

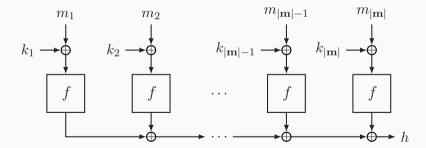
Security of Keyed Hashing Based on a Public Permutation

<u>Jonathan Fuchs</u>, Yann Rotella, Joan Daemen Radboud University (The Netherlands) Crypto 2023 August 24, 2023

ESCADA

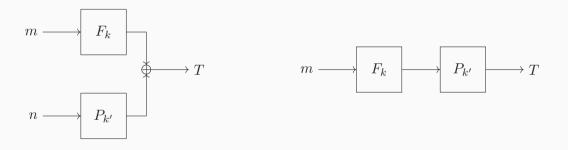
The Parallelization of a Public Permutation

- Parallel keyed hashing with an underlying public permutation
- $\max_{a,\Delta \in G} \mathsf{DP}_f(a,\Delta) \text{-} \Delta \text{universal and } \max_{a \in G} \sum_{t \in G} \mathsf{DP}_f^2(a,t) \text{-} \text{universal}$



Motivation

- · Keyed hash functions take arbitrary length inputs and output a fixed length digest
- We study their security when used in Wegman-Carter(-Shoup) and protected hash



Wegman-Carter(-Shoup)

Protected Hash

Security of WC(S) [WC81, Sho96]

- Security against forgery of the tuple (m, n, T)
- The attacker has to come up with a tuple (m^*, n^*, T^*) :

$$T = F_k(m) + P_{k'}(n)$$

$$T^* = F_k(m^*) + P_{k'}(n^*)$$

$$T - T^* = F_k(m) - F_k(m^*) + P_{k'}(n) - P_{k'}(n^*)$$

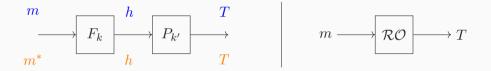
$$F_k(m) - F_k(m^*) = T - T^* - P_{k'}(n) + P_{k'}(n^*)$$

• ϵ - Δ universality [Sti95] of F is defined over all distinct pairs of messages m, m^* :

$$Pr[F_k(m) - F_k(m^*) = \Delta] \le \epsilon$$

Security of Protected Hash

- The security is defined as a distinguishing advantage
- Assuming that $P_{k'}$ is PRP-secure and $m \neq m^*$:

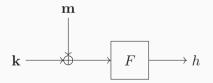


• ϵ -universality [Sti95] of F is defined over all distinct pairs of messages m, m^* :

$$Pr[F_k(m) = F_k(m^*)] \le \epsilon$$

Key-Then-Hash

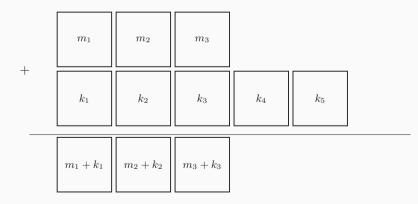
- A Key-Then-Hash function $F: G^{\kappa} \times BS(G, \kappa) \to G$ with:
 - Strings of length 1 to κ over the group $\langle G, + \rangle$: $BS(G, \kappa) = \bigcup_{i=1}^{\kappa} G^i$
 - Key Space: G^{κ}
 - Output Space: G
- Where $F_{\mathbf{k}}(\mathbf{m}) = F(\mathbf{k} + \mathbf{m})$:



Addition of Two Strings

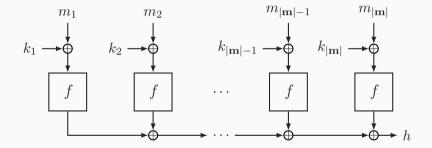
• We define the addition of any two strings $\mathbf{m}, \mathbf{m}^* \in BS(G, \kappa)$ with $|\mathbf{m}| \leq |\mathbf{m}^*|$ as:

$$\mathbf{m}' = m_1 + m_1^*, m_2 + m_2^*, m_3 + m_3^*, \dots, m_{|\mathbf{m}|} + m_{|\mathbf{m}|}^*$$



The Parallelization of a Public Permutation

 $\bullet \ \mathrm{Parallel}[f]$ builds a Key-Then-Hash function using a public permutation f



Differential Probability Over Fixed-Length Permutations

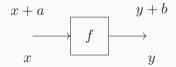
Given fixed-length permutation $f \colon G \to G$

• Input difference $a \in G$ propagates to the output difference $b \in G$ through f if

$$f(x+a) - f(x) = b$$

• The pair (a, b) is called a differential over f and happens with probability:

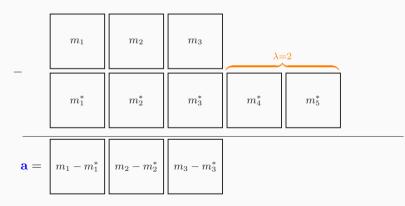
$$\mathsf{DP}_f(a,b) = \frac{\#\{x \in G \mid f(x+a) - f(x) = b\}}{\#G}$$



A Difference Between Two Strings

• We define the difference of any two strings \mathbf{m}, \mathbf{m}^* with $|\mathbf{m}| \leq |\mathbf{m}^*|$ as:

$$\mathbf{a} = m_1 - m_1^*, m_2 - m_2^*, m_3 - m_3^*, \dots, m_{|\mathbf{m}|} - m_{|\mathbf{m}|}^*$$
$$\lambda = |\mathbf{m}^*| - |\mathbf{m}|$$



Universality of Parallel[f]

- We are interested in proving bounds on the universality and Δ -universality of Parallel[f]
 - Input difference (\mathbf{a}, λ) leading to a Δ output difference through Parallel[f]:

$$\sum_{i=1}^{|\mathbf{m}|} f(m_i + k_i) - \sum_{j=1}^{|\mathbf{m}^*|} f(m_j^* + k_j) = \Delta$$

• Assuming $|\mathbf{m}| \leq |\mathbf{m}^*|$

$$\sum_{i=1}^{|\mathbf{m}|} f(m_i + k_i) - f(m_i^* + k_i) - \sum_{j=|\mathbf{m}|+1}^{|\mathbf{m}^*|} f(m_j^* + k_j) = \Delta$$

$$\sum_{i=1}^{|\mathbf{m}|} f(m_i + k_i) - f(m_i^* + k_i) - \sum_{j=|\mathbf{m}|+1}^{|\mathbf{m}^*|} f(m_j^* + k_j) = \Delta$$

- $\Pr[f(m_i + k_i) f(m_i^* + k_i) = b_i]$ with $a_i = m_i m_i^*$ is given by $\mathsf{DP}_f(a_i, b_i)$
- $\Pr[f(m_j^* + k_j) = x_j]$ is uniform and is equal to $\frac{1}{\#G}$

$$\sum_{i=1}^{|\mathbf{m}|} \underbrace{f(m_i + k_i) - f(m_i^* + k_i)}_{b_i} - \sum_{j=|\mathbf{m}|+1}^{|\mathbf{m}^*|} \underbrace{f(m_j^* + k_j)}_{x_j} = \Delta$$

Assuming $a_i = m_i - m_i^*$:

• b_i can be seen as a stochastic variable with probability mass function

$$DP_{a_i}(\mathbf{b_i}) = \mathsf{DP}_f(a_i, \mathbf{b_i})$$

• x_j can be seen as a stochastic variable with probability mass function

$$\mathrm{U}(\boldsymbol{x_j}) = \frac{1}{\#G}$$

• The PMF of a stochastic variable z = x + y is given by

$$g_z(v) = g_x * g_y(v) = \sum_t g_x(t)g_y(v-t)$$

• The resulting convolution is bound by the PMFs of the original two variables

$$\max_{v} g_z(v) \le \min\left\{\max_{v} g_x(v), \max_{v} g_y(v)\right\}$$

$$\sum_{i=1}^{|\mathbf{m}|} \underbrace{f(m_i + k_i) - f(m_i^* + k_i)}_{b_i} - \sum_{j=|\mathbf{m}|+1}^{|\mathbf{m}^*|} \underbrace{f(m_j^* + k_j)}_{x_j} = \Delta$$

- The output difference of Parallel[f] is a stochastic variable
- It is the variable resulting from the sum of all b_i and x_j

$$DP_{a_1} * DP_{a_2} * \ldots * DP_{a_{|m|}} * U^{(|\mathbf{m}^*| - |\mathbf{m}|)}(\Delta)$$

• We now define a notion of differentials over Parallel[f] and their probability

$$\mathsf{DP}_{\mathrm{Par}}(\mathbf{a},\lambda,\Delta) = \mathrm{DP}_{a_1} * \ldots * \mathrm{DP}_{a_{|\mathbf{a}|}} * \mathrm{U}^{(\lambda)}(\Delta)$$

• We directly get a bound on the Δ universality

$$\max_{(\mathbf{a},\lambda,\Delta)} \mathsf{DP}_{\mathrm{Par}}(\mathbf{a},\lambda,\Delta) \le \max\left\{\max_{(a,\Delta)} \mathsf{DP}_f(a,\Delta), \frac{1}{\#G}\right\} = \max_{(a,\Delta)} \mathsf{DP}_f(a,\Delta)$$

- We now prove an upper bound on the universality of Parallel[f]
 - An output difference $\boldsymbol{0}$ is not possible with single-block strings
 - From our definition of differentials over Parallel[f] we know

$$\max_{(\mathbf{a},0,\Delta)} \mathsf{DP}_{Par}(\mathbf{a},0,\Delta) \geq \max_{(\mathbf{a},0,0)} \mathsf{DP}_{Par}(\mathbf{a},0,0)$$

- We also know that $\max_{(\mathbf{a},0,\Delta)}\mathsf{DP}_{\mathrm{Par}}(\mathbf{a},0,\Delta)$ is maximized with $\mathbf{a}\in G^2$
 - Hence we must find

$$\max_{(\mathbf{a}\in G^2,\Delta)}\sum_t \mathsf{DP}_f(a_1,t)\mathsf{DP}_f(a_2,\Delta-t)$$

$$\max_{\mathbf{a}\in G^2,\Delta}\sum_t \mathsf{DP}_f(a_1,t)\mathsf{DP}_f(a_2,\Delta-t)$$

- This can be seen as the inner product of two vectors indexed by t
- The inner product of two vectors is upper bound by the product of their norm (Cauchy-Schwarz)

$$|\langle \mathbf{a}, \mathbf{b}
angle| \le \|\mathbf{a}\| \|\mathbf{b}\|$$

$$|\langle \mathbf{a}, \mathbf{b}
angle| \leq \|\mathbf{a}\| \|\mathbf{b}\| \leq \max \left\{ \|\mathbf{a}\|^2, \|\mathbf{b}\|^2
ight\}$$

• Hence we get the following bound

$$\sum_{t} \mathsf{DP}_{f}(a_{1}, t) \mathsf{DP}_{f}(a_{2}, \Delta - t) \leq \max\left\{\sum_{t} \mathsf{DP}_{f}^{2}(a_{1}, t), \sum_{t} \mathsf{DP}_{f}^{2}(a_{2}, \Delta - t)\right\}$$
$$= \max\left\{\sum_{t} \mathsf{DP}_{f}^{2}(a_{1}, t), \sum_{t} \mathsf{DP}_{f}^{2}(a_{2}, t)\right\}$$

$$\sum_{t} \mathsf{DP}_{f}(a_{1}, t) \mathsf{DP}_{f}(a_{2}, \Delta - t) \leq \max\left\{\sum_{t} \mathsf{DP}_{f}^{2}(a_{1}, t), \sum_{t} \mathsf{DP}_{f}^{2}(a_{2}, t)\right\}$$

• We have proven the following upper bound on the universality

$$\max_{\mathbf{a}\in G^2} \mathsf{DP}_{\mathrm{Par}}(\mathbf{a}, 0, 0) \le \max_{a} \sum_{t} \mathsf{DP}^2(a, t)$$

• This bound is tight when we take $a_2 = -a_1$

Conclusion

Parallelization of a Public Permutation

- We have shown a parallel key-then-hash function built on a public permutation
- It is $\max_{a,\Delta} \mathsf{DP}(a, \Delta)$ - Δ universal and $\max_a \sum_t \mathsf{DP}_f(a, t)^2$ -universal
- Its security depends solely on the differential properties of its underlying public permutation

Conclusion

Parallelization of a Public Permutation

- We have shown a parallel key-then-hash function built on a public permutation
- It is $\max_{a,\Delta} \mathsf{DP}(a, \Delta)$ - Δ universal and $\max_a \sum_t \mathsf{DP}_f(a, t)^2$ -universal
- Its security depends solely on the differential properties of its underlying public permutation

More In The Paper

- We define the probability of differential over key-then-hash functions
- We show an analysis to a serial key-then-hash
- We apply these results X00D00[3] and X00D00[4]

Conclusion

Parallelization of a Public Permutation

- We have shown a parallel key-then-hash function built on a public permutation
- It is $\max_{a,\Delta} \mathsf{DP}(a,\Delta)$ - Δ universal and $\max_a \sum_t \mathsf{DP}_f(a,t)^2$ -universal
- Its security depends solely on the differential properties of its underlying public permutation

More In The Paper

- We define the probability of differential over key-then-hash functions
- We show an analysis to a serial key-then-hash
- We apply these results $\mathrm{XOODOO}[3]$ and $\mathrm{XOODOO}[4]$

Thank you for your attention!

References i

Victor Shoup.

On Fast and Provably Secure Message Authentication Based on Universal Hashing.

In Neal Koblitz, editor, Advances in Cryptology - CRYPTO '96, 16th Annual International Cryptology Conference, Santa Barbara, California, USA, August 18-22, 1996, Proceedings, volume 1109 of Lecture Notes in Computer Science, pages 313–328. Springer, 1996.

Douglas R. Stinson.

On the Connections Between Universal Hashing, Combinatorial Designs and Error-Correcting Codes.

Electron. Colloquium Comput. Complex., 2(52), 1995.

References ii

 Mark N. Wegman and Larry Carter.
 New Hash Functions and Their Use in Authentication and Set Equality. J. Comput. Syst. Sci., 22(3):265–279, 1981.