
Revisiting the Indifferentiability of the Sum of Permutations

Aldo Gunsing, Ritam Bhaumik, Ashwin Jha, Bart Mennink, Yaobin Shen

Crypto 2023

1 / 20



PRP versus PRF

▶ Many symmetric cryptographic schemes are based on

pseudorandom permutations (PRPs) like AES

▶ A lot of modes only use the forward direction, not making use of the invertibility

▶ In this case using a pseudorandom function (PRF) is often more secure

▶ Prominent example: CTR mode

EK EKEK

⟨0⟩n ⟨1⟩n ⟨2⟩n

x0 x1 x2

y0 y1 y2

FK FKFK

⟨0⟩n ⟨1⟩n ⟨2⟩n

x0 x1 x2

y0 y1 y2

n/2-bit security n-bit security

2 / 20



PRP versus PRF

▶ Many symmetric cryptographic schemes are based on

pseudorandom permutations (PRPs) like AES

▶ A lot of modes only use the forward direction, not making use of the invertibility

▶ In this case using a pseudorandom function (PRF) is often more secure

▶ Prominent example: CTR mode

EK EKEK

⟨0⟩n ⟨1⟩n ⟨2⟩n

x0 x1 x2

y0 y1 y2

FK FKFK

⟨0⟩n ⟨1⟩n ⟨2⟩n

x0 x1 x2

y0 y1 y2

n/2-bit security n-bit security

2 / 20



PRP versus PRF

▶ Many symmetric cryptographic schemes are based on

pseudorandom permutations (PRPs) like AES

▶ A lot of modes only use the forward direction, not making use of the invertibility

▶ In this case using a pseudorandom function (PRF) is often more secure

▶ Prominent example: CTR mode

EK EKEK

⟨0⟩n ⟨1⟩n ⟨2⟩n

x0 x1 x2

y0 y1 y2

FK FKFK

⟨0⟩n ⟨1⟩n ⟨2⟩n

x0 x1 x2

y0 y1 y2

n/2-bit security n-bit security

2 / 20



PRP versus PRF

▶ Many symmetric cryptographic schemes are based on

pseudorandom permutations (PRPs) like AES

▶ A lot of modes only use the forward direction, not making use of the invertibility

▶ In this case using a pseudorandom function (PRF) is often more secure

▶ Prominent example: CTR mode

EK EKEK

⟨0⟩n ⟨1⟩n ⟨2⟩n

x0 x1 x2

y0 y1 y2

FK FKFK

⟨0⟩n ⟨1⟩n ⟨2⟩n

x0 x1 x2

y0 y1 y2

n/2-bit security n-bit security

2 / 20



PRP-to-PRF Methods

▶ We could design a dedicated PRF

▶ However, we have little understanding in how to design one

▶ Alternatively, we can design a PRP-to-PRF method

• PRP-PRF switch: PRP behaves like a PRF up to the birthday bound

• Conversions like summation achieve beyond birthday bound security

3 / 20



PRP-to-PRF Methods

▶ We could design a dedicated PRF

▶ However, we have little understanding in how to design one

▶ Alternatively, we can design a PRP-to-PRF method

• PRP-PRF switch: PRP behaves like a PRF up to the birthday bound

• Conversions like summation achieve beyond birthday bound security

3 / 20



PRP-to-PRF Methods

▶ We could design a dedicated PRF

▶ However, we have little understanding in how to design one

▶ Alternatively, we can design a PRP-to-PRF method

• PRP-PRF switch: PRP behaves like a PRF up to the birthday bound

• Conversions like summation achieve beyond birthday bound security

3 / 20



PRP-to-PRF Methods

▶ We could design a dedicated PRF

▶ However, we have little understanding in how to design one

▶ Alternatively, we can design a PRP-to-PRF method

• PRP-PRF switch: PRP behaves like a PRF up to the birthday bound

• Conversions like summation achieve beyond birthday bound security

3 / 20



Private Summation

EK0 EK1

z

x x

▶ Sums the output of two independent permutations

▶ Achieves n-bit security for private permutations

4 / 20



Private Summation

EK0 EK1

z

x x

▶ Sums the output of two independent permutations

▶ Achieves n-bit security for private permutations

4 / 20



Private Summation

EK0 EK1

z

x x

▶ Sums the output of two independent permutations

▶ Achieves n-bit security for private permutations

4 / 20



Public Summation

Π0 Π1

z

x x

▶ In some situations the permutations are public

▶ Moves to indifferentiability setting

5 / 20



Public Summation

Π0 Π1

z

x x

▶ In some situations the permutations are public

▶ Moves to indifferentiability setting

5 / 20



Public Summation

Π0 Π1

z

x x

▶ In some situations the permutations are public

▶ Moves to indifferentiability setting

5 / 20



Indifferentiability

▶ Distinguisher D distinguishes between the real world and the ideal world

▶ Both primitive and construction queries

▶ Real world are public permutations Π0,1 (primitive) and their summation Π0 ⊕ Π1

(construction)

▶ Ideal world is a simulator S0,1 (primitive) and a random oracle RO (construction)

▶ Both forward and backward direction for the primitive queries

S−1
0,1S0,1 ROΠ−1

0,1Π0,1 Π0 ⊕ Π1

D
6 / 20



Indifferentiability

▶ Distinguisher D distinguishes between the real world and the ideal world

▶ Both primitive and construction queries

▶ Real world are public permutations Π0,1 (primitive) and their summation Π0 ⊕ Π1

(construction)

▶ Ideal world is a simulator S0,1 (primitive) and a random oracle RO (construction)

▶ Both forward and backward direction for the primitive queries

S−1
0,1S0,1 ROΠ−1

0,1Π0,1 Π0 ⊕ Π1

D
6 / 20



Indifferentiability

▶ Distinguisher D distinguishes between the real world and the ideal world

▶ Both primitive and construction queries

▶ Real world are public permutations Π0,1 (primitive) and their summation Π0 ⊕ Π1

(construction)

▶ Ideal world is a simulator S0,1 (primitive) and a random oracle RO (construction)

▶ Both forward and backward direction for the primitive queries

S−1
0,1S0,1 ROΠ−1

0,1Π0,1 Π0 ⊕ Π1

D
6 / 20



Indifferentiability

▶ Distinguisher D distinguishes between the real world and the ideal world

▶ Both primitive and construction queries

▶ Real world are public permutations Π0,1 (primitive) and their summation Π0 ⊕ Π1

(construction)

▶ Ideal world is a simulator S0,1 (primitive) and a random oracle RO (construction)

▶ Both forward and backward direction for the primitive queries

S−1
0,1S0,1 ROΠ−1

0,1Π0,1 Π0 ⊕ Π1

D
6 / 20



Indifferentiability

▶ Distinguisher D distinguishes between the real world and the ideal world

▶ Both primitive and construction queries

▶ Real world are public permutations Π0,1 (primitive) and their summation Π0 ⊕ Π1

(construction)

▶ Ideal world is a simulator S0,1 (primitive) and a random oracle RO (construction)

▶ Both forward and backward direction for the primitive queries

S−1
0,1S0,1 ROΠ−1

0,1Π0,1 Π0 ⊕ Π1

D
6 / 20



Previous works

▶ Three previous works about the indifferentiability of the sum of two permutations

• Mandal et al. [MPN10] showed 2n/3-bit security

• Mennink and Preneel [MP15] identified a flaw in [MPN10] and re-proved

(2n/3− log2(n))-bit security

• Bhattacharya and Nandi [BN18] improved to n-bit security

7 / 20



Previous works

▶ Three previous works about the indifferentiability of the sum of two permutations

• Mandal et al. [MPN10] showed 2n/3-bit security

• Mennink and Preneel [MP15] identified a flaw in [MPN10] and re-proved

(2n/3− log2(n))-bit security

• Bhattacharya and Nandi [BN18] improved to n-bit security

7 / 20



Previous works

▶ Three previous works about the indifferentiability of the sum of two permutations

• Mandal et al. [MPN10] showed 2n/3-bit security

• Mennink and Preneel [MP15] identified a flaw in [MPN10] and re-proved

(2n/3− log2(n))-bit security

• Bhattacharya and Nandi [BN18] improved to n-bit security

7 / 20



Previous works

▶ Three previous works about the indifferentiability of the sum of two permutations

• Mandal et al. [MPN10] showed 2n/3-bit security

• Mennink and Preneel [MP15] identified a flaw in [MPN10] and re-proved

(2n/3− log2(n))-bit security

• Bhattacharya and Nandi [BN18] improved to n-bit security

7 / 20



Simulator (forward)

▶ All previous works use identical simulators up to negligible differences

▶ Simplified, the forward simulator S0 works as follows on input x :

• Query the random oracle as z = RO(x)
• Define the set of possible outputs as

Y = {0, 1}n \ (range(S0) ∪ (range(S1)⊕ z))

• Sample a uniformly drawn output as y0
$←− Y

• Return y0

8 / 20



Simulator (forward)

▶ All previous works use identical simulators up to negligible differences

▶ Simplified, the forward simulator S0 works as follows on input x :

• Query the random oracle as z = RO(x)
• Define the set of possible outputs as

Y = {0, 1}n \ (range(S0) ∪ (range(S1)⊕ z))

• Sample a uniformly drawn output as y0
$←− Y

• Return y0

8 / 20



Simulator (forward)

▶ All previous works use identical simulators up to negligible differences

▶ Simplified, the forward simulator S0 works as follows on input x :

• Query the random oracle as z = RO(x)

• Define the set of possible outputs as

Y = {0, 1}n \ (range(S0) ∪ (range(S1)⊕ z))

• Sample a uniformly drawn output as y0
$←− Y

• Return y0

8 / 20



Simulator (forward)

▶ All previous works use identical simulators up to negligible differences

▶ Simplified, the forward simulator S0 works as follows on input x :

• Query the random oracle as z = RO(x)
• Define the set of possible outputs as

Y = {0, 1}n \ (range(S0) ∪ (range(S1)⊕ z))

• Sample a uniformly drawn output as y0
$←− Y

• Return y0

8 / 20



Simulator (forward)

▶ All previous works use identical simulators up to negligible differences

▶ Simplified, the forward simulator S0 works as follows on input x :

• Query the random oracle as z = RO(x)
• Define the set of possible outputs as

Y = {0, 1}n \ (range(S0) ∪ (range(S1)⊕ z))

• Sample a uniformly drawn output as y0
$←− Y

• Return y0

8 / 20



Simulator (forward)

▶ All previous works use identical simulators up to negligible differences

▶ Simplified, the forward simulator S0 works as follows on input x :

• Query the random oracle as z = RO(x)
• Define the set of possible outputs as

Y = {0, 1}n \ (range(S0) ∪ (range(S1)⊕ z))

• Sample a uniformly drawn output as y0
$←− Y

• Return y0

8 / 20



Simulator (inverse)

▶ Simplified, the inverse simulator S−1
0 works as follows on input y0

• Sample a random fresh x

• Query the random oracle as z = RO(x)
• Check whether x is possible based on z :

▶ If it is possible, when y1 = y0 ⊕ z /∈ range(S1), return x

▶ Otherwise, repeat the process up to ℓ times

9 / 20



Simulator (inverse)

▶ Simplified, the inverse simulator S−1
0 works as follows on input y0

• Sample a random fresh x

• Query the random oracle as z = RO(x)
• Check whether x is possible based on z :

▶ If it is possible, when y1 = y0 ⊕ z /∈ range(S1), return x

▶ Otherwise, repeat the process up to ℓ times

9 / 20



Simulator (inverse)

▶ Simplified, the inverse simulator S−1
0 works as follows on input y0

• Sample a random fresh x

• Query the random oracle as z = RO(x)

• Check whether x is possible based on z :

▶ If it is possible, when y1 = y0 ⊕ z /∈ range(S1), return x

▶ Otherwise, repeat the process up to ℓ times

9 / 20



Simulator (inverse)

▶ Simplified, the inverse simulator S−1
0 works as follows on input y0

• Sample a random fresh x

• Query the random oracle as z = RO(x)
• Check whether x is possible based on z :

▶ If it is possible, when y1 = y0 ⊕ z /∈ range(S1), return x

▶ Otherwise, repeat the process up to ℓ times

9 / 20



Simulator (inverse)

▶ Simplified, the inverse simulator S−1
0 works as follows on input y0

• Sample a random fresh x

• Query the random oracle as z = RO(x)
• Check whether x is possible based on z :

▶ If it is possible, when y1 = y0 ⊕ z /∈ range(S1), return x

▶ Otherwise, repeat the process up to ℓ times

9 / 20



Simulator (inverse)

▶ Simplified, the inverse simulator S−1
0 works as follows on input y0

• Sample a random fresh x

• Query the random oracle as z = RO(x)
• Check whether x is possible based on z :

▶ If it is possible, when y1 = y0 ⊕ z /∈ range(S1), return x

▶ Otherwise, repeat the process up to ℓ times

9 / 20



Contributions

▶ Multiple contributions

• All previous works are flawed

paper security level random range sequentiality fresh oracle

[MPN10] 2n/3 [MP15] [Gun22] —

[MP15] 2n/3− log2(n) — [Gun22] —

[BN18] n Ours [Gun22] Ours

• Attack on standard simulator using O(25n/6) queries
• Proof showing (2n/3− log2(n))-bit security can be fixed using a new

technique

10 / 20



Contributions

▶ Multiple contributions

• All previous works are flawed

paper security level random range sequentiality fresh oracle

[MPN10] 2n/3 [MP15] [Gun22] —

[MP15] 2n/3− log2(n) — [Gun22] —

[BN18] n Ours [Gun22] Ours

• Attack on standard simulator using O(25n/6) queries
• Proof showing (2n/3− log2(n))-bit security can be fixed using a new

technique

10 / 20



Contributions

▶ Multiple contributions

• All previous works are flawed

paper security level random range sequentiality fresh oracle

[MPN10] 2n/3 [MP15] [Gun22] —

[MP15] 2n/3− log2(n) — [Gun22] —

[BN18] n Ours [Gun22] Ours

• Attack on standard simulator using O(25n/6) queries

• Proof showing (2n/3− log2(n))-bit security can be fixed using a new

technique

10 / 20



Contributions

▶ Multiple contributions

• All previous works are flawed

paper security level random range sequentiality fresh oracle

[MPN10] 2n/3 [MP15] [Gun22] —

[MP15] 2n/3− log2(n) — [Gun22] —

[BN18] n Ours [Gun22] Ours

• Attack on standard simulator using O(25n/6) queries
• Proof showing (2n/3− log2(n))-bit security can be fixed using a new

technique

10 / 20



Flaw 1: Random Range

▶ Let R0 and R1 be the ranges of the two primitives, i.e. in the real world we have

R0 = {Π0(xi ) | 1 ⩽ i ⩽ q }
R1 = {Π1(xi ) | 1 ⩽ i ⩽ q }

▶ Then R0 and R1 are randomly distributed ✗

▶ Only true for forward queries, not backward ones

▶ Take the queries

Π−1
0 (0000),Π−1

0 (0001),Π−1
0 (0010),Π−1

0 (0011)

▶ Then R0 = {0000, 0001, 0010, 0011} is not random
▶ Fundamental problem, invalidating [MPN10, BN18]

11 / 20



Flaw 1: Random Range

▶ Let R0 and R1 be the ranges of the two primitives, i.e. in the real world we have

R0 = {Π0(xi ) | 1 ⩽ i ⩽ q }
R1 = {Π1(xi ) | 1 ⩽ i ⩽ q }

▶ Then R0 and R1 are randomly distributed ✗

▶ Only true for forward queries, not backward ones

▶ Take the queries

Π−1
0 (0000),Π−1

0 (0001),Π−1
0 (0010),Π−1

0 (0011)

▶ Then R0 = {0000, 0001, 0010, 0011} is not random
▶ Fundamental problem, invalidating [MPN10, BN18]

11 / 20



Flaw 1: Random Range

▶ Let R0 and R1 be the ranges of the two primitives, i.e. in the real world we have

R0 = {Π0(xi ) | 1 ⩽ i ⩽ q }
R1 = {Π1(xi ) | 1 ⩽ i ⩽ q }

▶ Then R0 and R1 are randomly distributed ✗

▶ Only true for forward queries, not backward ones

▶ Take the queries

Π−1
0 (0000),Π−1

0 (0001),Π−1
0 (0010),Π−1

0 (0011)

▶ Then R0 = {0000, 0001, 0010, 0011} is not random
▶ Fundamental problem, invalidating [MPN10, BN18]

11 / 20



Flaw 1: Random Range

▶ Let R0 and R1 be the ranges of the two primitives, i.e. in the real world we have

R0 = {Π0(xi ) | 1 ⩽ i ⩽ q }
R1 = {Π1(xi ) | 1 ⩽ i ⩽ q }

▶ Then R0 and R1 are randomly distributed ✗

▶ Only true for forward queries, not backward ones

▶ Take the queries

Π−1
0 (0000),Π−1

0 (0001),Π−1
0 (0010),Π−1

0 (0011)

▶ Then R0 = {0000, 0001, 0010, 0011} is not random
▶ Fundamental problem, invalidating [MPN10, BN18]

11 / 20



Flaw 1: Random Range

▶ Let R0 and R1 be the ranges of the two primitives, i.e. in the real world we have

R0 = {Π0(xi ) | 1 ⩽ i ⩽ q }
R1 = {Π1(xi ) | 1 ⩽ i ⩽ q }

▶ Then R0 and R1 are randomly distributed ✗

▶ Only true for forward queries, not backward ones

▶ Take the queries

Π−1
0 (0000),Π−1

0 (0001),Π−1
0 (0010),Π−1

0 (0011)

▶ Then R0 = {0000, 0001, 0010, 0011} is not random

▶ Fundamental problem, invalidating [MPN10, BN18]

11 / 20



Flaw 1: Random Range

▶ Let R0 and R1 be the ranges of the two primitives, i.e. in the real world we have

R0 = {Π0(xi ) | 1 ⩽ i ⩽ q }
R1 = {Π1(xi ) | 1 ⩽ i ⩽ q }

▶ Then R0 and R1 are randomly distributed ✗

▶ Only true for forward queries, not backward ones

▶ Take the queries

Π−1
0 (0000),Π−1

0 (0001),Π−1
0 (0010),Π−1

0 (0011)

▶ Then R0 = {0000, 0001, 0010, 0011} is not random
▶ Fundamental problem, invalidating [MPN10, BN18]

11 / 20



Flaw 2: Sequentiality

▶ Modify the distinguisher D to an equivalent

one D′: ✓

• Interact like D
(xmin = x1 if z1 < z2 else x2)

• Add verification queries for all

construction queries

• Output the same decision as D
▶ Note that these queries contain duplicate

information ✓

▶ Ignore the construction queries, leaving only

the primitive ones ✗

▶ Disregards that the construction queries can

have influence on later queries

Primitive Construction

RO(x1) = z1

RO(x2) = z2

S0(xmin) = ymin

S0(xmax) = ymax

S1(x1) = y1 ⊕ z1

S1(x2) = y2 ⊕ z2

ymin
?
< ymax

12 / 20



Flaw 2: Sequentiality

▶ Modify the distinguisher D to an equivalent

one D′: ✓

• Interact like D
(xmin = x1 if z1 < z2 else x2)

• Add verification queries for all

construction queries

• Output the same decision as D
▶ Note that these queries contain duplicate

information ✓

▶ Ignore the construction queries, leaving only

the primitive ones ✗

▶ Disregards that the construction queries can

have influence on later queries

Primitive Construction

RO(x1) = z1

RO(x2) = z2

S0(xmin) = ymin

S0(xmax) = ymax

S1(x1) = y1 ⊕ z1

S1(x2) = y2 ⊕ z2

ymin
?
< ymax

12 / 20



Flaw 2: Sequentiality

▶ Modify the distinguisher D to an equivalent

one D′: ✓

• Interact like D
(xmin = x1 if z1 < z2 else x2)

• Add verification queries for all

construction queries

• Output the same decision as D
▶ Note that these queries contain duplicate

information ✓

▶ Ignore the construction queries, leaving only

the primitive ones ✗

▶ Disregards that the construction queries can

have influence on later queries

Primitive Construction

RO(x1) = z1

RO(x2) = z2

S0(xmin) = ymin

S0(xmax) = ymax

S1(x1) = y1 ⊕ z1

S1(x2) = y2 ⊕ z2

ymin
?
< ymax

12 / 20



Flaw 2: Sequentiality

▶ Modify the distinguisher D to an equivalent

one D′: ✓

• Interact like D
(xmin = x1 if z1 < z2 else x2)

• Add verification queries for all

construction queries

• Output the same decision as D

▶ Note that these queries contain duplicate

information ✓

▶ Ignore the construction queries, leaving only

the primitive ones ✗

▶ Disregards that the construction queries can

have influence on later queries

Primitive Construction

RO(x1) = z1

RO(x2) = z2

S0(xmin) = ymin

S0(xmax) = ymax

S1(x1) = y1 ⊕ z1

S1(x2) = y2 ⊕ z2

ymin
?
< ymax

12 / 20



Flaw 2: Sequentiality

▶ Modify the distinguisher D to an equivalent

one D′: ✓

• Interact like D
(xmin = x1 if z1 < z2 else x2)

• Add verification queries for all

construction queries

• Output the same decision as D
▶ Note that these queries contain duplicate

information ✓

▶ Ignore the construction queries, leaving only

the primitive ones ✗

▶ Disregards that the construction queries can

have influence on later queries

Primitive Construction

RO(x1) = z1

RO(x2) = z2

S0(xmin) = ymin

S0(xmax) = ymax

S1(x1) = y1 ⊕ z1

S1(x2) = y2 ⊕ z2

ymin
?
< ymax

12 / 20



Flaw 2: Sequentiality

▶ Modify the distinguisher D to an equivalent

one D′: ✓

• Interact like D
(xmin = x1 if z1 < z2 else x2)

• Add verification queries for all

construction queries

• Output the same decision as D
▶ Note that these queries contain duplicate

information ✓

▶ Ignore the construction queries, leaving only

the primitive ones ✗

▶ Disregards that the construction queries can

have influence on later queries

Primitive Construction

RO(x1) = z1

RO(x2) = z2

S0(xmin) = ymin

S0(xmax) = ymax

S1(x1) = y1 ⊕ z1

S1(x2) = y2 ⊕ z2

ymin
?
< ymax

12 / 20



Flaw 2: Sequentiality

▶ Modify the distinguisher D to an equivalent

one D′: ✓

• Interact like D
(xmin = x1 if z1 < z2 else x2)

• Add verification queries for all

construction queries

• Output the same decision as D
▶ Note that these queries contain duplicate

information ✓

▶ Ignore the construction queries, leaving only

the primitive ones ✗

▶ Disregards that the construction queries can

have influence on later queries

Primitive Construction

RO(x1) = z1

RO(x2) = z2

S0(xmin) = ymin

S0(xmax) = ymax

S1(x1) = y1 ⊕ z1

S1(x2) = y2 ⊕ z2

ymin
?
< ymax

12 / 20



Flaw 2: Sequentiality ctd.

▶ There is an alternative modification with the

same flaw

▶ Execute the verification queries at the same

time as the construction queries ✗

▶ This changes the order of the primitive queries,

which does influence its behavior

▶ Works in the weaker sequential

indifferentiability setting, where all primitive

queries have to be made before the

construction queries

Primitive Construction

S0(x1) = y1

RO(x1) = z1

S1(x1) = y1 ⊕ z1

S0(x2) = y2

RO(x2) = z2

S1(x2) = y2 ⊕ z2

S0(xmin) = ymin

S0(xmax) = ymax

ymin
?
< ymax

13 / 20



Flaw 2: Sequentiality ctd.

▶ There is an alternative modification with the

same flaw

▶ Execute the verification queries at the same

time as the construction queries ✗

▶ This changes the order of the primitive queries,

which does influence its behavior

▶ Works in the weaker sequential

indifferentiability setting, where all primitive

queries have to be made before the

construction queries

Primitive Construction

S0(x1) = y1

RO(x1) = z1

S1(x1) = y1 ⊕ z1

S0(x2) = y2

RO(x2) = z2

S1(x2) = y2 ⊕ z2

S0(xmin) = ymin

S0(xmax) = ymax

ymin
?
< ymax

13 / 20



Flaw 2: Sequentiality ctd.

▶ There is an alternative modification with the

same flaw

▶ Execute the verification queries at the same

time as the construction queries ✗

▶ This changes the order of the primitive queries,

which does influence its behavior

▶ Works in the weaker sequential

indifferentiability setting, where all primitive

queries have to be made before the

construction queries

Primitive Construction

S0(x1) = y1

RO(x1) = z1

S1(x1) = y1 ⊕ z1

S0(x2) = y2

RO(x2) = z2

S1(x2) = y2 ⊕ z2

S0(xmin) = ymin

S0(xmax) = ymax

ymin
?
< ymax

13 / 20



Flaw 2: Sequentiality ctd.

▶ There is an alternative modification with the

same flaw

▶ Execute the verification queries at the same

time as the construction queries ✗

▶ This changes the order of the primitive queries,

which does influence its behavior

▶ Works in the weaker sequential

indifferentiability setting, where all primitive

queries have to be made before the

construction queries

Primitive Construction

S0(x1) = y1

RO(x1) = z1

S1(x1) = y1 ⊕ z1

S0(x2) = y2

RO(x2) = z2

S1(x2) = y2 ⊕ z2

S0(xmin) = ymin

S0(xmax) = ymax

ymin
?
< ymax

13 / 20



Stateless versus Stateful

▶ All previous works do one of these transformations

▶ Simulator viewed as a stateless primitive

▶ A stateless primitive can be implemented by drawing all randomness at the start

▶ Most primitives are stateless: random permutations, random function, random

oracle, etc.

▶ The simulator is stateful, making analysis more difficult

14 / 20



Stateless versus Stateful

▶ All previous works do one of these transformations

▶ Simulator viewed as a stateless primitive

▶ A stateless primitive can be implemented by drawing all randomness at the start

▶ Most primitives are stateless: random permutations, random function, random

oracle, etc.

▶ The simulator is stateful, making analysis more difficult

14 / 20



Stateless versus Stateful

▶ All previous works do one of these transformations

▶ Simulator viewed as a stateless primitive

▶ A stateless primitive can be implemented by drawing all randomness at the start

▶ Most primitives are stateless: random permutations, random function, random

oracle, etc.

▶ The simulator is stateful, making analysis more difficult

14 / 20



Stateless versus Stateful

▶ All previous works do one of these transformations

▶ Simulator viewed as a stateless primitive

▶ A stateless primitive can be implemented by drawing all randomness at the start

▶ Most primitives are stateless: random permutations, random function, random

oracle, etc.

▶ The simulator is stateful, making analysis more difficult

14 / 20



Stateless versus Stateful

▶ All previous works do one of these transformations

▶ Simulator viewed as a stateless primitive

▶ A stateless primitive can be implemented by drawing all randomness at the start

▶ Most primitives are stateless: random permutations, random function, random

oracle, etc.

▶ The simulator is stateful, making analysis more difficult

14 / 20



Reordering Queries

▶ A stateless primitive allows queries to be made in any order: P(x1),P(x2) has the

same distribution as P(x2),P(x1), simplifying analysis

▶ This same property is assumed for the simulator and is the core of the flaw

▶ The simulator is stateful and does not have this same behavior

▶ We show that the simulator partly has this property

▶ Queries can be reordered as necessary up to 2n/3-bit security

▶ Re-establishes regular indifferentiability with (2n/3− log2(n))-bit security using

[MP15] for sequential indifferentiability

15 / 20



Reordering Queries

▶ A stateless primitive allows queries to be made in any order: P(x1),P(x2) has the

same distribution as P(x2),P(x1), simplifying analysis

▶ This same property is assumed for the simulator and is the core of the flaw

▶ The simulator is stateful and does not have this same behavior

▶ We show that the simulator partly has this property

▶ Queries can be reordered as necessary up to 2n/3-bit security

▶ Re-establishes regular indifferentiability with (2n/3− log2(n))-bit security using

[MP15] for sequential indifferentiability

15 / 20



Reordering Queries

▶ A stateless primitive allows queries to be made in any order: P(x1),P(x2) has the

same distribution as P(x2),P(x1), simplifying analysis

▶ This same property is assumed for the simulator and is the core of the flaw

▶ The simulator is stateful and does not have this same behavior

▶ We show that the simulator partly has this property

▶ Queries can be reordered as necessary up to 2n/3-bit security

▶ Re-establishes regular indifferentiability with (2n/3− log2(n))-bit security using

[MP15] for sequential indifferentiability

15 / 20



Reordering Queries

▶ A stateless primitive allows queries to be made in any order: P(x1),P(x2) has the

same distribution as P(x2),P(x1), simplifying analysis

▶ This same property is assumed for the simulator and is the core of the flaw

▶ The simulator is stateful and does not have this same behavior

▶ We show that the simulator partly has this property

▶ Queries can be reordered as necessary up to 2n/3-bit security

▶ Re-establishes regular indifferentiability with (2n/3− log2(n))-bit security using

[MP15] for sequential indifferentiability

15 / 20



Reordering Queries

▶ A stateless primitive allows queries to be made in any order: P(x1),P(x2) has the

same distribution as P(x2),P(x1), simplifying analysis

▶ This same property is assumed for the simulator and is the core of the flaw

▶ The simulator is stateful and does not have this same behavior

▶ We show that the simulator partly has this property

▶ Queries can be reordered as necessary up to 2n/3-bit security

▶ Re-establishes regular indifferentiability with (2n/3− log2(n))-bit security using

[MP15] for sequential indifferentiability

15 / 20



Reordering Queries

▶ A stateless primitive allows queries to be made in any order: P(x1),P(x2) has the

same distribution as P(x2),P(x1), simplifying analysis

▶ This same property is assumed for the simulator and is the core of the flaw

▶ The simulator is stateful and does not have this same behavior

▶ We show that the simulator partly has this property

▶ Queries can be reordered as necessary up to 2n/3-bit security

▶ Re-establishes regular indifferentiability with (2n/3− log2(n))-bit security using

[MP15] for sequential indifferentiability

15 / 20



Flaw 3: Fresh Oracle

▶ A value returned from the random oracle is uniformly at random distributed ✗

▶ Does not hold due to the behavior of the inverse simulator

▶ Comparison to illustrate the problem

16 / 20



Flaw 3: Fresh Oracle

▶ A value returned from the random oracle is uniformly at random distributed ✗

▶ Does not hold due to the behavior of the inverse simulator

▶ Comparison to illustrate the problem

16 / 20



Flaw 3: Fresh Oracle

▶ A value returned from the random oracle is uniformly at random distributed ✗

▶ Does not hold due to the behavior of the inverse simulator

▶ Comparison to illustrate the problem

16 / 20



Comparison: Bag of M&M’s

▶ Consider a bag of 10 colored M&M’s

▶ They are uniformly sampled from 5 colors: red, brown,

yellow, green and blue

▶ A randomly drawn M&M has a probability of 1/5 of

being a specific color, even after other draws

▶ Suppose you do not like brown M&M’s and do the following when grabbing one:

• If it is brown: redraw (can be brown), put the original M&M back

• If it is any other colored M&M: eat it

▶ After this process, the probability that an M&M in the bag is brown becomes:

4

5
· 1
5
+

1

5
·
(
8

9
· 1
5
+

1

9
· 1
)

=
49

225
>

45

225
=

1

5

17 / 20



Comparison: Bag of M&M’s

▶ Consider a bag of 10 colored M&M’s

▶ They are uniformly sampled from 5 colors: red, brown,

yellow, green and blue

▶ A randomly drawn M&M has a probability of 1/5 of

being a specific color, even after other draws

▶ Suppose you do not like brown M&M’s and do the following when grabbing one:

• If it is brown: redraw (can be brown), put the original M&M back

• If it is any other colored M&M: eat it

▶ After this process, the probability that an M&M in the bag is brown becomes:

4

5
· 1
5
+

1

5
·
(
8

9
· 1
5
+

1

9
· 1
)

=
49

225
>

45

225
=

1

5

17 / 20



Comparison: Bag of M&M’s

▶ Consider a bag of 10 colored M&M’s

▶ They are uniformly sampled from 5 colors: red, brown,

yellow, green and blue

▶ A randomly drawn M&M has a probability of 1/5 of

being a specific color, even after other draws

▶ Suppose you do not like brown M&M’s and do the following when grabbing one:

• If it is brown: redraw (can be brown), put the original M&M back

• If it is any other colored M&M: eat it

▶ After this process, the probability that an M&M in the bag is brown becomes:

4

5
· 1
5
+

1

5
·
(
8

9
· 1
5
+

1

9
· 1
)

=
49

225
>

45

225
=

1

5

17 / 20



Comparison: Bag of M&M’s

▶ Consider a bag of 10 colored M&M’s

▶ They are uniformly sampled from 5 colors: red, brown,

yellow, green and blue

▶ A randomly drawn M&M has a probability of 1/5 of

being a specific color, even after other draws

▶ Suppose you do not like brown M&M’s and do the following when grabbing one:

• If it is brown: redraw (can be brown), put the original M&M back

• If it is any other colored M&M: eat it

▶ After this process, the probability that an M&M in the bag is brown becomes:

4

5
· 1
5
+

1

5
·
(
8

9
· 1
5
+

1

9
· 1
)

=
49

225
>

45

225
=

1

5

17 / 20



Comparison: Bag of M&M’s

▶ Consider a bag of 10 colored M&M’s

▶ They are uniformly sampled from 5 colors: red, brown,

yellow, green and blue

▶ A randomly drawn M&M has a probability of 1/5 of

being a specific color, even after other draws

▶ Suppose you do not like brown M&M’s and do the following when grabbing one:

• If it is brown: redraw (can be brown), put the original M&M back

• If it is any other colored M&M: eat it

▶ After this process, the probability that an M&M in the bag is brown becomes:

4

5
· 1
5
+

1

5
·
(
8

9
· 1
5
+

1

9
· 1
)

=
49

225
>

45

225
=

1

5

17 / 20



Comparison: Bag of M&M’s

▶ Consider a bag of 10 colored M&M’s

▶ They are uniformly sampled from 5 colors: red, brown,

yellow, green and blue

▶ A randomly drawn M&M has a probability of 1/5 of

being a specific color, even after other draws

▶ Suppose you do not like brown M&M’s and do the following when grabbing one:

• If it is brown: redraw (can be brown), put the original M&M back

• If it is any other colored M&M: eat it

▶ After this process, the probability that an M&M in the bag is brown becomes:

4

5
· 1
5
+

1

5
·
(
8

9
· 1
5
+

1

9
· 1
)

=
49

225
>

45

225
=

1

5

17 / 20



Comparison: Bag of M&M’s

▶ Consider a bag of 10 colored M&M’s

▶ They are uniformly sampled from 5 colors: red, brown,

yellow, green and blue

▶ A randomly drawn M&M has a probability of 1/5 of

being a specific color, even after other draws

▶ Suppose you do not like brown M&M’s and do the following when grabbing one:

• If it is brown: redraw (can be brown), put the original M&M back

• If it is any other colored M&M: eat it

▶ After this process, the probability that an M&M in the bag is brown becomes:

4

5
· 1
5
+

1

5
·
(
8

9
· 1
5
+

1

9
· 1
)

=
49

225
>

45

225
=

1

5

17 / 20



Comparison: Bag of M&M’s (ctd.)

▶ Similar issue is present in [BN18]

▶ Other works [MPN10, MP15] acknowledge the difference

▶ Partly responsible for limited 2n/3-bit security in those works

▶ We give an attack that shows that this difference matters for more than 3n/4-bit

security

18 / 20



Comparison: Bag of M&M’s (ctd.)

▶ Similar issue is present in [BN18]

▶ Other works [MPN10, MP15] acknowledge the difference

▶ Partly responsible for limited 2n/3-bit security in those works

▶ We give an attack that shows that this difference matters for more than 3n/4-bit

security

18 / 20



Comparison: Bag of M&M’s (ctd.)

▶ Similar issue is present in [BN18]

▶ Other works [MPN10, MP15] acknowledge the difference

▶ Partly responsible for limited 2n/3-bit security in those works

▶ We give an attack that shows that this difference matters for more than 3n/4-bit

security

18 / 20



Comparison: Bag of M&M’s (ctd.)

▶ Similar issue is present in [BN18]

▶ Other works [MPN10, MP15] acknowledge the difference

▶ Partly responsible for limited 2n/3-bit security in those works

▶ We give an attack that shows that this difference matters for more than 3n/4-bit

security

18 / 20



Attack: Standard Simulator Limited to 5n/6-bit Security

▶ Recall that the forward simulator selects its output y0 uniformly from all

possibilities Y = {0, 1}n \ (range(S0) ∪ (range(S1)⊕ z))

▶ Surprisingly, in some cases the sampling in the real world does not behave

uniformly

▶ Gives rise to an attack using O(25n/6) queries
▶ Maybe possible to fix with a biased simulator, but gets very complicated

19 / 20



Attack: Standard Simulator Limited to 5n/6-bit Security

▶ Recall that the forward simulator selects its output y0 uniformly from all

possibilities Y = {0, 1}n \ (range(S0) ∪ (range(S1)⊕ z))

▶ Surprisingly, in some cases the sampling in the real world does not behave

uniformly

▶ Gives rise to an attack using O(25n/6) queries
▶ Maybe possible to fix with a biased simulator, but gets very complicated

19 / 20



Attack: Standard Simulator Limited to 5n/6-bit Security

▶ Recall that the forward simulator selects its output y0 uniformly from all

possibilities Y = {0, 1}n \ (range(S0) ∪ (range(S1)⊕ z))

▶ Surprisingly, in some cases the sampling in the real world does not behave

uniformly

▶ Gives rise to an attack using O(25n/6) queries

▶ Maybe possible to fix with a biased simulator, but gets very complicated

19 / 20



Attack: Standard Simulator Limited to 5n/6-bit Security

▶ Recall that the forward simulator selects its output y0 uniformly from all

possibilities Y = {0, 1}n \ (range(S0) ∪ (range(S1)⊕ z))

▶ Surprisingly, in some cases the sampling in the real world does not behave

uniformly

▶ Gives rise to an attack using O(25n/6) queries
▶ Maybe possible to fix with a biased simulator, but gets very complicated

19 / 20



Conclusion

▶ An established beyond birthday bound PRP-to-PRF conversion is the sum of

permutations

▶ All previous works on its indifferentiability are flawed

▶ We show limitations for many different approaches

▶ Also positive result: regular indifferentiability with (2n/3− log2(n))-bit security

Thank you for your attention!

20 / 20



Conclusion

▶ An established beyond birthday bound PRP-to-PRF conversion is the sum of

permutations

▶ All previous works on its indifferentiability are flawed

▶ We show limitations for many different approaches

▶ Also positive result: regular indifferentiability with (2n/3− log2(n))-bit security

Thank you for your attention!

20 / 20



Conclusion

▶ An established beyond birthday bound PRP-to-PRF conversion is the sum of

permutations

▶ All previous works on its indifferentiability are flawed

▶ We show limitations for many different approaches

▶ Also positive result: regular indifferentiability with (2n/3− log2(n))-bit security

Thank you for your attention!

20 / 20



Conclusion

▶ An established beyond birthday bound PRP-to-PRF conversion is the sum of

permutations

▶ All previous works on its indifferentiability are flawed

▶ We show limitations for many different approaches

▶ Also positive result: regular indifferentiability with (2n/3− log2(n))-bit security

Thank you for your attention!

20 / 20



Conclusion

▶ An established beyond birthday bound PRP-to-PRF conversion is the sum of

permutations

▶ All previous works on its indifferentiability are flawed

▶ We show limitations for many different approaches

▶ Also positive result: regular indifferentiability with (2n/3− log2(n))-bit security

Thank you for your attention!

20 / 20



Srimanta Bhattacharya and Mridul Nandi.

Full Indifferentiable Security of the Xor of Two or More Random

Permutations Using the χ2 Method.

In Jesper Buus Nielsen and Vincent Rijmen, editors, Advances in Cryptology -

EUROCRYPT 2018 - 37th Annual International Conference on the Theory and

Applications of Cryptographic Techniques, Tel Aviv, Israel, April 29 - May 3, 2018

Proceedings, Part I, volume 10820 of Lecture Notes in Computer Science, pages

387–412. Springer, 2018.

Aldo Gunsing.

Block-cipher-based tree hashing.

Springer-Verlag, 2022.

Bart Mennink and Bart Preneel.

On the XOR of Multiple Random Permutations.

20 / 20



In Tal Malkin, Vladimir Kolesnikov, Allison Bishop Lewko, and Michalis

Polychronakis, editors, Applied Cryptography and Network Security - 13th

International Conference, ACNS 2015, New York, NY, USA, June 2-5, 2015,

Revised Selected Papers, volume 9092 of Lecture Notes in Computer Science,

pages 619–634. Springer, 2015.

Avradip Mandal, Jacques Patarin, and Valérie Nachef.

Indifferentiability beyond the Birthday Bound for the Xor of Two Public

Random Permutations.

In Guang Gong and Kishan Chand Gupta, editors, Progress in Cryptology -

INDOCRYPT 2010 - 11th International Conference on Cryptology in India,

Hyderabad, India, December 12-15, 2010. Proceedings, volume 6498 of Lecture

Notes in Computer Science, pages 69–81. Springer, 2010.

20 / 20


