Revisiting Time-Space Tradeoffs for Function Inversion

Spencer Peters

Sasha Golovnev

Function Inversion

- Given a function
$\{1,2, \ldots, N\}=:[N] \longrightarrow \quad f \quad[N]$

Function Inversion

- Given a function, and a point y in its range,

$$
\{1,2, \ldots, N\}=:[N] \longrightarrow y \in[N]
$$

Function Inversion

- Given a function, and a point y in its range, find x with $f(x)=y$.

$$
\{1,2, \ldots, N\}=:[N] \ni x \rightarrow \quad f \quad y \in[N]
$$

Function Inversion

- Given a function, and a point y in its range, find x with $f(x)=y$.

$$
\{1,2, \ldots, N\}=:[N] \ni x \longrightarrow y \in[N]
$$

Function Inversion

- Given a function, and a point y in its range, find x with $f(x)=y$.

$$
\{1,2, \ldots, N\}=:[N] \ni x \longrightarrow y \in[N]
$$

Function Inversion

- Given a function, and a point y in its range, find x with $f(x)=y$.

$$
\{1,2, \ldots, N\}=:[N] \ni x \longrightarrow y \in[N]
$$

Function Inversion

- Given a function, and a point y in its range, find x with $f(x)=y$.

$$
\{1,2, \ldots, N\}=:[N] \ni x \longrightarrow \quad f \quad \longrightarrow \in[N]
$$

- The study of this black-box function inversion problem was initiated by Martin Hellman in 1980 [Hel80].

Function Inversion

- Given a function, and a point y in its range, find x with $f(x)=y$.

- The study of this black-box function inversion problem was initiated by Martin Hellman in 1980 [Hel80].

Hellman's algorithm

- If f is a permutation, its graph is a disjoint union of cycles.

Hellman's algorithm

- If f is a permutation, its graph is a disjoint union of cycles.

Hellman's algorithm

- If f is a permutation, its graph is a disjoint union of cycles.

Hellman's algorithm

- If f is a permutation,
its graph is a disjoint union of cycles.

Hellman's algorithm

- If f is a permutation,
its graph is a disjoint union of cycles.

Hellman's algorithm

- If f is a permutation,
its graph is a disjoint union of cycles.

Hellman's algorithm

- If f is a permutation,
its graph is a disjoint union of cycles.

Hellman's algorithm

- If f is a permutation,
its graph is a disjoint union of cycles.

Hellman's algorithm

- What if y is on a large cycle?

Hellman's algorithm

- What if y is on a large cycle?

Hellman's algorithm

- What if y is on a large cycle?

Hellman's algorithm

- What if y is on a large cycle?

- In a preprocessing step, store points uniformly spaced around each cycle.

Hellman's algorithm

- What if y is on a large cycle?

- In a preprocessing step, store points uniformly spaced around each cycle.

Hellman's algorithm

- What if y is on a large cycle?

- In a preprocessing step, store points uniformly spaced around each cycle.

Hellman's algorithm

- What if y is on a large cycle?

- In a preprocessing step, store points uniformly spaced around each cycle.

Hellman's algorithm

- What if y is on a large cycle?

- In a preprocessing step, store points uniformly spaced around each cycle.

Hellman's algorithm

- What if y is on a large cycle?

- In a preprocessing step, store points uniformly spaced around each cycle.

Hellman's algorithm

- What if y is on a large cycle?

- In a preprocessing step, store points uniformly spaced around each cycle.

Analysis

- If we space the stored points T hops apart:

Analysis

- If we space the stored points T hops apart:

Analysis

- If we space the stored points T hops apart:

- We need T evaluations of f to invert y.

Analysis

- If we space the stored points T hops apart:

- We need T evaluations of f to invert y.

Analysis

- If we space the stored points T hops apart:

- We need T evaluations of f to invert y.

Analysis

- If we space the stored points T hops apart:

- We need T evaluations of f to invert y.

Analysis

- If we space the stored points T hops apart:

- We need T evaluations of f to invert y.

Analysis

- If we space the stored points T hops apart:

- We need T evaluations of f to invert y.
- We need to store about N / T points total.

Stepping back

- Goal: design a pair of algorithms $(\mathcal{P}, \mathcal{A})$
such that

$$
\operatorname{Pr}\left[\alpha \leftarrow \mathcal{P}(f) ; x \leftarrow \mathcal{A}^{f}(\alpha, y) ; f(x)=y\right] \geq 9 / 10
$$

Stepping back

- Goal: design a pair of algorithms $(\mathcal{P}, \mathcal{A})$
such that

$$
\operatorname{Pr}\left[\alpha \leftarrow \mathcal{P}(f) ; x \leftarrow \mathcal{A}^{f}(\alpha, y) ; f(x)=y\right] \geq 9 / 10
$$

- In this model, \mathcal{P} and \mathcal{A} have unbounded computational power.

Stepping back

- Goal: design a pair of algorithms $(\mathcal{P}, \mathcal{A})$ such that

$$
\operatorname{Pr}\left[\alpha \leftarrow \mathcal{P}(f) ; x \leftarrow \mathcal{A}^{f}(\alpha, y) ; f(x)=y\right] \geq 9 / 10
$$

- In this model, \mathcal{P} and \mathcal{A} have unbounded computational power.
- We aim to minimize the bitlength S of α, and the number of queries T that \mathcal{A} makes to f.

Application scenarios

- The NSA wants to break cryptography based on a widely used cryptographic function, such as AES-128.

Application scenarios

- The NSA wants to break cryptography based on a widely used cryptographic function, such as AES-128.
- Hackers want to recover passwords from a stolen database of password hashes (Rainbow Tables)

Application scenarios

- The NSA wants to break cryptography based on a widely used cryptographic function, such as AES-128.
- Hackers want to recover passwords from a stolen database of password hashes (Rainbow Tables)
- Theoretical computer scientists want better algorithms for $3-S U M\left[\mathrm{GGH}^{+} 20\right]$,

Application scenarios

- The NSA wants to break cryptography based on a widely used cryptographic function, such as AES-128.
- Hackers want to recover passwords from a stolen database of password hashes (Rainbow Tables)
- Theoretical computer scientists want better algorithms for $3-S U M\left[\mathrm{GGH}^{+} 20\right]$,
 multiparty pointer jumping [CK19],

Application scenarios

- The NSA wants to break cryptography based on a widely used cryptographic function, such as AES-128.
- Hackers want to recover passwords from a stolen database of password hashes (Rainbow Tables)
- Theoretical computer scientists want better algorithms for $3-S U M\left[\mathrm{GGH}^{+} 20\right]$,
 multiparty pointer jumping [CK19], systematic substring search [CK19], ...

Beyond Permutations

Beyond Permutations

Result		Applies To	Tradeoff	Key Point
Hellman	1980	permutations	$T \lesssim N / S$	$S=T \lesssim \sqrt{N}$

Beyond Permutations

Result	Applies To	Tradeoff	Key Point	
Hellman 1980	permutations	$T \lesssim N / S$	$S=T \lesssim \sqrt{N}$	
Yao 1990				
		permutations	$T \gtrsim N / S$	$S=T \gtrsim \sqrt{N}$

Beyond Permutations

Result		Applies To	Tradeoff	Key Point
Hellman	1980	permutations	$T \lesssim N / S$	$S=T \lesssim \sqrt{N}$
Yao 1990		permutations	$T \gtrsim N / S$	$S=T \gtrsim \sqrt{N}$
Hellman	1980	random f	$T \lesssim N^{2} / S^{2}$	$S=T \lesssim N^{2 / 3}$

Beyond Permutations

Result		Applies To	Tradeoff	Key Point
Hellman 1980	permutations	$T \lesssim N / S$	$S=T \lesssim \sqrt{N}$	
Yao 1990				
Hellman 1980	random f	$T \lesssim N^{2} / S^{2}$	$S=T \lesssim N^{2 / 3}$	
Fiat-Naor 1991	all functions	$T \lesssim N^{3} / S^{3}$	$S=T \lesssim N^{3 / 4}$	

Beyond Permutations

Result		Applies To	Tradeoff	Key Point
Hellman 1980	permutations	$T \lesssim N / S$	$S=T \lesssim \sqrt{N}$	
Yao 1990				
Hellman 1980	random f	$T \lesssim N^{2} / S^{2}$	$S=T \lesssim N^{2 / 3}$	
Fiat-Naor 1991	all functions	$T \lesssim N^{3} / S^{3}$	$S=T \lesssim N^{3 / 4}$	

- Q: Can we improve Fiat-Naor? Can we improve Yao's lower bound?

Beyond Permutations

Result		Applies To	Tradeoff	Key Point
Hellman 1980	permutations	$T \lesssim N / S$	$S=T \lesssim \sqrt{N}$	
Yao 1990				
Hellman 1980	random f	$T \lesssim N^{2} / S^{2}$	$S=T \lesssim N^{2 / 3}$	
Fiat-Naor 1991	all functions	$T \lesssim N^{3} / S^{3}$	$S=T \lesssim N^{3 / 4}$	

- Q: Can we improve Fiat-Naor? Can we improve Yao's lower bound?
- A: Sort of and sort of!

Our Results

- Result 1: A simple improvement to Fiat and Naor's algorithm in the regime $T>S$.
- Result 2: A tight lower bound for a natural class of non-adaptive function inversion algorithms.
- Not in this talk: equivalences between variants of function inversion.

Result 1: Improving Fiat-Naor

| Result | Applies To | Tradeoff | Key Point |
| :--- | :--- | :--- | :--- | :--- |
| Hellman 1980 | permutations | $T \lesssim N / S$ | $S=T \lesssim \sqrt{N}$ |
| Yao 1990 | | | |
| Hellman 1980 | random f | $T \lesssim N^{2} / S^{2}$ | $S=T \lesssim N^{2 / 3}$ |
| Fiat-Naor 1991 | all functions | $T \lesssim N^{3} / S^{3}$ | $S=T \lesssim N^{3 / 4}$ |
| | | | |
| | | | |

Result 1: Improving Fiat-Naor

| Result | Applies To | Tradeoff | Key Point |
| :--- | :--- | :--- | :--- | :--- |
| Hellman 1980 | permutations | $T \lesssim N / S$ | $S=T \lesssim \sqrt{N}$ |
| Yao 1990 | | | |
| Hellman 1980 | random f | $T \lesssim N^{2} / S^{2}$ | $S=T \lesssim N^{2 / 3}$ |
| Fiat-Naor 1991 | all functions | $T \lesssim N^{3} / S^{3}$ | $S=T \lesssim N^{3 / 4}$ |
| This work | all functions | $T \lesssim N^{3} /\left(S^{2} T\right)$ | $S=T \lesssim N^{3 / 4}$ |

Result 1: Improving Fiat-Naor

| Result | Applies To | Tradeoff | Key Point |
| :--- | :--- | :--- | :--- | :--- |
| Hellman 1980 | permutations | $T \lesssim N / S$ | $S=T \lesssim \sqrt{N}$ |
| Yao 1990 | | | |
| Hellman 1980 | random f | $T \lesssim N^{2} / S^{2}$ | $S=T \lesssim N^{2 / 3}$ |
| Fiat-Naor 1991 | all functions | $T \lesssim N^{3} / S^{3}$ | $S=T \lesssim N^{3 / 4}$ |
| | | | |
| This work | all functions | $T \lesssim N^{3} /\left(S^{2} T\right)$ | $S=T \lesssim N^{3 / 4}$ |
| | | $T \lesssim N^{3 / 2} / S$ | |

Result 1: Improving Fiat-Naor

Result 1: Improving Fiat-Naor

Background: beyond permutations

- Preprocessing stores the endpoints of disjoint paths.

Background: beyond permutations

- Preprocessing stores the endpoints of disjoint paths.

Background: beyond permutations

- Preprocessing stores the endpoints of disjoint paths.

Background: beyond permutations

- Preprocessing stores the endpoints of disjoint paths.

Background: beyond permutations

- Preprocessing stores the endpoints of disjoint paths.

- No longer possible to cover the entire range.

Background: beyond permutations

- Preprocessing stores the endpoints of disjoint paths.

- No longer possible to cover the entire range.
- But, can still cover a small fraction with disjoint paths.

Background: beyond permutations

- Preprocessing stores the endpoints of disjoint paths.

- No longer possible to cover the entire range.
- But, can still cover a small fraction with disjoint paths.
- To boost the coverage, observe that inverting $g \circ f$ on $g(y)$ is often enough to invert f on y.

Background: beyond permutations

- Preprocessing stores the endpoints of disjoint paths.

- No longer possible to cover the entire range.
- But, can still cover a small fraction with disjoint paths.
- To boost the coverage, observe that inverting $g \circ f$ on $g(y)$ is often enough to invert f on y.
- So, can repeatedly apply the basic scheme to many compositions $g_{i} \circ f$, for suitably chosen "rerandomization" functions g_{i}.

Background: beyond permutations

- Preprocessing stores the endpoints of disjoint paths.

- No longer possible to cover the entire range.
- But, can still cover a small fraction with disjoint paths.
- To boost the coverage, observe that inverting $g \circ f$ on $g(y)$ is often enough to invert f on y.
- So, can repeatedly apply the basic scheme to many compositions $g_{i} \circ f$, for suitably chosen "rerandomization" functions g_{i}.
- For random functions, Hellman showed (heuristically) this can be made to work.

Background: Fiat-Naor

- Hellman's argument fails for arbitrary functions.

Background: Fiat-Naor

- Hellman's argument fails for arbitrary functions.

- Arbitrary functions can have "junction points" with many inverses.

Background: Fiat-Naor

- Hellman's argument fails for arbitrary functions.

- Arbitrary functions can have "junction points" with many inverses.

Background: Fiat-Naor

- Hellman's argument fails for arbitrary functions.

- Arbitrary functions can have "junction points" with many inverses.

Background: Fiat-Naor

- Hellman's argument fails for arbitrary functions.

- Arbitrary functions can have "junction points" with many inverses.
- Paths collide at these points, causing all sorts of problems.

Background: Fiat-Naor

- Hellman's argument fails for arbitrary functions.

- Arbitrary functions can have "junction points" with many inverses.
- Paths collide at these points, causing all sorts of problems.
- Fiat and Naor deal with this by storing $\alpha=\left(\alpha^{\prime}, L\right)$, where L contains junction points along with their inverses.

Background: Fiat-Naor

- Hellman's argument fails for arbitrary functions.

- Arbitrary functions can have "junction points" with many inverses.
- Paths collide at these points, causing all sorts of problems.
- Fiat and Naor deal with this by storing $\alpha=\left(\alpha^{\prime}, L\right)$, where L contains junction points along with their inverses.
- Intuitively, α^{\prime} is the data structure for a restriction of f that avoids the junction points in L.

Background: Fiat-Naor

- Hellman's argument fails for arbitrary functions.

- Arbitrary functions can have "junction points" with many inverses.
- Paths collide at these points, causing all sorts of problems.
- Fiat and Naor deal with this by storing $\alpha=\left(\alpha^{\prime}, L\right)$, where L contains junction points along with their inverses.
- Intuitively, α^{\prime} is the data structure for a restriction of f that avoids the junction points in L.
- More precisely, the "rerandomization" functions are sampled using rejection sampling so that their range is $[N]-L$.

Our Improvement (1)

- Recall that Fiat and Naor's preprocessing and online algorithms must agree on a list L of "junction points".

Our Improvement (1)

- Recall that Fiat and Naor's preprocessing and online algorithms must agree on a list L of "junction points".
- We observe that the tradeoff $T \lesssim N^{3} / S^{3}$ comes from

$$
T \lesssim \frac{1}{|L|} \cdot \frac{N^{3}}{S^{2}}
$$

Our Improvement (1)

- Recall that Fiat and Naor's preprocessing and online algorithms must agree on a list L of "junction points".
- We observe that the tradeoff $T \lesssim N^{3} / S^{3}$ comes from

$$
T \lesssim \frac{1}{|L|} \cdot \frac{N^{3}}{S^{2}}
$$

- Fiat and Naor get $|L| \simeq S$, but this is the hard limit, since L needs to fit into S-bit advice α.

Our Improvement (1)

- Recall that Fiat and Naor's preprocessing and online algorithms must agree on a list L of "junction points".
- We observe that the tradeoff $T \lesssim N^{3} / S^{3}$ comes from

$$
T \lesssim \frac{1}{|L|} \cdot \frac{N^{3}}{S^{2}}
$$

- Fiat and Naor get $|L| \simeq S$, but this is the hard limit, since L needs to fit into S-bit advice α.
- Or does it?

Our Improvement (2)

- Fiat and Naor's list L actually consists of images $f\left(x_{i}\right)$ of random points $x_{i} \sim[N]$.

Our Improvement (2)

- Fiat and Naor's list L actually consists of images $f\left(x_{i}\right)$ of random points $x_{i} \sim[N]$.
- Our idea: Instead of reading L from α, \mathcal{A} recovers L by evaluating f on the same random points x_{i}.

Our Improvement (2)

- Fiat and Naor's list L actually consists of images $f\left(x_{i}\right)$ of random points $x_{i} \sim[N]$.
- Our idea: Instead of reading L from α, \mathcal{A} recovers L by evaluating f on the same random points x_{i}.
- This allows $|L| \simeq T$, so we can get $T \lesssim N^{3} /\left(S^{2} T\right)$, or

$$
T \lesssim N^{3 / 2} / S
$$

Our Improvement (2)

- Fiat and Naor's list L actually consists of images $f\left(x_{i}\right)$ of random points $x_{i} \sim[N]$.
- Our idea: Instead of reading L from α, \mathcal{A} recovers L by evaluating f on the same random points x_{i}.
- This allows $|L| \simeq T$, so we can get $T \lesssim N^{3} /\left(S^{2} T\right)$, or

$$
T \lesssim N^{3 / 2} / S
$$

- That's it!
- But l've cheated here...

Our Improvement (2)

- Fiat and Naor's list L actually consists of images $f\left(x_{i}\right)$ of random points $x_{i} \sim[N]$.
- Our idea: Instead of reading L from α, \mathcal{A} recovers L by evaluating f on the same random points x_{i}.
- This allows $|L| \simeq T$, so we can get $T \lesssim N^{3} /\left(S^{2} T\right)$, or

$$
T \lesssim N^{3 / 2} / S
$$

- That's it!
- But I've cheated here...
- How do \mathcal{A} and \mathcal{P} agree on the same list of random values x_{i} ?

Along the Way: Shared Randomness

- We show that, in the preprocessing model, one can assume shared randomness without loss of generality.

Along the Way: Shared Randomness

- We show that, in the preprocessing model, one can assume shared randomness without loss of generality.
- The proof adapts Newman's lemma [New91] from communication complexity.

Along the Way: Shared Randomness

- We show that, in the preprocessing model, one can assume shared randomness without loss of generality.
- The proof adapts Newman's lemma [New91] from communication complexity.
- In practice, can instantiate a random oracle.

Result 2: Background

- Recall that Yao's lower bound (for inverting arbitrary functions) hasn't been improved in 30+ years.

Result 2: Background

- Recall that Yao's lower bound (for inverting arbitrary functions) hasn't been improved in $30+$ years
- Corrigan-Gibbs and Kogan [CK19]: any small improvement \Longrightarrow new lower bounds in circuit complexity.

Result 2: Background

- Recall that Yao's lower bound (for inverting arbitrary functions) hasn't been improved in $30+$ years
- Corrigan-Gibbs and Kogan [CK19]: any small improvement \Longrightarrow new lower bounds in circuit complexity.
- Even improving Yao's bound just for non-adaptive algorithms would do it!

Result 2: Background

- Recall that Yao's lower bound (for inverting arbitrary functions) hasn't been improved in 30+ years.
- Corrigan-Gibbs and Kogan [CK19]: any small improvement \Longrightarrow new lower bounds in circuit complexity.
- Even improving Yao's bound just for non-adaptive algorithms would do it!
- \mathcal{A} is non-adaptive if its evaluation points x_{1}, \ldots, x_{T} are chosen up front, before any evaluations of f are seen.

Result 2: Background

- Recall that Yao's lower bound (for inverting arbitrary functions) hasn't been improved in 30+ years.
- Corrigan-Gibbs and Kogan [CK19]: any small improvement \Longrightarrow new lower bounds in circuit complexity.
- Even improving Yao's bound just for non-adaptive algorithms would do it!
- \mathcal{A} is non-adaptive if its evaluation points x_{1}, \ldots, x_{T} are chosen up front, before any evaluations of f are seen.
- Non-adaptive algorithms seem very weak. Hellman's algorithm is very adaptive.

Result 2: Background

- Recall that Yao's lower bound (for inverting arbitrary functions) hasn't been improved in 30+ years.
- Corrigan-Gibbs and Kogan 6 small improvement \Longrightarrow new lower bounds in circuit complexity.
- Even improving Yao's bound just for non-adaptive algorithms would do it!
- \mathcal{A} is non-adaptive if its evaluation points x_{1}, \ldots, x_{T} are chosen up front, before any evaluations of f are seen.
- Non-adaptive algorithms seem very weak. Hellman's algorithm is very adaptive.
- Corrigan-Gibbs and Kogan speculated that there is no non-adaptive algorithm with

$$
S=o(N \log N) \text { and } T=o(N)
$$

A Lower Bound

- We observe that there IS in fact a very simple algorithm, that (barely!) outperforms the trivial inverter.

A Lower Bound

- We observe that there IS in fact a very simple algorithm, that (barely!) outperforms the trivial inverter.
- For each range element, preprocessing stores a $(\log (N)-\log (T))$-bit prefix of one of its inverses.

A Lower Bound

- We observe that there IS in fact a very simple algorithm, that (barely!) outperforms the trivial inverter.
- For each range element, preprocessing stores a $(\log (N)-\log (T))$-bit prefix of one of its inverses.
- This implicitly defines T candidate inverses for the online algorithm to check, achieving the tradeoff $S=O(N \log (N / T))$.

A Lower Bound

- We observe that there IS in fact a very simple algorithm, that (barely!) outperforms the trivial inverter.
- For each range element, preprocessing stores a $(\log (N)-\log (T))$-bit prefix of one of its inverses.
- This implicitly defines T candidate inverses for the online algorithm to check, achieving the tradeoff $S=O(N \log (N / T))$.
- When the online algorithm just (non-adaptively) checks T candidate inverses determined by the preprocessing α and the challenge y, we call it a guess-and-check algorithm.

A Lower Bound

- We observe that there IS in fact a very simple algorithm, that (barely!) outperforms the trivial inverter.
- For each range element, preprocessing stores a $(\log (N)-\log (T))$-bit prefix of one of its inverses.
- This implicitly defines T candidate inverses for the online algorithm to check, achieving the tradeoff $S=O(N \log (N / T))$.
- When the online algorithm just (non-adaptively) checks T candidate inverses determined by the preprocessing α and the challenge y, we call it a guess-and-check algorithm.
- We show that the simple algorithm above is asymptotically optimal among guess-and-check algorithms.

A Lower Bound

- The proof is a compression argument. For simplicity, assume there exists a guess-and-check algorithm that always succeeds, with parameters S, T. Then

A Lower Bound

- The proof is a compression argument. For simplicity, assume there exists a guess-and-check algorithm that always succeeds, with parameters S, T. Then
- Theorem: Can encode any permutation f using $S+N \log T$ bits.

A Lower Bound

- The proof is a compression argument. For simplicity, assume there exists a guess-and-check algorithm that always succeeds, with parameters S, T. Then
- Theorem: Can encode any permutation f using $S+N \log T$ bits.

$$
\begin{aligned}
& \Longrightarrow S+N \log T=\Omega(N \log N) \\
& \Longrightarrow S=\Omega(N \log (N / T)) .
\end{aligned}
$$

A Lower Bound

- The proof is a compression argument. For simplicity, assume there exists a guess-and-check algorithm that always succeeds, with parameters S, T. Then
- Theorem: Can encode any permutation f using $S+N \log T$ bits.

$$
\begin{aligned}
& \Longrightarrow S+N \log T=\Omega(N \log N) \\
& \Longrightarrow S=\Omega(N \log (N / T)) .
\end{aligned}
$$

- Proof:
- Encoder computes $\alpha \leftarrow \mathcal{P}(f)$.

A Lower Bound

- The proof is a compression argument. For simplicity, assume there exists a guess-and-check algorithm that always succeeds, with parameters S, T. Then
- Theorem: Can encode any permutation f using $S+N \log T$ bits.

$$
\begin{aligned}
& \Longrightarrow S+N \log T=\Omega(N \log N) \\
& \Longrightarrow S=\Omega(N \log (N / T)) .
\end{aligned}
$$

- Proof:
- Encoder computes $\alpha \leftarrow \mathcal{P}(f)$.
- For each $y \in[N]$, encoder runs $\mathcal{A}(\alpha, y)$ and receives x_{1}, \ldots, x_{T}. It writes down the $i_{y} \in[T]$ that satisfies $f\left(x_{i y}\right)=y$.

A Lower Bound

- The proof is a compression argument. For simplicity, assume there exists a guess-and-check algorithm that always succeeds, with parameters S, T. Then
- Theorem: Can encode any permutation f using $S+N \log T$ bits.

$$
\begin{aligned}
& \Longrightarrow S+N \log T=\Omega(N \log N) \\
& \Longrightarrow S=\Omega(N \log (N / T)) .
\end{aligned}
$$

- Proof:
- Encoder computes $\alpha \leftarrow \mathcal{P}(f)$.
- For each $y \in[N]$, encoder runs $\mathcal{A}(\alpha, y)$ and receives x_{1}, \ldots, x_{T}. It writes down the $i_{y} \in[T]$ that satisfies $f\left(x_{i y}\right)=y$.
- Encoding is $\left(\alpha, i_{1}, \ldots, i_{N}\right)$.

A Lower Bound

- The proof is a compression argument. For simplicity, assume there exists a guess-and-check algorithm that always succeeds, with parameters S, T. Then
- Theorem: Can encode any permutation f using $S+N \log T$ bits.

$$
\begin{aligned}
& \Longrightarrow S+N \log T=\Omega(N \log N) \\
& \Longrightarrow S=\Omega(N \log (N / T)) .
\end{aligned}
$$

- Proof:
- Encoder computes $\alpha \leftarrow \mathcal{P}(f)$.
- For each $y \in[N]$, encoder runs $\mathcal{A}(\alpha, y)$ and receives x_{1}, \ldots, x_{T}. It writes down the $i_{y} \in[T]$ that satisfies $f\left(x_{i y}\right)=y$.
- Encoding is $\left(\alpha, i_{1}, \ldots, i_{N}\right)$.
- For each y, decoder again runs $\mathcal{A}(\alpha, y)$ and receives x_{1}, \ldots, x_{T}. It sets $f^{-1}(y)=x_{i y}$.

Open Problems

- In some sense, only one open problem-

Open Problems

- In some sense, only one open problem-close the gap!

Open Problems

- In some sense, only one open problem-close the gap!
- Moonshots:
- Improve Yao's lower bound against (general) non-adaptive algorithms?

Open Problems

- In some sense, only one open problem-close the gap!
- Moonshots:
- Improve Yao's lower bound against (general) non-adaptive algorithms?
- $S^{2} T=N^{2}$ algorithm for worst-case function inversion?

Open Problems

- In some sense, only one open problem-close the gap!
- Moonshots:
- Improve Yao's lower bound against (general) non-adaptive algorithms?
- $S^{2} T=N^{2}$ algorithm for worst-case function inversion?
- Possibly more tractable:
- Better algorithms for inverting a small fraction of the range? That is, improving on De, Trevisan and Tulsiani [DTT10]?

Open Problems

- In some sense, only one open problem-close the gap!
- Moonshots:
- Improve Yao's lower bound against (general) non-adaptive algorithms?
- $S^{2} T=N^{2}$ algorithm for worst-case function inversion?
- Possibly more tractable:
- Better algorithms for inverting a small fraction of the range? That is, improving on De, Trevisan and Tulsiani [DTT10]?
- Better algorithms for inverting injective functions?

Thank you!

I'm happy to take additional questions offline.
You can ping me at speters@cs.cornell.edu.

References I

冨 Henry Corrigan-Gibbs and Dmitry Kogan.
The function-inversion problem: Barriers and opportunities. In TCC, 2019.

R Anindya De, Luca Trevisan, and Madhur Tulsiani.
Time space tradeoffs for attacks against one-way functions and PRGs.
In CRYPTO, 2010.
Alexander Golovnev, Siyao Guo, Thibaut Horel, Sunoo Park, and Vinod Vaikuntanathan.
Data structures meet cryptography: 3SUM with preprocessing.
In STOC, 2020.

References II

Alexander Golovnev, Siyao Guo, Spencer Peters, and Noah Stephens-Davidowitz.
Revisiting time-space tradeoffs for function inversion.
Available at
https://eccc.weizmann.ac.il/report/2022/145/, 2022.
國 Martin Hellman.
A cryptanalytic time-memory trade-off.
IEEE Transactions on Information Theory, 26(4):401-406, 1980.

围 Ilan Newman.
Private vs. common random bits in communication complexity.
Information processing letters, 39(2):67-71, 1991.

