
Improved Power Analysis Attacks on Falcon

EUROCRYPT 2023

Shiduo Zhang, Xiuhan Lin, Yang Yu, Weijia Wang

1 / 31

Overview

In this work, we develop several key recovery attacks exploiting power
leakage on Falcon.

a new effective key recovery using the half Gaussian leakage within
the base sampler.
the first side-channel analysis on Falcon taking the sign leakage into
account.

2 / 31

Outline

1 Background
2 The half Gaussian leakage and the sign leakage
3 Exploiting the half Gaussian leakage
4 Exploiting the sign leakage

3 / 31

Background

4 / 31

Falcon

Falcon is one of the three post quantum digital signatures to be
standardized by NIST.

Falcon has a good performance especially it has the smallest bandwidth
(public key size plus signature size) among the selected NIST signatures.

Falcon is a lattice-based hash-and-sign signature scheme.

5 / 31

Hash-and-sign paradigm
Hash-and-sign

signing: finding close vectors
GGH, NTRUSign → GPV → Falcon

GGH, NTRUSign used the deterministic Babai’s algorithm to find the close
vectors.

[GPV08] proposed a provably secure hash-and-sign framework1.
rounding based on random Gaussian sampling
distribution of signatures is provably independent of the secret key

Falcon is an efficient instantiation of the GPV framework by using optimal
NTRU trapdoor.

1[GPV08] :Trapdoors for Hard Lattices and New Cryptographic Constructions. Gentry, Peikert, Vaikuntanathan.

6 / 31

Hash-and-sign paradigm
Hash-and-sign

signing: finding close vectors
GGH, NTRUSign → GPV → Falcon

GGH, NTRUSign used the deterministic Babai’s algorithm to find the close
vectors.

[GPV08] proposed a provably secure hash-and-sign framework1.
rounding based on random Gaussian sampling
distribution of signatures is provably independent of the secret key

Falcon is an efficient instantiation of the GPV framework by using optimal
NTRU trapdoor.

1[GPV08] :Trapdoors for Hard Lattices and New Cryptographic Constructions. Gentry, Peikert, Vaikuntanathan.

6 / 31

Hash-and-sign paradigm
Hash-and-sign

signing: finding close vectors
GGH, NTRUSign → GPV → Falcon

GGH, NTRUSign used the deterministic Babai’s algorithm to find the close
vectors.

[GPV08] proposed a provably secure hash-and-sign framework1.
rounding based on random Gaussian sampling
distribution of signatures is provably independent of the secret key

Falcon is an efficient instantiation of the GPV framework by using optimal
NTRU trapdoor.

1[GPV08] :Trapdoors for Hard Lattices and New Cryptographic Constructions. Gentry, Peikert, Vaikuntanathan.

6 / 31

Hash-and-sign paradigm
Hash-and-sign

signing: finding close vectors
GGH, NTRUSign → GPV → Falcon

GGH, NTRUSign used the deterministic Babai’s algorithm to find the close
vectors. Insecure !

[GPV08] proposed a provably secure hash-and-sign framework1.
rounding based on random Gaussian sampling
distribution of signatures is provably independent of the secret key

Falcon is an efficient instantiation of the GPV framework by using optimal
NTRU trapdoor.

1[GPV08] :Trapdoors for Hard Lattices and New Cryptographic Constructions. Gentry, Peikert, Vaikuntanathan.

6 / 31

Hash-and-sign paradigm
Hash-and-sign

signing: finding close vectors
GGH, NTRUSign → GPV → Falcon

GGH, NTRUSign used the deterministic Babai’s algorithm to find the close
vectors. Insecure !

[GPV08] proposed a provably secure hash-and-sign framework1.
rounding based on random Gaussian sampling
distribution of signatures is provably independent of the secret key

Falcon is an efficient instantiation of the GPV framework by using optimal
NTRU trapdoor.

1[GPV08] :Trapdoors for Hard Lattices and New Cryptographic Constructions. Gentry, Peikert, Vaikuntanathan.
6 / 31

Hash-and-sign paradigm
Hash-and-sign

signing: finding close vectors
GGH, NTRUSign → GPV → Falcon

GGH, NTRUSign used the deterministic Babai’s algorithm to find the close
vectors. Insecure !

[GPV08] proposed a provably secure hash-and-sign framework1.
rounding based on random Gaussian sampling
distribution of signatures is provably independent of the secret key

Falcon is an efficient instantiation of the GPV framework by using optimal
NTRU trapdoor.

1[GPV08] :Trapdoors for Hard Lattices and New Cryptographic Constructions. Gentry, Peikert, Vaikuntanathan.
6 / 31

Hash-and-sign paradigm

Hash-and-sign
signing: finding close vectors
GGH, NTRUSign → GPV → Falcon

GGH, NTRUSign used the deterministic Babai’s algorithm to find the close
vectors. Insecure !

[GPV08] proposed a provably secure hash-and-sign framework1.
rounding based on random Gaussian sampling
distribution of signatures is provably independent of the secret key

Falcon is an efficient instantiation of the GPV framework by using optimal
NTRU trapdoor.

1[GPV08] :Trapdoors for Hard Lattices and New Cryptographic Constructions. Gentry, Peikert, Vaikuntanathan.
6 / 31

Side-channel analysis

With PQC standardization and migration underway, security should be
considered from both algorithmic and implementation aspects.

The implementation security of Falcon is intricate
signing relies on complicated lattice Gaussian sampling
secret key is used in a rather opaque way

We need to understand the connection between leakage and secret key
itself.

7 / 31

Side-channel analysis

With PQC standardization and migration underway, security should be
considered from both algorithmic and implementation aspects.

The implementation security of Falcon is intricate
signing relies on complicated lattice Gaussian sampling
secret key is used in a rather opaque way

We need to understand the connection between leakage and secret key
itself.

7 / 31

Gaussian Samplers of Falcon

8 / 31

Sampler

Falcon

FFOSampler: v← DL(B),σ,c

SamplerZ: z← DZ,σ′,c

BaseSampler: z+ ← D+
Z,σmax,0

The KGPV sampler
Input: a basis B = (b0, · · · , bn−1), a center

c and σ ≥ ∥B∥GS · ηϵ(Z)
Output: a lattice point v following a

distribution close to DL(B),σ,c.
1: v← 0, c′ ← c
2: for i = n− 1, · · · , 0 do
3: σi = σ/∥b̃i∥
4: c′′i = ⟨c′, b̃i⟩/∥b̃i∥2
5: zi ← SamplerZ(σi, c′′i − ⌊c′′i ⌋) + ⌊c′′i ⌋
6: c′ ← c′ − zibi, v← v + zibi
7: end for
8: return v

9 / 31

Sampler

Falcon

FFOSampler: v← DL(B),σ,c

SamplerZ: z← DZ,σ′,c

BaseSampler: z+ ← D+
Z,σmax,0

The KGPV sampler
Input: a basis B = (b0, · · · , bn−1), a center

c and σ ≥ ∥B∥GS · ηϵ(Z)
Output: a lattice point v following a

distribution close to DL(B),σ,c.
1: v← 0, c′ ← c
2: for i = n− 1, · · · , 0 do
3: σi = σ/∥b̃i∥
4: c′′i = ⟨c′, b̃i⟩/∥b̃i∥2
5: zi ← SamplerZ(σi, c′′i − ⌊c′′i ⌋) + ⌊c′′i ⌋
6: c′ ← c′ − zibi, v← v + zibi
7: end for
8: return v

9 / 31

Integer Gaussian sampler of Falcon

Falcon

FFOSampler: v← DL(B),σ,c

SamplerZ: z← DZ,σ′,c

BaseSampler: z+ ← D+
Z,σmax,0

SamplerZ(σ, c)
Input: c ∈ [0, 1) and σ ∈ (σmin, σmax).
Output: z ∈ Z following DZ,σ,c.
1: z+ ← BaseSampler()
2: b← U({0, 1})
3: z← b + (2b− 1)z+

4: x← − (z−c)2
2σ2 + (z+)2

2σ2
max

5: return z with probability σmin
σ
· exp(x),

otherwise restart;

10 / 31

Integer Gaussian sampler of Falcon

Falcon

FFOSampler: v← DL(B),σ,c

SamplerZ: z← DZ,σ′,c

BaseSampler: z+ ← D+
Z,σmax,0

BaseSampler()

Output: z+ ∼ D+
Z,σmax,0.

1: u $← {0, 1}72
2: z+ ← 0
3: for i = 0 · · · 17 do
4: z+ ← z+ + [[u < RCDT[i]]]
5: end for
6: return z+

11 / 31

The half Gaussian leakage and the sign leakage

12 / 31

Half Gaussian leakages

BaseSampler()

Output: z+ ∼ D+
Z,σmax,0.

1: u $← {0, 1}72
2: z+ ← 0
3: for i = 0 · · · 17 do
4: z+ ← z+ + [[u < RCDT[i]]]
5: end for
6: return z+

Half Gaussian leakage
One can classify if z+ = 0 or not through the power consumption of the
comparison [[u < RCDT[i]]]

13 / 31

Half Gaussian leakages

BaseSampler()

Output: z+ ∼ D+
Z,σmax,0.

1: u $← {0, 1}72
2: z+ ← 0
3: for i = 0 · · · 17 do
4: z+ ← z+ + [[u < RCDT[i]]]
5: end for
6: return z+

Half Gaussian leakage
One can classify if z+ = 0 or not through the power consumption of the
comparison [[u < RCDT[i]]]

13 / 31

Sign leakages

SamplerZ(σ, c)
Input: c ∈ [0, 1) and σ ∈ (σmin, σmax).
Output: z ∈ Z following DZ,σ,c.
1: z+ ← BaseSampler()
2: b← U({0, 1})
3: z← b + (2b− 1)z+

4: x← − (z−c)2
2σ2 + (z+)2

2σ2
max

5: return z with probability σmin
σ
· exp(x), otherwise restart;

Sign leakage
One can determine b through the power of [[z← b + (2b− 1)z+]] and
[[x← − (z−c)2

2σ′2 + (z+)2

2σ2max
]]

14 / 31

Sign leakages

SamplerZ(σ, c)
Input: c ∈ [0, 1) and σ ∈ (σmin, σmax).
Output: z ∈ Z following DZ,σ,c.
1: z+ ← BaseSampler()
2: b← U({0, 1})
3: z← b + (2b− 1)z+

4: x← − (z−c)2
2σ2 + (z+)2

2σ2
max

5: return z with probability σmin
σ
· exp(x), otherwise restart;

Sign leakage
One can determine b through the power of [[z← b + (2b− 1)z+]] and
[[x← − (z−c)2

2σ′2 + (z+)2

2σ2max
]]

14 / 31

Exploiting the half Gaussian leakage

15 / 31

Parallelepiped-learning strikes again

In [GMRR22], Guerreau et al. proposed a key recovery attack exploiting
the half Gaussian leakage.2

Fact
When z+0 = 0, the signature s =

∑2n−1
i=0 yi · b̃i with y0 ∈ [−1, 1].

200 0 200 400

400

200

0

200

400

The attack of [GMRR22]
They reused the parallelepiped-learning
technique to recover the key

The attack is rather expensive.
107 traces for direct recovery
106 traces and 1000h of computation

2The Hidden Parallelepiped Is Back Again: Power Analysis Attacks on Falcon. Guerreau, Martinelli, Ricosset, Rossi.
16 / 31

Parallelepiped-learning strikes again

In [GMRR22], Guerreau et al. proposed a key recovery attack exploiting
the half Gaussian leakage.2

Fact
When z+0 = 0, the signature s =

∑2n−1
i=0 yi · b̃i with y0 ∈ [−1, 1].

200 0 200 400

400

200

0

200

400

The attack of [GMRR22]
They reused the parallelepiped-learning
technique to recover the key

The attack is rather expensive.
107 traces for direct recovery
106 traces and 1000h of computation

2The Hidden Parallelepiped Is Back Again: Power Analysis Attacks on Falcon. Guerreau, Martinelli, Ricosset, Rossi.
16 / 31

Our improved key recovery

Learning Slice Problem LSPb,σ,N

Given b ∈ Rn, let Sb(b) = {v : |⟨v, b⟩| ≤ b}. Let Ds be the conditional
distribution of z ∼ (N (0, σ2))n given z ∈ Sb(b). Given N independent
samples drawn from Ds, find an approximation of ±b.

The geometric intuition: the projection of signatures in the slice on b0

tends to be unusually short.

Our LSP algorithm
1 learning the direction of b0

2 estimating ∥b0∥

200 0 200 400

400

200

0

200

400

17 / 31

Step 1: Learning the slice direction
Let B = (b0, b1, · · · , bn−1) and D = (d0, · · · , dn−1) with di = b̃i/∥b̃i∥.

For s =
∑

i yidi ∼ (N (0, σ2))n, yi ∼ N (0, σ2) and Cov[s] = σ2I.

When s ∈ Sb0(b), the variance of y0 is σ′2 < σ2 and thus

Cov[s|s ∈ Sb0(b)] = D ·
(
σ′2

σ2I

)
·Dt.

Fact
The smallest eigenvalue σ′ is unique and its eigenvector is in the same
direction as b0.

This allows us to recover the direction through spectral decomposition!

This analysis can be understood as principal component analysis rather
than independent component analysis.

18 / 31

Step 1: Learning the slice direction
Let B = (b0, b1, · · · , bn−1) and D = (d0, · · · , dn−1) with di = b̃i/∥b̃i∥.

For s =
∑

i yidi ∼ (N (0, σ2))n, yi ∼ N (0, σ2) and Cov[s] = σ2I.

When s ∈ Sb0(b), the variance of y0 is σ′2 < σ2 and thus

Cov[s|s ∈ Sb0(b)] = D ·
(
σ′2

σ2I

)
·Dt.

Fact
The smallest eigenvalue σ′ is unique and its eigenvector is in the same
direction as b0.

This allows us to recover the direction through spectral decomposition!

This analysis can be understood as principal component analysis rather
than independent component analysis.

18 / 31

Step 1: Learning the slice direction
Let B = (b0, b1, · · · , bn−1) and D = (d0, · · · , dn−1) with di = b̃i/∥b̃i∥.

For s =
∑

i yidi ∼ (N (0, σ2))n, yi ∼ N (0, σ2) and Cov[s] = σ2I.

When s ∈ Sb0(b), the variance of y0 is σ′2 < σ2 and thus

Cov[s|s ∈ Sb0(b)] = D ·
(
σ′2

σ2I

)
·Dt.

Fact
The smallest eigenvalue σ′ is unique and its eigenvector is in the same
direction as b0.

This allows us to recover the direction through spectral decomposition!

This analysis can be understood as principal component analysis rather
than independent component analysis.

18 / 31

Step 1: Learning the slice direction
Let B = (b0, b1, · · · , bn−1) and D = (d0, · · · , dn−1) with di = b̃i/∥b̃i∥.

For s =
∑

i yidi ∼ (N (0, σ2))n, yi ∼ N (0, σ2) and Cov[s] = σ2I.

When s ∈ Sb0(b), the variance of y0 is σ′2 < σ2 and thus

Cov[s|s ∈ Sb0(b)] = D ·
(
σ′2

σ2I

)
·Dt.

Fact
The smallest eigenvalue σ′ is unique and its eigenvector is in the same
direction as b0.

This allows us to recover the direction through spectral decomposition!

This analysis can be understood as principal component analysis rather
than independent component analysis.

18 / 31

Step 2: Learning the norm

The covariance Cov[s|s ∈ Sb0(b)] also leaks the information of ∥b0∥:

σ′2 =

∫ b′
−b′ x2 exp(− x2

2σ2)dx∫ b′
−b′ exp(− x2

2σ2)dx
where b′ = b

∥b0∥
.

This allows to numerically estimate ∥b0∥!

19 / 31

Step 2: Learning the norm

The covariance Cov[s|s ∈ Sb0(b)] also leaks the information of ∥b0∥:

σ′2 =

∫ b′
−b′ x2 exp(− x2

2σ2)dx∫ b′
−b′ exp(− x2

2σ2)dx
where b′ = b

∥b0∥
.

This allows to numerically estimate ∥b0∥!

19 / 31

Experimental results

16 20 24 28 32 36
the number of traces ×10 4

0

7
10

20

30

40

50

||e
|| 1

Maximum
Upper quartile
Median
Lower quartile
Minimum

2 6 10 14 18 22
the number of traces ×10 4

45

55

65

75

85

bi
t s

ec
ur

ity

Maximum
Upper quartile
Median
Lower quartile
Minimum

Our attack is much more efficient compared with [GMRR22]3!
direct recovery: 107 traces → 3.6× 105 traces
106 traces + 1000h → 2.2× 105 traces + 0.5h of computation

3The Hidden Parallelepiped Is Back Again: Power Analysis Attacks on Falcon. Guerreau, Martinelli, Ricosset, Rossi.
20 / 31

Exploiting the sign leakage

21 / 31

Learning the halfspace
The sign leakage allows to determine whether a signature s is in the
halfspace H+ = {v : ⟨v, b0⟩ ≥ 0} or H− = {v : ⟨v, b0⟩ < 0}

400 200 0 200 400

400

200

0

200

400

Learning Halfspace Problem LHPσ,N

Given b ∈ Rn, let H+
b = {v : ⟨v, b⟩ ≥ 0}. Let Dh be the conditional

distribution of z ∼ (N (0, σ2))n given z ∈ H+
b . Given N independent

samples drawn from Dh, find an approximate direction of ±b.

22 / 31

Learning the halfspace
The sign leakage allows to determine whether a signature s is in the
halfspace H+ = {v : ⟨v, b0⟩ ≥ 0} or H− = {v : ⟨v, b0⟩ < 0}

400 200 0 200 400

400

200

0

200

400

Learning Halfspace Problem LHPσ,N

Given b ∈ Rn, let H+
b = {v : ⟨v, b⟩ ≥ 0}. Let Dh be the conditional

distribution of z ∼ (N (0, σ2))n given z ∈ H+
b . Given N independent

samples drawn from Dh, find an approximate direction of ±b.
22 / 31

Our LHP algorithm

At a high level, our algorithm can be seen as the reduction:

LHPσ,N → LSPb,σ,N′ .

Our LHP algorithm
1 learning a relatively rough direction v of b0 from samples in H+

b0

2 filtering out those samples in Sv(b) using v
3 learning the direction of b0 from the filtered samples in Sv(b)

23 / 31

Our LHP algorithm

At a high level, our algorithm can be seen as the reduction:

LHPσ,N → LSPb,σ,N′ .

Our LHP algorithm
1 learning a relatively rough direction v of b0 from samples in H+

b0

2 filtering out those samples in Sv(b) using v
3 learning the direction of b0 from the filtered samples in Sv(b)

23 / 31

Step 1: Learning a rough direction

The coefficient of d0 is half Gaussian, while others are full Gaussian.
⇒ The direction can be learned through spectral decomposition as well!

Since the gap between the smallest eigenvalue and others now increases,
an accurate approximation requires more samples.
⇒ We learn a relatively rough direction instead of a very accurate one

One can also learn the direction through the expectation of samples, but
the expectation does not seem to improve the attack

24 / 31

Step 1: Learning a rough direction

The coefficient of d0 is half Gaussian, while others are full Gaussian.
⇒ The direction can be learned through spectral decomposition as well!

Since the gap between the smallest eigenvalue and others now increases,
an accurate approximation requires more samples.
⇒ We learn a relatively rough direction instead of a very accurate one

One can also learn the direction through the expectation of samples, but
the expectation does not seem to improve the attack

24 / 31

Step 1: Learning a rough direction

The coefficient of d0 is half Gaussian, while others are full Gaussian.
⇒ The direction can be learned through spectral decomposition as well!

Since the gap between the smallest eigenvalue and others now increases,
an accurate approximation requires more samples.
⇒ We learn a relatively rough direction instead of a very accurate one

One can also learn the direction through the expectation of samples, but
the expectation does not seem to improve the attack

24 / 31

Step 2: Filtering out a slice

To refine the accuracy, we attempt to amplify the condition number.

We propose to use the rough direction v to classify all samples into two
sets S = {s | |⟨s, v⟩| ≤ b} and C = {s | |⟨s, v⟩| > b}

400 200 0 200 400
400

200

0

200

400

Applying our LSP algorithm, we obtain a more accurate direction!

25 / 31

Step 2: Filtering out a slice

To refine the accuracy, we attempt to amplify the condition number.

We propose to use the rough direction v to classify all samples into two
sets S = {s | |⟨s, v⟩| ≤ b} and C = {s | |⟨s, v⟩| > b}

400 200 0 200 400
400

200

0

200

400

Applying our LSP algorithm, we obtain a more accurate direction!

25 / 31

Step 2: Filtering out a slice

To refine the accuracy, we attempt to amplify the condition number.

We propose to use the rough direction v to classify all samples into two
sets S = {s | |⟨s, v⟩| ≤ b} and C = {s | |⟨s, v⟩| > b}

400 200 0 200 400
400

200

0

200

400

Applying our LSP algorithm, we obtain a more accurate direction!

25 / 31

Experimental results
The attack is more efficient than the one using half Gaussian leakages.

13 15 17 19 21 23 25 27 29
the number of traces ×10 4

0

7
10

15

20

25

30

35
||e

|| 1
Maximum
Upper quartile
Median
Lower quartile
Minimum

2 4 6 8 10 12 14
the number of traces ×10 4

40
45
50
55
60
65
70
75
80

bi
t s

ec
ur

ity

Maximum
Upper quartile
Median
Lower quartile
Minimum

The attack can be more efficient by using both two leakages!

3.0 3.5 4.0 4.5 5.0 5.5 6.0 6.5 7.0
the number of traces ×10 4

0

7
10

20

30

40

50

||e
|| 1

Maximum
Upper quartile
Median
Lower quartile
Minimum

11 15 19 23 27 31
the number of traces ×10 3

50

55

60

65

70

75

bi
t s

ec
ur

ity

Maximum
Upper quartile
Median
Lower quartile
Minimum

26 / 31

Experimental results
The attack is more efficient than the one using half Gaussian leakages.

13 15 17 19 21 23 25 27 29
the number of traces ×10 4

0

7
10

15

20

25

30

35
||e

|| 1
Maximum
Upper quartile
Median
Lower quartile
Minimum

2 4 6 8 10 12 14
the number of traces ×10 4

40
45
50
55
60
65
70
75
80

bi
t s

ec
ur

ity

Maximum
Upper quartile
Median
Lower quartile
Minimum

The attack can be more efficient by using both two leakages!

3.0 3.5 4.0 4.5 5.0 5.5 6.0 6.5 7.0
the number of traces ×10 4

0

7
10

20

30

40

50

||e
|| 1

Maximum
Upper quartile
Median
Lower quartile
Minimum

11 15 19 23 27 31
the number of traces ×10 3

50

55

60

65

70

75

bi
t s

ec
ur

ity

Maximum
Upper quartile
Median
Lower quartile
Minimum

26 / 31

A practical countermeasure

SamplerZ(σ, c)
Input: c ∈ [0, 1) and σ ∈ (σmin, σmax).
Output: z ∼ DZ,σ,c.
1: z+ ← BaseSampler()
2: b← U({0, 1})
3: z← b + (2b− 1)z+

4: x← − (z−c)2
2σ2 +

(z+)2
2σ2max

5: return z with probability σmin
σ
· exp(x), otherwise restart;

Protected SamplerZ(σ, c)
Input: c and σ ∈ (σmin, σmax).
Output: z ∼ DZ,σ,c.
1: c′ ← c− ⌊c⌋
2: z+ ← BaseSampler()
3: (̃t[0], . . . , t̃[15])← (2, 1, 1, 2, 2, 1, 1, 2, 2, 1, 2, 1, 1, 2, 1, 2)

4: t←U({0, . . . , 15})
5: b← t̃[t]
6: (c̃[0], c̃[1], c̃[2])← (0, c′, 1− c′)
7: (̃z[0], z̃[1], z̃[2])← (0, ⌊c⌋ − z+, ⌊c⌋ + 1 + z+)

8: x← − (z++c̃[b])2
2σ2 +

(z+)2

2σ2max
9: return z̃[b] with probability σmin

σ
· exp(x), otherwise restart;

27 / 31

A practical countermeasure

SamplerZ(σ, c)
Input: c ∈ [0, 1) and σ ∈ (σmin, σmax).
Output: z ∼ DZ,σ,c.
1: z+ ← BaseSampler()
2: b← U({0, 1})
3: z← b + (2b− 1)z+

4: x← − (z−c)2
2σ2 +

(z+)2
2σ2max

5: return z with probability σmin
σ
· exp(x), otherwise restart;

Protected SamplerZ(σ, c)
Input: c and σ ∈ (σmin, σmax).
Output: z ∼ DZ,σ,c.
1: c′ ← c− ⌊c⌋
2: z+ ← BaseSampler()
3: (̃t[0], . . . , t̃[15])← (2, 1, 1, 2, 2, 1, 1, 2, 2, 1, 2, 1, 1, 2, 1, 2)

4: t←U({0, . . . , 15})
5: b← t̃[t]
6: (c̃[0], c̃[1], c̃[2])← (0, c′, 1− c′)
7: (̃z[0], z̃[1], z̃[2])← (0, ⌊c⌋ − z+, ⌊c⌋ + 1 + z+)

8: x← − (z++c̃[b])2
2σ2 +

(z+)2

2σ2max
9: return z̃[b] with probability σmin

σ
· exp(x), otherwise restart;

27 / 31

Effectiveness

Unprotected integer sampler

Protected integer sampler

28 / 31

Conclusion

29 / 31

Conclusion

We provide an improved power analysis for Falcon.
a new effective key recovery using the half Gaussian leakage within
the base sampler
the first side-channel analysis on Falcon taking the sign leakage into
account.
the above attacks also working with imperfect classification
our attacks also working for the Mitaka signature scheme.

With the post-quantum standardization and migration underway, the
side-channel security of post-quantum schemes needs more investigations.

30 / 31

Conclusion

We provide an improved power analysis for Falcon.
a new effective key recovery using the half Gaussian leakage within
the base sampler
the first side-channel analysis on Falcon taking the sign leakage into
account.
the above attacks also working with imperfect classification
our attacks also working for the Mitaka signature scheme.

With the post-quantum standardization and migration underway, the
side-channel security of post-quantum schemes needs more investigations.

30 / 31

Thank you!

31 / 31

	Background
	Falcon
	The attack exploiting power leakage

