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The Parallelization of a Public Permutation

® Parallel keyed hashing with an underlying public permutation

® max DPs(a, A)-Auniversal and maxz DPfc(a,t)—universaI
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e Keyed hash functions take arbitrary length inputs and output a fixed length digest

® We study their security when used in Wegman-Carter(-Shoup) and protected hash
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Security of WC(S) [wc81, Sho96]

® Security against forgery of the tuple (m,n,T)

® The attacker has to come up with a tuple (1", n",77):

T = Fi(m) + Py(n)

T* = Fp(m™) + Py (n")

T —T* = Fx(m)—Fr(m™) + Py (n)— P (n*)
Fy(m)—Fp(m*) = T—T"—Py(n)+ Py (n)

® c-Auniversality [Sti95] of F' is defined over all distinct pairs of messages m, m*:

PriFp(m) — Fx(m*) = A] <e
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Security of Protected Hash

® The security is defined as a distinguishing advantage

® Assuming that P is PRP-secure and m # m*:

m h T
m* h T

® c-universality [Sti95] of F is defined over all distinct pairs of messages m, m*:

Pr[Fi(m) = Fp(m™)] <e
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Key-Then-Hash

® A Key-Then-Hash function F': G* x BS(G, k) — G with:
® Strings of length 1 to « over the group (G, +): BS(G,r) =, G
® Key Space: G*
® Qutput Space: G

® Where Fx(m) = F(k+ m):

H—— 8
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Addition of Two Strings

® We define the addition of any two strings m, m* € BS(G, k) with |m| < |m*| as:

/ * * * *
m =m +m1,m2+m2,m3+m3,...,m|m‘ +mlm‘
mi ma2 m3
+
kl k‘z k‘3 k4 k5

m1 + k1 ma + k2 || m3 + ks
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The Parallelization of a Public Permutation

e Parallel[f] builds a Key-Then-Hash function using a public permutation f
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Differential Probability Over Fixed-Length Permutations

Given fixed-length permutation f: G = G
® |nput difference a € GG propagates to the output difference b € G through f if
flx+a)— f(z)=0
® The pair (a,b) is called a differential over f and happens with probability:

_#Hr e Gl fl+a) - f(z) =1b}

DPf(CL,b) = #G
z+a y+b
f
T Y
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A Difference Between Two Strings

e We define the difference of any two strings m, m* with |m| < |m*| as:

* * * *
a=ma —ml,mg—mQ,mg—mg,...,mm‘ —m|m‘
A= |m*| — |m|

mi ma2 m3
A=2
mj mj ms mj ms
a= [mi;—mj || ma—m3 || ms—mj
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Universality of Parallel|f]

® We are interested in proving bounds on the universality and A-universality of
Parallel[f]

® Input difference (a, \) leading to a A output difference through Parallel[f]:

|m| jm”|

N Fmi ki) = Y f(m] + k) =
i=1 Jj=1

® Assuming |m| < |m*|

jm| |

Zf(mi+ki)— m; + k;) Z f(m; + kj)
=1

j=|ml+1

11/21



Universality of Parallel|f]

|m]| m*|
S fmitk) — fmi+k)— > f(mi+k)=A
=1 j=|m|+1

® Pr[f(m; + k;) — f(m} + k;) = b;] with a; = m; —m is given by DPf(a;, b;)
® Pr[f(m] + kj) = z;] is uniform and is equal to ¥§j
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Stochastic Variables

|m| m*|
S flmitk) — fmi+k)— > f(m]+k)
T ~~ j= \1n+1\—’_

Assuming a; = m; —m;:
® h; can be seen as a stochastic variable with probability mass function

DPai (bz) = DPf(ai, bz)

® ; can be seen as a stochastic variable with probability mass function

1

U(zj) = G
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Addition of Two Independent Stochastic Variables

® The PMF of a stochastic variable z = x + y is given by
9:(v) = gz * gy(v) = ng(t)gy(v —1)
t
® The resulting convolution is bound by the PMFs of the original two variables

max g,(v) < min {max gz(v), max gy(v)}
v v v
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PMF of output differences of Parallel|f]

|m]| m*|
DL+ ki) = flmi+ k)= > [m) k) = A
=1 N

b; j=|ml+1 op

® The output difference of Parallel[f] is a stochastic variable

® |t is the variable resulting from the sum of all b; and

DP,, *DPy, * ... * DP,  + Ulm =ImD(A)
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Generalized Differentials over Parallel[ f]

® We now define a notion of differentials over Parallel[f] and their probability

DPPar(3—7 A, A) =DPy, x...% DPalal * U()‘)(A)

e \We directly get a bound on the Auniversality

1
max DPp,(a, A\, A) <max< maxDP((a,A), — » = maxDP(a, A
3%, PPeecla A £) {<a,A) 7 8) #G} fy PPs( )
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Universality of Parallel|f]

® We now prove an upper bound on the universality of Parallel[f]

® An output difference 0 is not possible with single-block strings
® From our definition of differentials over Parallel[f] we know

(zlir,l()?i) DPPar (a7 07 A) > (E}&%() DPPar(aa 07 O)

® We also know that max, g A) DPpar(a,0, A) is maximized with a € e
® Hence we must find

(aénaaz);) Zt: DP (a1, t)DPs(az, A —t)
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Bound on Inner Products

DP ;(ar, £)DP;(az, A — ¢
aénGagAZt: #(ar, t)DP f(as )

® This can be seen as the inner product of two vectors indexed by ¢

® The inner product of two vectors is upper bound by the product of their norm
(Cauchy-Schwarz)

|(a, by < [lall[[bl]
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Bound on Inner Products

[(a, b)| < [|a|[b]] < max { [al*, ||b]*}

® Hence we get the following bound
> DP(ay,t)DPy(az, A — t) < max {Z DP%(a1,t), Y _ DP%(ag, A — t)}
t t t

= max {Z DP%(al,t), Z DP?‘(CLQ,t)}
t t
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Universality of Parallel|f]

> DP¢(ay,t)DPy(az, A — t) < max {Z DP%(a1,t), Y DP?(@,t)}
t t t

® We have proven the following upper bound on the universality

L DPpar(a,0,0) < mélxzt: DP?(a,t)

® This bound is tight when we take as = —a;
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Conclusion

Parallelization of a Public Permutation

® \We have shown a parallel key-then-hash function built on a public
permutation

® |t is max, A DP(a, A)-Auniversal and max, Y, DP(a, t)*-universal

® |ts security depends solely on the differential properties of its underlying
public permutation
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More In The Paper

® \We define the probability of differential over key-then-hash functions
® \We show an analysis to a serial key-then-hash

® We apply these results X00D0OO[3] and XOODOO[4]

21/21



Conclusion

Parallelization of a Public Permutation

® \We have shown a parallel key-then-hash function built on a public
permutation

® |t is max, A DP(a, A)-Auniversal and max, Y, DP(a, t)*-universal

® |ts security depends solely on the differential properties of its underlying
public permutation

More In The Paper

® \We define the probability of differential over key-then-hash functions
® \We show an analysis to a serial key-then-hash

® We apply these results X00D0OO[3] and XOODOO[4]

Thank you for your attention!
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