints of disjoint paths.

f f

▶ No longer possible to cover the entire range.

▶ But, can still cover a small fraction with disjoint paths.

▶ To boost the coverage, observe that inverting g ◦ f on g(y) is
often enough to invert f on y .

▶ So, can repeatedly apply the basic scheme to many
compositions gi ◦ f , for suitably chosen “rerandomization”
functions gi .

▶ For random functions, Hellman showed (heuristically) this can

be made to work.

12 / 23



Background: beyond permutations

▶ Preprocessing stores the endpoints of disjoint paths.

f ff f

▶ No longer possible to cover the entire range.

▶ But, can still cover a small fraction with disjoint paths.

▶ To boost the coverage, observe that inverting g ◦ f on g(y) is
often enough to invert f on y .

▶ So, can repeatedly apply the basic scheme to many
compositions gi ◦ f , for suitably chosen “rerandomization”
functions gi .

▶ For random functions, Hellman showed (heuristically) this can

be made to work.

12 / 23



Background: beyond permutations

▶ Preprocessing stores the endpoints of disjoint paths.

f ff f

▶ No longer possible to cover the entire range.

▶ But, can still cover a small fraction with disjoint paths.

▶ To boost the coverage, observe that inverting g ◦ f on g(y) is
often enough to invert f on y .

▶ So, can repeatedly apply the basic scheme to many
compositions gi ◦ f , for suitably chosen “rerandomization”
functions gi .

▶ For random functions, Hellman showed (heuristically) this can

be made to work.

12 / 23



Background: beyond permutations

▶ Preprocessing stores the endpoints of disjoint paths.

f ff f

▶ No longer possible to cover the entire range.

▶ But, can still cover a small fraction with disjoint paths.

▶ To boost the coverage, observe that inverting g ◦ f on g(y) is
often enough to invert f on y .

▶ So, can repeatedly apply the basic scheme to many
compositions gi ◦ f , for suitably chosen “rerandomization”
functions gi .

▶ For random functions, Hellman showed (heuristically) this can

be made to work.

12 / 23



Background: beyond permutations

▶ Preprocessing stores the endpoints of disjoint paths.

f ff f

▶ No longer possible to cover the entire range.

▶ But, can still cover a small fraction with disjoint paths.

▶ To boost the coverage, observe that inverting g ◦ f on g(y) is
often enough to invert f on y .

▶ So, can repeatedly apply the basic scheme to many
compositions gi ◦ f , for suitably chosen “rerandomization”
functions gi .

▶ For random functions, Hellman showed (heuristically) this can

be made to work.

12 / 23



Background: beyond permutations

▶ Preprocessing stores the endpoints of disjoint paths.

f ff f

▶ No longer possible to cover the entire range.

▶ But, can still cover a small fraction with disjoint paths.

▶ To boost the coverage, observe that inverting g ◦ f on g(y) is
often enough to invert f on y .

▶ So, can repeatedly apply the basic scheme to many
compositions gi ◦ f , for suitably chosen “rerandomization”
functions gi .

▶ For random functions, Hellman showed (heuristically) this can

be made to work.

12 / 23



Background: beyond permutations

▶ Preprocessing stores the endpoints of disjoint paths.

f ff f

▶ No longer possible to cover the entire range.

▶ But, can still cover a small fraction with disjoint paths.

▶ To boost the coverage, observe that inverting g ◦ f on g(y) is
often enough to invert f on y .

▶ So, can repeatedly apply the basic scheme to many
compositions gi ◦ f , for suitably chosen “rerandomization”
functions gi .

▶ For random functions, Hellman showed (heuristically) this can

be made to work.

12 / 23



Background: beyond permutations

▶ Preprocessing stores the endpoints of disjoint paths.

f ff f

▶ No longer possible to cover the entire range.

▶ But, can still cover a small fraction with disjoint paths.

▶ To boost the coverage, observe that inverting g ◦ f on g(y) is
often enough to invert f on y .

▶ So, can repeatedly apply the basic scheme to many
compositions gi ◦ f , for suitably chosen “rerandomization”
functions gi .

▶ For random functions, Hellman showed (heuristically) this can

be made to work.

12 / 23



Background: Fiat-Naor

▶ Hellman’s argument fails for arbitrary functions.

▶ Arbitrary functions can have “junction points” with many
inverses.

▶ Paths collide at these points, causing all sorts of problems.

▶ Fiat and Naor deal with this by storing α = (α′, L), where L
contains junction points along with their inverses.

▶ Intuitively, α′ is the data structure for a restriction of f that
avoids the junction points in L.

▶ More precisely, the “rerandomization” functions are sampled
using rejection sampling so that their range is [N]− L.

13 / 23



Background: Fiat-Naor

▶ Hellman’s argument fails for arbitrary functions.

▶ Arbitrary functions can have “junction points” with many
inverses.

▶ Paths collide at these points, causing all sorts of problems.

▶ Fiat and Naor deal with this by storing α = (α′, L), where L
contains junction points along with their inverses.

▶ Intuitively, α′ is the data structure for a restriction of f that
avoids the junction points in L.

▶ More precisely, the “rerandomization” functions are sampled
using rejection sampling so that their range is [N]− L.

13 / 23



Background: Fiat-Naor

▶ Hellman’s argument fails for arbitrary functions.

▶ Arbitrary functions can have “junction points” with many
inverses.

▶ Paths collide at these points, causing all sorts of problems.

▶ Fiat and Naor deal with this by storing α = (α′, L), where L
contains junction points along with their inverses.

▶ Intuitively, α′ is the data structure for a restriction of f that
avoids the junction points in L.

▶ More precisely, the “rerandomization” functions are sampled
using rejection sampling so that their range is [N]− L.

13 / 23



Background: Fiat-Naor

▶ Hellman’s argument fails for arbitrary functions.

▶ Arbitrary functions can have “junction points” with many
inverses.

▶ Paths collide at these points, causing all sorts of problems.

▶ Fiat and Naor deal with this by storing α = (α′, L), where L
contains junction points along with their inverses.

▶ Intuitively, α′ is the data structure for a restriction of f that
avoids the junction points in L.

▶ More precisely, the “rerandomization” functions are sampled
using rejection sampling so that their range is [N]− L.

13 / 23



Background: Fiat-Naor

▶ Hellman’s argument fails for arbitrary functions.

▶ Arbitrary functions can have “junction points” with many
inverses.

▶ Paths collide at these points, causing all sorts of problems.

▶ Fiat and Naor deal with this by storing α = (α′, L), where L
contains junction points along with their inverses.

▶ Intuitively, α′ is the data structure for a restriction of f that
avoids the junction points in L.

▶ More precisely, the “rerandomization” functions are sampled
using rejection sampling so that their range is [N]− L.

13 / 23



Background: Fiat-Naor

▶ Hellman’s argument fails for arbitrary functions.

▶ Arbitrary functions can have “junction points” with many
inverses.

▶ Paths collide at these points, causing all sorts of problems.

▶ Fiat and Naor deal with this by storing α = (α′, L), where L
contains junction points along with their inverses.

▶ Intuitively, α′ is the data structure for a restriction of f that
avoids the junction points in L.

▶ More precisely, the “rerandomization” functions are sampled
using rejection sampling so that their range is [N]− L.

13 / 23



Background: Fiat-Naor

▶ Hellman’s argument fails for arbitrary functions.

▶ Arbitrary functions can have “junction points” with many
inverses.

▶ Paths collide at these points, causing all sorts of problems.

▶ Fiat and Naor deal with this by storing α = (α′, L), where L
contains junction points along with their inverses.

▶ Intuitively, α′ is the data structure for a restriction of f that
avoids the junction points in L.

▶ More precisely, the “rerandomization” functions are sampled
using rejection sampling so that their range is [N]− L.

13 / 23



Background: Fiat-Naor

▶ Hellman’s argument fails for arbitrary functions.

▶ Arbitrary functions can have “junction points” with many
inverses.

▶ Paths collide at these points, causing all sorts of problems.

▶ Fiat and Naor deal with this by storing α = (α′, L), where L
contains junction points along with their inverses.

▶ Intuitively, α′ is the data structure for a restriction of f that
avoids the junction points in L.

▶ More precisely, the “rerandomization” functions are sampled
using rejection sampling so that their range is [N]− L.

13 / 23



Our Improvement (1)

▶ Recall that Fiat and Naor’s preprocessing and online
algorithms must agree on a list L of “junction points”.

▶ We observe that the tradeoff T ≲ N3/S3 comes from

T ≲
1

|L|
· N

3

S2
.

▶ Fiat and Naor get |L| ≃ S , but this is the hard limit, since L
needs to fit into S-bit advice α.

▶ Or does it?
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Our Improvement (2)

▶ Fiat and Naor’s list L actually consists of
images f (xi ) of random points xi ∼ [N].

▶ Our idea: Instead of reading L from α, A recovers L by
evaluating f on the same random points xi .

▶ This allows |L| ≃ T , so we can get T ≲ N3/(S2T ), or

T ≲ N3/2/S .

▶ That’s it!

▶ But I’ve cheated here...

▶ How do A and P agree on the same list of random values xi?
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Along the Way: Shared Randomness

▶ We show that, in the preprocessing model,
one can assume shared randomness without loss of generality.

▶ The proof adapts Newman’s lemma [New91] from

communication complexity.

▶ In practice, can instantiate a random oracle.
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Result 2: Background

▶ Recall that Yao’s lower bound (for inverting arbitrary
functions) hasn’t been improved in 30+ years.

▶ Corrigan-Gibbs and Kogan [CK19]: any

small improvement =⇒ new lower bounds in circuit
complexity.

▶ Even improving Yao’s bound just for non-adaptive algorithms
would do it!

▶ A is non-adaptive if its evaluation points x1, . . . , xT are
chosen up front, before any evaluations of f are seen.

▶ Non-adaptive algorithms seem very weak. Hellman’s algorithm
is very adaptive.

▶ Corrigan-Gibbs and Kogan speculated that there is no
non-adaptive algorithm with

S = o(N logN) and T = o(N).
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A Lower Bound

▶ We observe that there IS in fact a very simple algorithm, that
(barely!) outperforms the trivial inverter.

▶ For each range element, preprocessing stores a
(log(N)− log(T ))-bit prefix of one of its inverses.

▶ This implicitly defines T candidate inverses for the online
algorithm to check, achieving the tradeoff
S = O(N log(N/T )).

▶ When the online algorithm just (non-adaptively) checks T
candidate inverses determined by the preprocessing α and the
challenge y , we call it a guess-and-check algorithm.

▶ We show that the simple algorithm above is
asymptotically optimal among guess-and-check
algorithms.
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A Lower Bound

▶ The proof is a compression argument. For simplicity,
assume there exists a guess-and-check algorithm
that always succeeds, with parameters S ,T . Then

▶ Theorem: Can encode any permutation f using S + N logT
bits.

=⇒ S + N logT = Ω(N logN)

=⇒ S = Ω(N log(N/T )).

▶ Proof:
▶ Encoder computes α← P(f ).
▶ For each y ∈ [N], encoder runs A(α, y) and receives

x1, . . . , xT . It writes down the iy ∈ [T ] that satisfies
f (xiy ) = y .

▶ Encoding is (α, i1, . . . , iN).

▶ For each y , decoder again runs A(α, y) and receives
x1, . . . , xT . It sets f

−1(y) = xiy .
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Open Problems

▶ In some sense, only one open problem–

close the gap!

▶ Moonshots:
▶ Improve Yao’s lower bound against (general) non-adaptive

algorithms?

▶ S2T = N2 algorithm for worst-case function inversion?

▶ Possibly more tractable:
▶ Better algorithms for inverting a small fraction of the range?

That is, improving on De, Trevisan and Tulsiani [DTT10]?

▶ Better algorithms for inverting injective functions?
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Thank you!

I’m happy to take additional questions offline.
You can ping me at speters@cs.cornell.edu.
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