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Function Inversion

» Given a function, and a point y in its range,
find x with f(x) = y.

(12, N} = [N]ley 0
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» The study of this black-box function inversion problem was

initiated by Martin Hellman in 1980 [Hel80].
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Analysis

> If we space the stored points T hops apart:

T(=3)
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J T
éDe[N]
fr N /f
N vl

> We need T evaluations of f to invert y.

» \We need to store about N/ T points total.
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Stepping back

» Goal: design a pair of algorithms (P, .A)
such that

Pria « P(f); x + Af(a, y); f(x) = y] > 9/10.

» In this model, P and A have unbounded computational
power.

» We aim to minimize the bitlength S of «, and the number of
queries T that A makes to f.
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Application scenarios

» The NSA wants to break cryptography based on a widely used
cryptographic function, such as AES-128.

» Hackers want to recover passwords from a stolen database of
password hashes (Rainbow Tables)

» Theoretical computer scientists want better algorithms for

s
NP el | AN

multiparty pointer jumping [CK19],

systematic substring search [CK19], ...
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el

» Q: Can we improve Fiat-Naor? Can we improve Yao's lower

bound?

» A: Sort of and sort of!
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Our Results

> Result 1: A simple improvement
to Fiat and Naor's algorithm in the regime T > S.

> Result 2: A tight lower bound for a natural class of
non-adaptive function inversion algorithms.

» Not in this talk: equivalences between variants of function
inversion.
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> No longer possible to cover the entire range.
» But, can still cover a small fraction with disjoint paths.
>

To boost the coverage, observe that inverting g o f on g(y) is
often enough to invert f on y.

» So, can repeatedly apply the basic scheme to many
compositions g; o f, for suitably chosen “rerandomization”
functions g;.

» For random functions, Hellman showed (heuristically) this can

be made to work. &
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» Hellman's argument fails for arbitrary functions.

» Arbitrary functions can have “junction points” with many
inverses.

» Paths collide at these points, causing all sorts of problems.

» Fiat and Naor deal with this by storing o = (&, L), where L
contains junction points along with their inverses.

» Intuitively, o/ is the data structure for a restriction of f that
avoids the junction points in L.

» More precisely, the “rerandomization” functions are sampled
using rejection sampling so that their range is [N] — L.
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» Recall that Fiat and Naor's preprocessing and online
algorithms must agree on a list L of “junction points”.

» We observe that the tradeoff T < N3/S3 comes from

1 N3
T< ..
~L e S?

» Fiat and Naor get |L| ~ S, but this is the hard limit, since L
needs to fit into S-bit advice a.

» Or does it?

14/23



Our Improvement (2)

» Fiat and Naor's list L actually consists of
images f(x;) of random points x; ~ [N].
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» Fiat and Naor's list L actually consists of
images f(x;) of random points x; ~ [N].

» Our idea: Instead of reading L from «, A recovers L by
evaluating f on the same random points x;.

» This allows |L| ~ T, so we can get T < N3/(S2T), or

T < N32/S.

» That's it!
» But I've cheated here...

» How do .4 and P agree on the same list of random values x;?
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Along the Way: Shared Randomness

> We show that, in the preprocessing model,

one can assume shared randomness without loss of generality.

» The proof adapts Newman'’s lemma [New91] ‘5 from

communication complexity.

» In practice, can instantiate a random oracle.
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| 2

Recall that Yao's lower bound (for inverting arbitrary
functions) hasn't been improved in 30+ years.

Corrigan-Gibbs and Kogan { [CK19]: any

small improvement = new lower bounds in circuit
complexity.
Even improving Yao's bound just for non-adaptive algorithms

would do it!

A is non-adaptive if its evaluation points xq,...,x7 are
chosen up front, before any evaluations of f are seen.

Non-adaptive algorithms seem very weak. Hellman's algorithm
is very adaptive.

Corrigan-Gibbs and Kogan speculated that there is no
non-adaptive algorithm with

S =o0(NlogN) and T = o(N).
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A Lower Bound

| 2

We observe that there IS in fact a very simple algorithm, that
(barely!) outperforms the trivial inverter.

For each range element, preprocessing stores a
(log(N) — log( T))-bit prefix of one of its inverses.

This implicitly defines T candidate inverses for the online
algorithm to check, achieving the tradeoff
S=0(Nlog(N/T)).

When the online algorithm just (non-adaptively) checks T
candidate inverses determined by the preprocessing o and the
challenge y, we call it a guess-and-check algorithm.

We show that the simple algorithm above is
asymptotically optimal among guess-and-check
algorithms.
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A Lower Bound

» The proof is a compression argument. For simplicity,
assume there exists a guess-and-check algorithm
that always succeeds, with parameters S, T. Then

» Theorem: Can encode any permutation f using S+ Nlog T
bits.

= S+ Nlog T =Q(Nlog N)
= S=Q(Nlog(N/T)).

» Proof:

>
>

Encoder computes o < P(f).

For each y € [N], encoder runs A(c, y) and receives
X1,...,x7. It writes down the i, € [T] that satisfies

f(x,)=y.

Encoding is (v, i1, ..., in).

For each y, decoder again runs A(«, y) and receives
Xi, ..., x7. It sets 1 (y) = x; .
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» S2T = N? algorithm for worst-case function inversion?

» Possibly more tractable:

» Better algorithms for inverting a small fraction of the range?
That is, improving on De, Trevisan and Tulsiani [DTT10]?

» Better algorithms for inverting injective functions?
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Thank youl!

I'm happy to take additional questions offline.
You can ping me at speters@cs.cornell.edu.
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