Improved Power Analysis Attacks on Falcon

EUROCRYPT 2023

Shiduo Zhang, Xiuhan Lin, Yang Yu, Weijia Wang

In this work, we develop several key recovery attacks exploiting **power leakage** on Falcon.

- a new effective key recovery using the half Gaussian leakage within the base sampler.
- the first side-channel analysis on Falcon taking the sign leakage into account.

Outline

- Background
- The half Gaussian leakage and the sign leakage
- Section 2 Constraints of the section of the sect
- Exploiting the sign leakage

Background

Falcon is one of the three post quantum digital signatures to be standardized by NIST.

Falcon has a good performance especially it has the smallest bandwidth (public key size plus signature size) among the selected NIST signatures.

Falcon is a lattice-based hash-and-sign signature scheme.

 ${\sf Hash}{\sf -and}{\sf -sign}$

- signing: finding close vectors
- $\bullet~\text{GGH},\,\text{NTRUSign}\rightarrow\text{GPV}\rightarrow\text{Falcon}$

Hash-and-sign

- signing: finding close vectors
- $\bullet \ \mathsf{GGH}, \, \mathsf{NTRUSign} \to \mathsf{GPV} \to \mathsf{Falcon}$

GGH, NTRUSign used the deterministic Babai's algorithm to find the close vectors.

Hash-and-sign

- signing: finding close vectors
- GGH, NTRUSign \rightarrow GPV \rightarrow Falcon

GGH, NTRUSign used the deterministic Babai's algorithm to find the close vectors.

Hash-and-sign

- signing: finding close vectors
- GGH, NTRUSign \rightarrow GPV \rightarrow Falcon

GGH, NTRUSign used the deterministic Babai's algorithm to find the close vectors. **Insecure !**

 ${\sf Hash}{\sf -and}{\sf -sign}$

- signing: finding close vectors
- GGH, NTRUSign \rightarrow GPV \rightarrow Falcon

GGH, NTRUSign used the deterministic Babai's algorithm to find the close vectors. **Insecure !**

[GPV08] proposed a provably secure hash-and-sign framework¹.

- rounding based on random Gaussian sampling
- distribution of signatures is provably independent of the secret key

¹[CPV08] :Trandoors for Hard Lattices and New Countographic Constructions. Centry, Peikert, Vaikuntanathan

 ${\sf Hash}{\sf -and}{\sf -sign}$

- signing: finding close vectors
- GGH, NTRUSign \rightarrow GPV \rightarrow Falcon

GGH, NTRUSign used the deterministic Babai's algorithm to find the close vectors. **Insecure !**

[GPV08] proposed a provably secure hash-and-sign framework¹.

- rounding based on random Gaussian sampling
- distribution of signatures is provably independent of the secret key

¹[CPV/08] Trandoors for Hard Lattices and New Cryptographic Constructions, Centry, Peikert, Vaikuptanathan

Hash-and-sign

- signing: finding close vectors
- GGH, NTRUSign \rightarrow GPV \rightarrow Falcon

GGH, NTRUSign used the deterministic Babai's algorithm to find the close vectors. **Insecure !**

[GPV08] proposed a provably secure hash-and-sign framework¹.

- rounding based on random Gaussian sampling
- distribution of signatures is provably independent of the secret key

Falcon is an efficient instantiation of the GPV framework by using optimal NTRU trapdoor.

¹[GPV08] :Trapdoors for Hard Lattices and New Cryptographic Constructions. Gentry, Peikert, Vaikuntanathan.

With PQC standardization and migration underway, security should be considered from both **algorithmic** and **implementation** aspects.

The implementation security of Falcon is intricate

- signing relies on complicated lattice Gaussian sampling
- secret key is used in a rather opaque way

With PQC standardization and migration underway, security should be considered from both **algorithmic** and **implementation** aspects.

The implementation security of Falcon is intricate

- signing relies on complicated lattice Gaussian sampling
- secret key is used in a rather opaque way

We need to understand the connection between leakage and secret key itself.

Gaussian Samplers of Falcon

Sampler

Sampler

The KGPV sampler

Input: a basis $\mathbf{B} = (\mathbf{b}_0, \cdots, \mathbf{b}_{n-1})$, a center c and $\sigma \ge \|\mathbf{B}\|_{GS} \cdot \eta_{\epsilon}(\mathbb{Z})$ Output: a lattice point v following a distribution close to $D_{\mathcal{L}(\mathbf{B}),\sigma,\mathbf{c}}$. 1: $\mathbf{v} \leftarrow \mathbf{0}, \mathbf{c}' \leftarrow \mathbf{c}$ 2: for $i = n - 1, \cdots, 0$ do 3: $\sigma_i = \sigma/\|\mathbf{\tilde{b}}_i\|$ 4: $c_i'' = \langle \mathbf{c}', \mathbf{\tilde{b}}_i \rangle/\|\mathbf{\tilde{b}}_i\|^2$ 5: $z_i \leftarrow \text{SamplerZ}(\sigma_i, c_i'' - \lfloor c_i'' \rfloor) + \lfloor c_i'' \rfloor$ 6: $\mathbf{c}' \leftarrow \mathbf{c}' - z_i \mathbf{b}_i, \mathbf{v} \leftarrow \mathbf{v} + z_i \mathbf{b}_i$ 7: end for 8: return v

Integer Gaussian sampler of Falcon

Sampler $Z(\sigma, c)$

Input: $c \in [0, 1)$ and $\sigma \in (\sigma_{min}, \sigma_{max})$. Output: $z \in \mathbb{Z}$ following $D_{\mathbb{Z},\sigma,c}$. 1: $z^+ \leftarrow \text{BaseSampler}()$ 2: $b \leftarrow U(\{0, 1\})$ 3: $z \leftarrow b + (2b - 1)z^+$ 4: $x \leftarrow -\frac{(z-c)^2}{2\sigma^2} + \frac{(z^+)^2}{2\sigma_{max}^2}$ 5: return z with probability $\frac{\sigma_{min}}{\sigma} \cdot \exp(x)$, otherwise restart;

Integer Gaussian sampler of Falcon

BaseSampler()

Output: $z^+ \sim D^+_{\mathbb{Z},\sigma_{\max},0}$. 1: $u \stackrel{\$}{\leftarrow} \{0,1\}^{72}$ 2: $z^+ \leftarrow 0$ 3: for $i = 0 \cdots 17$ do 4: $z^+ \leftarrow z^+ + [[u < RCDT[i]]]$ 5: end for 6: return z^+

The half Gaussian leakage and the sign leakage

Half Gaussian leakages

BaseSampler()

Output:
$$z^+ \sim D^+_{\mathbb{Z},\sigma_{\max},0}$$
.
1: $u \stackrel{\$}{\leftarrow} \{0,1\}^{72}$
2: $z^+ \leftarrow 0$
3: for $i = 0 \cdots 17$ do
4: $z^+ \leftarrow z^+ + [[u < RCDT[i]]$
5: end for
6: return z^+

Half Gaussian leakages

BaseSampler()

Output:
$$z^+ \sim D^+_{\mathbb{Z},\sigma_{\max},0}$$
.
1: $u \stackrel{\$}{\leftarrow} \{0,1\}^{72}$
2: $z^+ \leftarrow 0$
3: for $i = 0 \cdots 17$ do
4: $z^+ \leftarrow z^+ + [\![u < RCDT[i]\!]$
5: end for
6: return z^+

Half Gaussian leakage

One can classify if $z^+ = 0$ or not through the power consumption of the comparison $[\![u < RCDT[i]\!]$

Sign leakages

$\mathsf{SamplerZ}(\sigma, \textit{c})$

Input: $c \in [0, 1)$ and $\sigma \in (\sigma_{min}, \sigma_{max})$. Output: $z \in \mathbb{Z}$ following $D_{\mathbb{Z},\sigma,c}$. 1: $z^+ \leftarrow \text{BaseSampler}()$ 2: $b \leftarrow U(\{0,1\})$ 3: $z \leftarrow b + (2b-1)z^+$ 4: $x \leftarrow -\frac{(z-c)^2}{2\sigma^2} + \frac{(z^+)^2}{2\sigma_{max}^2}$ 5: return z with probability $\frac{\sigma_{min}}{\sigma} \cdot \exp(x)$, otherwise restart;

Sign leakages

$\mathsf{SamplerZ}(\sigma, \textit{c})$

Input: $c \in [0, 1)$ and $\sigma \in (\sigma_{min}, \sigma_{max})$. Output: $z \in \mathbb{Z}$ following $D_{\mathbb{Z},\sigma,c}$. 1: $z^+ \leftarrow \text{BaseSampler}()$ 2: $b \leftarrow U(\{0,1\})$ 3: $z \leftarrow b + (2b-1)z^+$ 4: $x \leftarrow -\frac{(z-c)^2}{2\sigma^2} + \frac{(z^+)^2}{2\sigma_{max}^2}$ 5: return z with probability $\frac{\sigma_{min}}{\sigma} \cdot \exp(x)$, otherwise restart;

Sign leakage

One can determine *b* through the power of $[\![z \leftarrow b + (2b-1)z^+]\!]$ and $[\![x \leftarrow -\frac{(z-c)^2}{2\sigma'^2} + \frac{(z^+)^2}{2\sigma_{max}^2}]\!]$

Exploiting the half Gaussian leakage

Parallelepiped-learning strikes again

In [GMRR22], Guerreau et al. proposed a key recovery attack exploiting the half Gaussian leakage. $^{\rm 2}$

 $^{^{2} {\}sf The \ Hidden \ Parallelepiped \ Is \ Back \ Again: \ Power \ Analysis \ Attacks \ on \ Falcon. \ Guerreau, \ Martinelli, \ Ricosset, \ Rossi.}$

Parallelepiped-learning strikes again

In [GMRR22], Guerreau et al. proposed a key recovery attack exploiting the half Gaussian leakage.²

Fact

When
$$\mathbf{z}_0^+=0$$
, the signature $\mathbf{s}=\sum_{i=0}^{2n-1}y_i\cdot ilde{\mathbf{b}}_i$ with $y_0\in [-1,1]$

The attack of [GMRR22]

They reused the parallelepiped-learning technique to recover the key

The attack is **rather expensive**.

- 10^7 traces for direct recovery
- $\bullet \ 10^6 {\rm \ traces}$ and $1000 {\rm h}$ of computation

²The Hidden Parallelepiped Is Back Again: Power Analysis Attacks on Falcon. Guerreau, Martinelli, Ricosset, Rossi.

Our improved key recovery

Learning Slice Problem $LSP_{b,\sigma,N}$

Given $\mathbf{b} \in \mathbb{R}^n$, let $\mathcal{S}_{\mathbf{b}}(b) = \{\mathbf{v} : |\langle \mathbf{v}, \mathbf{b} \rangle| \leq b\}$. Let D_s be the conditional distribution of $\mathbf{z} \sim (\mathcal{N}(0, \sigma^2))^n$ given $\mathbf{z} \in \mathcal{S}_{\mathbf{b}}(b)$. Given N independent samples drawn from D_s , find an approximation of $\pm \mathbf{b}$.

The geometric intuition: the projection of signatures in the slice on ${\bf b}_0$ tends to be **unusually short**.

Our LSP algorithm

- $\textbf{0} \ \text{ learning the direction of } \mathbf{b}_0$
- **2** estimating $\|\mathbf{b}_0\|$

Let
$$\mathbf{B} = (\mathbf{b}_0, \mathbf{b}_1, \cdots, \mathbf{b}_{n-1})$$
 and $\mathbf{D} = (\mathbf{d}_0, \cdots, \mathbf{d}_{n-1})$ with $\mathbf{d}_i = \widetilde{\mathbf{b}}_i / \|\widetilde{\mathbf{b}}_i\|$.

For
$$\mathbf{s} = \sum_{i} y_i \mathbf{d}_i \sim (\mathcal{N}(0, \sigma^2))^n$$
, $y_i \sim \mathcal{N}(0, \sigma^2)$ and $\mathbf{Cov}[\mathbf{s}] = \sigma^2 I$.

When $\mathbf{s} \in \mathcal{S}_{\mathbf{b}_0}(b)$, the variance of y_0 is $\sigma'^2 < \sigma^2$ and thus

$$\mathbf{Cov}[\mathbf{s}|\mathbf{s} \in \mathcal{S}_{\mathbf{b}_0}(b)] = \mathbf{D} \cdot \begin{pmatrix} \sigma'^2 & \ & \sigma^2 I \end{pmatrix} \cdot \mathbf{D}^t.$$

Let
$$\mathbf{B} = (\mathbf{b}_0, \mathbf{b}_1, \cdots, \mathbf{b}_{n-1})$$
 and $\mathbf{D} = (\mathbf{d}_0, \cdots, \mathbf{d}_{n-1})$ with $\mathbf{d}_i = \mathbf{\widetilde{b}}_i / \|\mathbf{\widetilde{b}}_i\|$.

For
$$\mathbf{s} = \sum_{i} y_i \mathbf{d}_i \sim (\mathcal{N}(0, \sigma^2))^n$$
, $y_i \sim \mathcal{N}(0, \sigma^2)$ and $\mathbf{Cov}[\mathbf{s}] = \sigma^2 I$.

When $\mathbf{s} \in \mathcal{S}_{\mathbf{b}_0}(b)$, the variance of y_0 is $\sigma'^2 < \sigma^2$ and thus

$$\mathbf{Cov}[\mathbf{s}|\mathbf{s} \in \mathcal{S}_{\mathbf{b}_0}(b)] = \mathbf{D} \cdot \begin{pmatrix} \sigma'^2 & \ & \sigma^2 I \end{pmatrix} \cdot \mathbf{D}^t.$$

Fact

The smallest eigenvalue σ' is unique and its eigenvector is in the same direction as \mathbf{b}_0 .

Let
$$\mathbf{B} = (\mathbf{b}_0, \mathbf{b}_1, \cdots, \mathbf{b}_{n-1})$$
 and $\mathbf{D} = (\mathbf{d}_0, \cdots, \mathbf{d}_{n-1})$ with $\mathbf{d}_i = \widetilde{\mathbf{b}}_i / \|\widetilde{\mathbf{b}}_i\|$.

For
$$\mathbf{s} = \sum_{i} y_i \mathbf{d}_i \sim (\mathcal{N}(0, \sigma^2))^n$$
, $y_i \sim \mathcal{N}(0, \sigma^2)$ and $\mathbf{Cov}[\mathbf{s}] = \sigma^2 I$.

When $\mathbf{s}\in\mathcal{S}_{\mathbf{b}_0}(\textit{b}),$ the variance of \textit{y}_0 is $\sigma'^2<\sigma^2$ and thus

$$\mathbf{Cov}[\mathbf{s}|\mathbf{s} \in \mathcal{S}_{\mathbf{b}_0}(\mathbf{b})] = \mathbf{D} \cdot \begin{pmatrix} \sigma'^2 & \ & \sigma^2 \mathbf{I} \end{pmatrix} \cdot \mathbf{D}^t.$$

Fact

The smallest eigenvalue σ' is unique and its eigenvector is in the same direction as \mathbf{b}_0 .

This allows us to recover the direction through spectral decomposition!

Let
$$\mathbf{B} = (\mathbf{b}_0, \mathbf{b}_1, \cdots, \mathbf{b}_{n-1})$$
 and $\mathbf{D} = (\mathbf{d}_0, \cdots, \mathbf{d}_{n-1})$ with $\mathbf{d}_i = \widetilde{\mathbf{b}}_i / \|\widetilde{\mathbf{b}}_i\|$.

For
$$\mathbf{s} = \sum_{i} y_i \mathbf{d}_i \sim (\mathcal{N}(0, \sigma^2))^n$$
, $y_i \sim \mathcal{N}(0, \sigma^2)$ and $\mathbf{Cov}[\mathbf{s}] = \sigma^2 I$.

When $\mathbf{s} \in \mathcal{S}_{\mathbf{b}_0}(\mathbf{\textit{b}})$, the variance of y_0 is $\sigma'^2 < \sigma^2$ and thus

$$\mathbf{Cov}[\mathbf{s}|\mathbf{s} \in \mathcal{S}_{\mathbf{b}_0}(b)] = \mathbf{D} \cdot \begin{pmatrix} \sigma'^2 & \ & \sigma^2 I \end{pmatrix} \cdot \mathbf{D}^t.$$

Fact

The smallest eigenvalue σ' is unique and its eigenvector is in the same direction as \mathbf{b}_0 .

This allows us to recover the direction through spectral decomposition!

This analysis can be understood as principal component analysis rather than independent component analysis.

The covariance $Cov[s|s \in \mathcal{S}_{\mathbf{b}_0}(b)]$ also leaks the information of $\|\mathbf{b}_0\|$:

$$\sigma'^{2} = \frac{\int_{-b'}^{b'} x^{2} \exp(-\frac{x^{2}}{2\sigma^{2}}) dx}{\int_{-b'}^{b'} \exp(-\frac{x^{2}}{2\sigma^{2}}) dx} \text{ where } b' = \frac{b}{\|\mathbf{b}_{0}\|}.$$

The covariance $Cov[s|s \in \mathcal{S}_{\mathbf{b}_0}(b)]$ also leaks the information of $\|\mathbf{b}_0\|$:

$$\sigma'^{2} = \frac{\int_{-b'}^{b'} x^{2} \exp(-\frac{x^{2}}{2\sigma^{2}}) dx}{\int_{-b'}^{b'} \exp(-\frac{x^{2}}{2\sigma^{2}}) dx} \text{ where } b' = \frac{b}{\|\mathbf{b}_{0}\|}.$$

This allows to numerically estimate $\|\mathbf{b}_0\|!$

Experimental results

Our attack is much more efficient compared with [GMRR22]³!

- direct recovery: $10^7 \mbox{ traces} \rightarrow 3.6 \times 10^5 \mbox{ traces}$
- $10^6 \text{ traces} + 1000 \text{h} \rightarrow 2.2 \times 10^5 \text{ traces} + 0.5 \text{h of computation}$

³The Hidden Parallelepiped Is Back Again: Power Analysis Attacks on Falcon. Guerreau, Martinelli, Ricosset, Rossi.

Exploiting the sign leakage

Learning the halfspace

The sign leakage allows to determine whether a signature s is in the halfspace $\mathcal{H}^+ = \{\mathbf{v}: \langle \mathbf{v}, \mathbf{b}_0 \rangle \geq 0\}$ or $\mathcal{H}^- = \{\mathbf{v}: \langle \mathbf{v}, \mathbf{b}_0 \rangle < 0\}$

Learning the halfspace

The sign leakage allows to determine whether a signature s is in the halfspace $\mathcal{H}^+ = \{\mathbf{v}: \langle \mathbf{v}, \mathbf{b}_0 \rangle \geq 0\}$ or $\mathcal{H}^- = \{\mathbf{v}: \langle \mathbf{v}, \mathbf{b}_0 \rangle < 0\}$

Learning Halfspace Problem LHP $_{\sigma,N}$

Given $\mathbf{b} \in \mathbb{R}^n$, let $\mathcal{H}^+_{\mathbf{b}} = {\mathbf{v} : \langle \mathbf{v}, \mathbf{b} \rangle \ge 0}$. Let D_h be the conditional distribution of $\mathbf{z} \sim (\mathcal{N}(0, \sigma^2))^n$ given $\mathbf{z} \in \mathcal{H}^+_{\mathbf{b}}$. Given N independent samples drawn from D_h , find an approximate direction of $\pm \mathbf{b}$.

At a high level, our algorithm can be seen as the reduction:

 $LHP_{\sigma,N} \rightarrow LSP_{b,\sigma,N'}.$

At a high level, our algorithm can be seen as the reduction:

$$\mathsf{LHP}_{\sigma,N} \to \mathsf{LSP}_{b,\sigma,N'}.$$

Our LHP algorithm

- **(**) learning a relatively rough direction \mathbf{v} of \mathbf{b}_0 from samples in $\mathcal{H}^+_{\mathbf{b}_0}$
- 2 filtering out those samples in $\mathcal{S}_{\mathbf{v}}(b)$ using \mathbf{v}
- **③** learning the direction of \mathbf{b}_0 from the filtered samples in $\mathcal{S}_{\mathbf{v}}(b)$

The coefficient of \mathbf{d}_0 is half Gaussian, while others are full Gaussian. \Rightarrow The direction can be learned through spectral decomposition as well! The coefficient of d_0 is half Gaussian, while others are full Gaussian. \Rightarrow The direction can be learned through spectral decomposition as well!

Since the gap between the smallest eigenvalue and others now increases, an accurate approximation requires more samples.

 \Rightarrow We learn a relatively rough direction instead of a very accurate one

The coefficient of d_0 is half Gaussian, while others are full Gaussian. \Rightarrow The direction can be learned through spectral decomposition as well!

Since the gap between the smallest eigenvalue and others now increases, an accurate approximation requires more samples.

 \Rightarrow We learn a relatively rough direction instead of a very accurate one

One can also learn the direction through the expectation of samples, but the expectation does not seem to improve the attack

Step 2: Filtering out a slice

To refine the accuracy, we attempt to amplify the condition number.

Step 2: Filtering out a slice

To refine the accuracy, we attempt to amplify the condition number.

We propose to use the rough direction v to classify all samples into two sets $S = \{s \mid |\langle s, v \rangle| \le b\}$ and $C = \{s \mid |\langle s, v \rangle| > b\}$

Step 2: Filtering out a slice

To refine the accuracy, we attempt to amplify the condition number.

We propose to use the rough direction v to classify all samples into two sets $S = \{s \mid |\langle s, v \rangle| \le b\}$ and $C = \{s \mid |\langle s, v \rangle| > b\}$

Applying our LSP algorithm, we obtain a more accurate direction!

Experimental results

The attack is more efficient than the one using half Gaussian leakages.

Experimental results

The attack is more efficient than the one using half Gaussian leakages.

The attack can be more efficient by using both two leakages!

A practical countermeasure

SamplerZ(σ , c)

 $\begin{array}{l} \mbox{Input: } c \in [0,1) \mbox{ and } \sigma \in (\sigma_{min},\sigma_{max}). \\ \mbox{Output: } z \sim D_{\mathbb{Z},\sigma,c}. \\ \mbox{I: } z^+ \leftarrow \mbox{BaseSampler}() \\ \mbox{I: } b \leftarrow U(\{0,1\}) \\ \mbox{I: } z \leftarrow b + (2b-1)z^+ \\ \mbox{I: } x \leftarrow - \frac{(z-c)^2}{2\sigma^2} + \frac{(z^+)^2}{2\sigma_{max}^2} \\ \mbox{I: } return \ z \ \mbox{with probability } \frac{\sigma_{min}}{\sigma_m} \cdot \exp(x), \ \mbox{otherwise restart;} \end{array}$

A practical countermeasure

$\mathsf{SamplerZ}(\sigma, c)$

 $\begin{array}{l} \text{Input: } c \in [0,1) \text{ and } \sigma \in (\sigma_{\min},\sigma_{\max}). \\ \text{Output: } z \sim D_{\mathbb{Z},\sigma,c}. \\ 1: z^+ \leftarrow \text{BaseSampler}() \\ 2: b \leftarrow U(\{0,1\}) \\ 3: z \leftarrow b + (2b-1)z^+ \\ 4: x \leftarrow -\frac{(z-c)^2}{2\sigma^2} + \frac{(z^+)^2}{2\sigma_{\max}^2} \\ 5: \text{ return } z \text{ with probability } \frac{\sigma_{\min}}{\sigma_m} \cdot \exp(x), \text{ otherwise restart;} \end{array}$

Protected SamplerZ(σ , c)

Effectiveness

Unprotected integer sampler

Protected integer sampler

Conclusion

Conclusion

We provide an improved power analysis for Falcon.

- a new effective key recovery using the half Gaussian leakage within the base sampler
- the first side-channel analysis on Falcon taking the sign leakage into account.
- the above attacks also working with imperfect classification
- our attacks also working for the Mitaka signature scheme.

Conclusion

We provide an improved power analysis for Falcon.

- a new effective key recovery using the half Gaussian leakage within the base sampler
- the first side-channel analysis on Falcon taking the sign leakage into account.
- the above attacks also working with imperfect classification
- our attacks also working for the Mitaka signature scheme.

With the post-quantum standardization and migration underway, the side-channel security of post-quantum schemes needs more investigations.

Thank you!