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PRP versus PRF

▶ Many symmetric cryptographic schemes are based on

pseudorandom permutations (PRPs) like AES

▶ A lot of modes only use the forward direction, not making use of the invertibility

▶ In this case using a pseudorandom function (PRF) is often more secure

▶ Prominent example: CTR mode
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PRP-to-PRF Methods

▶ We could design a dedicated PRF

▶ However, we have little understanding in how to design one

▶ Alternatively, we can design a PRP-to-PRF method

• PRP-PRF switch: PRP behaves like a PRF up to the birthday bound

• Conversions like summation achieve beyond birthday bound security
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Private Summation
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▶ Sums the output of two independent permutations

▶ Achieves n-bit security for private permutations
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Public Summation
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▶ In some situations the permutations are public

▶ Moves to indifferentiability setting
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Indifferentiability

▶ Distinguisher D distinguishes between the real world and the ideal world

▶ Both primitive and construction queries

▶ Real world are public permutations Π0,1 (primitive) and their summation Π0 ⊕ Π1

(construction)

▶ Ideal world is a simulator S0,1 (primitive) and a random oracle RO (construction)

▶ Both forward and backward direction for the primitive queries

S−1
0,1S0,1 ROΠ−1

0,1Π0,1 Π0 ⊕ Π1

D
6 / 20



Indifferentiability

▶ Distinguisher D distinguishes between the real world and the ideal world

▶ Both primitive and construction queries

▶ Real world are public permutations Π0,1 (primitive) and their summation Π0 ⊕ Π1

(construction)

▶ Ideal world is a simulator S0,1 (primitive) and a random oracle RO (construction)

▶ Both forward and backward direction for the primitive queries

S−1
0,1S0,1 ROΠ−1

0,1Π0,1 Π0 ⊕ Π1

D
6 / 20



Indifferentiability

▶ Distinguisher D distinguishes between the real world and the ideal world

▶ Both primitive and construction queries

▶ Real world are public permutations Π0,1 (primitive) and their summation Π0 ⊕ Π1

(construction)

▶ Ideal world is a simulator S0,1 (primitive) and a random oracle RO (construction)

▶ Both forward and backward direction for the primitive queries

S−1
0,1S0,1 ROΠ−1

0,1Π0,1 Π0 ⊕ Π1

D
6 / 20



Indifferentiability

▶ Distinguisher D distinguishes between the real world and the ideal world

▶ Both primitive and construction queries

▶ Real world are public permutations Π0,1 (primitive) and their summation Π0 ⊕ Π1

(construction)

▶ Ideal world is a simulator S0,1 (primitive) and a random oracle RO (construction)

▶ Both forward and backward direction for the primitive queries

S−1
0,1S0,1 ROΠ−1

0,1Π0,1 Π0 ⊕ Π1

D
6 / 20



Indifferentiability

▶ Distinguisher D distinguishes between the real world and the ideal world

▶ Both primitive and construction queries

▶ Real world are public permutations Π0,1 (primitive) and their summation Π0 ⊕ Π1

(construction)

▶ Ideal world is a simulator S0,1 (primitive) and a random oracle RO (construction)

▶ Both forward and backward direction for the primitive queries

S−1
0,1S0,1 ROΠ−1

0,1Π0,1 Π0 ⊕ Π1

D
6 / 20



Previous works

▶ Three previous works about the indifferentiability of the sum of two permutations

• Mandal et al. [MPN10] showed 2n/3-bit security

• Mennink and Preneel [MP15] identified a flaw in [MPN10] and re-proved

(2n/3− log2(n))-bit security

• Bhattacharya and Nandi [BN18] improved to n-bit security
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Simulator (forward)

▶ All previous works use identical simulators up to negligible differences

▶ Simplified, the forward simulator S0 works as follows on input x :

• Query the random oracle as z = RO(x)
• Define the set of possible outputs as

Y = {0, 1}n \ (range(S0) ∪ (range(S1)⊕ z))

• Sample a uniformly drawn output as y0
$←− Y

• Return y0
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Simulator (inverse)

▶ Simplified, the inverse simulator S−1
0 works as follows on input y0

• Sample a random fresh x

• Query the random oracle as z = RO(x)
• Check whether x is possible based on z :

▶ If it is possible, when y1 = y0 ⊕ z /∈ range(S1), return x

▶ Otherwise, repeat the process up to ℓ times
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Contributions

▶ Multiple contributions

• All previous works are flawed

paper security level random range sequentiality fresh oracle

[MPN10] 2n/3 [MP15] [Gun22] —

[MP15] 2n/3− log2(n) — [Gun22] —

[BN18] n Ours [Gun22] Ours

• Attack on standard simulator using O(25n/6) queries
• Proof showing (2n/3− log2(n))-bit security can be fixed using a new

technique
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Flaw 1: Random Range

▶ Let R0 and R1 be the ranges of the two primitives, i.e. in the real world we have

R0 = {Π0(xi ) | 1 ⩽ i ⩽ q }
R1 = {Π1(xi ) | 1 ⩽ i ⩽ q }

▶ Then R0 and R1 are randomly distributed ✗

▶ Only true for forward queries, not backward ones

▶ Take the queries

Π−1
0 (0000),Π−1

0 (0001),Π−1
0 (0010),Π−1

0 (0011)

▶ Then R0 = {0000, 0001, 0010, 0011} is not random
▶ Fundamental problem, invalidating [MPN10, BN18]
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Flaw 2: Sequentiality

▶ Modify the distinguisher D to an equivalent

one D′: ✓

• Interact like D
(xmin = x1 if z1 < z2 else x2)

• Add verification queries for all

construction queries

• Output the same decision as D
▶ Note that these queries contain duplicate

information ✓

▶ Ignore the construction queries, leaving only

the primitive ones ✗

▶ Disregards that the construction queries can

have influence on later queries

Primitive Construction

RO(x1) = z1

RO(x2) = z2

S0(xmin) = ymin

S0(xmax) = ymax

S1(x1) = y1 ⊕ z1

S1(x2) = y2 ⊕ z2

ymin
?
< ymax
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Flaw 2: Sequentiality ctd.

▶ There is an alternative modification with the

same flaw

▶ Execute the verification queries at the same

time as the construction queries ✗

▶ This changes the order of the primitive queries,

which does influence its behavior

▶ Works in the weaker sequential

indifferentiability setting, where all primitive

queries have to be made before the

construction queries

Primitive Construction

S0(x1) = y1

RO(x1) = z1

S1(x1) = y1 ⊕ z1

S0(x2) = y2

RO(x2) = z2

S1(x2) = y2 ⊕ z2

S0(xmin) = ymin

S0(xmax) = ymax

ymin
?
< ymax
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time as the construction queries ✗

▶ This changes the order of the primitive queries,

which does influence its behavior

▶ Works in the weaker sequential

indifferentiability setting, where all primitive

queries have to be made before the

construction queries
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Stateless versus Stateful

▶ All previous works do one of these transformations

▶ Simulator viewed as a stateless primitive

▶ A stateless primitive can be implemented by drawing all randomness at the start

▶ Most primitives are stateless: random permutations, random function, random

oracle, etc.

▶ The simulator is stateful, making analysis more difficult
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Reordering Queries

▶ A stateless primitive allows queries to be made in any order: P(x1),P(x2) has the

same distribution as P(x2),P(x1), simplifying analysis

▶ This same property is assumed for the simulator and is the core of the flaw

▶ The simulator is stateful and does not have this same behavior

▶ We show that the simulator partly has this property

▶ Queries can be reordered as necessary up to 2n/3-bit security

▶ Re-establishes regular indifferentiability with (2n/3− log2(n))-bit security using

[MP15] for sequential indifferentiability
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Flaw 3: Fresh Oracle

▶ A value returned from the random oracle is uniformly at random distributed ✗

▶ Does not hold due to the behavior of the inverse simulator

▶ Comparison to illustrate the problem
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Comparison: Bag of M&M’s

▶ Consider a bag of 10 colored M&M’s

▶ They are uniformly sampled from 5 colors: red, brown,

yellow, green and blue

▶ A randomly drawn M&M has a probability of 1/5 of

being a specific color, even after other draws

▶ Suppose you do not like brown M&M’s and do the following when grabbing one:

• If it is brown: redraw (can be brown), put the original M&M back

• If it is any other colored M&M: eat it

▶ After this process, the probability that an M&M in the bag is brown becomes:

4

5
· 1
5
+

1

5
·
(
8

9
· 1
5
+

1

9
· 1
)

=
49

225
>

45

225
=

1

5
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Comparison: Bag of M&M’s (ctd.)

▶ Similar issue is present in [BN18]

▶ Other works [MPN10, MP15] acknowledge the difference

▶ Partly responsible for limited 2n/3-bit security in those works

▶ We give an attack that shows that this difference matters for more than 3n/4-bit

security

18 / 20
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Attack: Standard Simulator Limited to 5n/6-bit Security

▶ Recall that the forward simulator selects its output y0 uniformly from all

possibilities Y = {0, 1}n \ (range(S0) ∪ (range(S1)⊕ z))

▶ Surprisingly, in some cases the sampling in the real world does not behave

uniformly

▶ Gives rise to an attack using O(25n/6) queries
▶ Maybe possible to fix with a biased simulator, but gets very complicated
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Conclusion

▶ An established beyond birthday bound PRP-to-PRF conversion is the sum of

permutations

▶ All previous works on its indifferentiability are flawed

▶ We show limitations for many different approaches

▶ Also positive result: regular indifferentiability with (2n/3− log2(n))-bit security

Thank you for your attention!
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