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The Deuring Correspondence: an example

Supersingular elliptic curves over Fp2 Maximal Orders in B(p)
E (up to Galois conjugacy) O ∼= End(E )
Isogeny with φ : E1 → E2 Ideal Iφ left O1,O2-ideal
Degree deg(φ) Norm n(Iφ)

Example: p ≡ 3 mod 4, B(p) ∼= Q⟨1, i , j , ij⟩ where i2 = −1, j2 = −p.

E0 : y2 = x3 + x

End(E0) = ⟨1, ι, ι+ π

2
,
1 + ιπ

2
⟩ ∼= ⟨1, i , i + j

2
,
1 + ij

2
⟩

π : (x , y) 7→ (xp, yp) is the Frobenius morphism with π ◦ π = [−p].

ι : (x , y) 7→ (−x ,
√
−1y) is a twisting automorphism with ι ◦ ι = [−1].
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Hard and easy problems

Supersingular ℓ-Isogeny Problem

✗

: Given a prime p and two
supersingular curves E1 and E2 over Fp2 , compute an ℓe-isogeny

φ : E1 → E2 for e ∈ N⋆.

yy Endomorphism ring problem ✗

Quaternion ℓ-Isogeny Path Problem

✓

: Given a prime number p, two
maximal orders O1,O2 of B(p), find an ideal J of norm ℓe for e ∈ N⋆

with OL(J) ∼= O1, OR(J) ∼= O2.

[KLPT14]: polynomial time alg. for the quaternion path problem.
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SQISign Identification Scheme [FKLPW20]

Main idea: public key is a curve EA and secret key is End(EA). Proving
knowledge of End(EA) by solving the isogeny problem.

E0

E1

E2

EA

τ

ψ

φ

σ

commitment isogeny (prover)

challenge isogeny (verifier)

response isogeny (prover)

secret key isogeny

Response computation:

1. Compute End(E2) from ψ,φ.

2. Compute Iσ connecting End(EA) and End(E2).

3. Translate Iσ into σ.

Need efficient ideal to isogeny translation!
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Effective Deuring Correspondence: Ideal to isogeny

Ideal to isogeny translation problem

Input: A ss. curve E , a max. order O ∼= End(E ), and an O-ideal
I 1 of norm D.

Output: The isogeny φI : E → EI .

Algorithm from [GPS16] : O(poly(maxℓ|D ℓ)) operations over Fpk when
kerφI ∈ E [Fpk ].

We need to take D smooth, but then D is too big to have a small k!

1given as 16 coefficients of O(pD) over Q
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Dividing the problem

For SQISign, D = 2f .

Idea introduced in [FKLPW20]: Cut the isogeny in small pieces of degree
2e where kernels are defined over Fp2 .

But we need to "refresh" the 2e-torsion after each step. In initial
SQISign : alternate path of smooth odd degree T .

E0 E1 E2

2e 2e

T T

To have E [2eT ] defined over Fp2 , we need 2eT |p2 − 1. The problem is
T ≈ p3/2.
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Endomorphisms instead of isogenies

Main new idea : smooth odd degree endomorphisms are enough to
"refresh" the torsion.

E0 E1 E2

2e 2e

T T

Endomorphisms are easier to find than isogenies : we need T ≈ p5/4.
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Example: p6983 vs p3923

For the original SQISign we add p6983

p + 1 = 233 · 521 · 72 · 11 · 31 · 83 · 107 · 137 · 751 · 827 · 3691 · 4019 · 6983

· 517434778561 · 26602537156291 ,

p − 1 = 2 · 353 · 43 · 1032 · 109 · 199 · 227 · 419 · 491 · 569 · 631 · 677 · 857 · 859

· 883 · 1019 · 1171 · 1879 · 2713 · 4283

For the new algorithm, we have p3923

p + 1 = 265 · 52 · 7 · 11 · 19 · 292 · 372 · 47 · 197 · 263 · 281 · 461 · 521

· 3923 · 62731 · 96362257 · 3924006112952623 ,

p − 1 = 2 · 365 · 13 · 17 · 43 · 79 · 157 · 239 · 271 · 283 · 307 · 563 · 599

· 607 · 619 · 743 · 827 · 941 · 2357 · 10069 .
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SQISign: Short Quaternion Isogeny Signature

Most compact PQ signature scheme with PK + Signature combined.

Name Public Key (bytes) Signature (bytes) Security
SQISign 64 204 NIST-1

Falcon-512 897 666 NIST-1
Dilithium2 1312 2420 NIST-1

Implementation in C with various improvements: new algorithms
accounts for ×2 speed-up.

Keygen Sign Verify method article
Mcycles 1823 7020 143 SQISign [FKLPW20]
Mcycles 421 1987 30 New Id-to-Iso [FLLW22]

Table 1: Performance of SQISign in milliseconds, on an Intel core i7 Skylake @
3.40 GHz CPU

Signature: ≈ 400ms Verification: ≈ 6ms
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