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ZERO KNOWLEDGE PROOF OF KNOWLEDGE

Bob wants to prove to Alice that he knows
the door code without reveal it to her.

Door with code
Alice can't see Bob.and doesn't

know which route he chose.
She wants to know if Bob
knows the door’s code.

# Bob selected
aroute
randomly

Alice randomly tells Bob a route
back. If Bob returns by the route
Alice said it would prove that Bob
knows the code.
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SYNDROME DECODING PROBLEM

SD DEFINITION

The Syndrome decoding problem with parameters (K, k, w) is defined as follows:
m (Problem generation)
Sample H —; {0,1}**K and x —; {x€ {0, 1}K : HW(x) = w}.
Set y — H-xmod 2. Output (H,y). RSD
m (Goal) Given (H,y), find x€ {0, 11X such that

m H-x=ymod2
m HW(x) = w over N.
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SYNDROME DECODING PROBLEM

SD DEFINITION

The Syndrome decoding problem with parameters (K, k, w) is defined as follows:
m (Problem generation)
Sample H —; {0,1}**K and x —; {x € {0,1}X : HW(x) = w}.
Set y — H-x mod 2. Output (H,y).
m (Goal) Given (H,y), find x€ {0, 13X such that

m H-x=ymod 2
s HW(x) = w over N.

RSD

RSD DEFINITION

The Regular syndrome decoding problem is a variant of the SD problem in which
the witness is regular, i.e. divided into w blocks of size T = K/w, each of theme has
exactly one non-zero entry.

OUR POINT OF VIEW
Let K, k,w be three integers, with K> k> w. Given He {0,13%*K and ye{O,l}k, find
regular x€{0,1}X s.t.:

m H-x=y over [

m (1,x)=w over Z.
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public function g, an n-party protocol allows them to compute

g(plv“'ypl’l) MPC
without revealing their own secret inputs.
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MULTI-PARTY COMPUTATION

WHAT 1s MPC?

Let Py,---,Py be n parties, each one with a private information py,---,p,. For a
public function g, an n-party protocol allows them to compute

MPC

g(plv“'rpl’l)

without revealing their own secret inputs.

MPC IN-THE-HEAD

For a public value y, it is possible to produce an honest-verifier zero-knowledge
argument of knowledge of a witness x s.t. f(x) =y using an n-party protocol for a
function g related to f.

In our context f(x)=(H:x mod 2,(1,x) mod T) = (y, w).

The prover:

m Shares [x]2 = (x1,-*+,xp) s.t. z?:l X; = x among n virtual parties,

m Computes g(x1,-++, %) = f(X; x;) = (X; H-x;,2:(1,x;)) over appropriate ring.



Xn
yn=Hxp mod2
wy =(1,xp) mod T

X1
y1=Hx; mod2
wy=(Lx)) modT

x; mod2
{Lx2) modT

Xi
yi=Hx; mod2
wi=(l,x;) modT




P \%

Asks to see all views but one.

” o -
Yn=Hxn mod2 y2=Hx; mod2
wn =(1,xp) mod T w2 =({1,x2) modT

yi=Hx; mod2
)i =(1,x;) modT




X1
yi=Hx mod2
wy=(1L,x) modT

*=EL .
. Y=EL Vi y2 = Hx, mod2
_ wy=(1,x2) mod T
W=y} w

Xi

yi=Hx; mod2
w;=(1,x;) mod T

\
Asks to see all views but one.



PREPROCESSING MATERIAL

MPC

HOW TO CONVERT [x]2 INTO [x] T

[XlIr=2z-1-rlr+(1-2)-[rlT
where r is random and [z]2 = [r]2 + [x]2.



PREPROCESSING MATERIAL

MPC

HOW TO CONVERT [x]2 INTO [x] T

[XlIr=2z-1-rlr+(1-2)-[rlT
where r is random and [z]2 = [r]2 + [x]2.

Prepocessing material: s=[rl2,t=[rlr.
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IDEA OF THE 5 ROUND PROTOCOL

Round 1 (P)

w ([x]2, [xl2, [X]7) = (X1, -+, Xn), (81, , 8, (1, , tn)).

m ¢; — Commit(x;,s;,t;) for i=1 to n.
Round 2 (V) Does something in order to verify the preprocessing phase.
Round 3 (P) Runs the online phase of the MPC in the head. Wi ose

Round 4 (V) Chooses d € [n]. e
Round 5 (P) Opens c; for j#d.

Each t; is a KlogT term.

SD RSD
m T=K; m T=Klw;
m Sharing t; requires KlogK bits. m Sharing t; requires KlogK/w bits.

A\ The higher is the weight, the lower is the cost!
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CHEAT ON PREPROCESSING

HOW TO SHARE S = [r]2 AND t=[r] T

The prover computes the material himself in the preprocessing phase but he has to
shuffle it using a uniformly random permutation chosen by the verifier before use it in
the online phase of the MPC-in-the-head protocol.
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CHEAT ON PREPROCESSING

HOW TO SHARE s = [r]2 AND t= [r] 7

The prover computes the material himself in the preprocessing phase but he has to
shuffle it using a uniformly random permutation chosen by the verifier before use it in
the online phase of the MPC-in-the-head protocol.

Hx=y Hx=y
Z=S®X — Z=7(S)® X
X=zol-t)+(1-z)0t X'=zod-n)+1-2) o)
HW () = w HW() = w How 10 e

PREPROC
DEFINITION

A real pe (0,1) is a combinatorial bound if for every incorrect witness x, and every
pair (s,t), the probability, over the random choice of 7, that x satisfies:

m X' =zo(l-n)+1-2)0n(t) with z=n(s)®x
m H-x=ymod2, HW(x) = w mod 2, and HW(x') = w mod T
is upper-bounded by p.
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f—ALMOST REGULAR SYNDROME DECODING

f-WEAKLY VALID WITNESS
We say that xeFX a f-weakly valid witness if x is almost a regular vector, in the
sense that it differs from a regular vector in at most f blocks.
Formally, let (x/)j<;y be the w length-T blocks of x. Then x is an f-weakly valid
witness if

Vj<w, HW(x/) =1 mod 2,

I{j : HW (/) #1 mod T/2}| < f.
This leads to a gap: while an honest witness is assumed to be a standard regular

vector, the witness extracted from a malicious prover can be an f-almost-regular
vector.

A\ We chose parameters in an area s.t. the f-almost regular syndrome decoding is
reduced to the standard regular syndrome decoding.
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Parameters (K, k,w,T) with K>k>w and T — K/w.
He{0,13F*K y e {0,11* are public.

Inputs P,V: (y, w).

P: xe {O,I}K s.t. Hx=ymod 2 and HW(x) = w mod T.
Round 1 (P)

m ([x]2, [xl2, [xl7) = (X1, ,Xn), (1, -+, 8n), (t1,- -+, tp)).
m ¢; —r Commit(x;,s;, t;) for i=1 to n.

Round 2 (V) 7 — Sg.
Round 3 (P) runs the online phase of the MPC in the head

m [yl2=H-[x]2
m [z]p = [z(®)]2 + [x]2
Wiy —1,@eoll-nmlr+1-2z) 0 [z®]7).
msg; = (y};,2;,W})
Round 4 (V) de[nl.
Round 5 (P) opens c; for j#d.
Verification (V) checks
m all commitments were opened correctly;
= @;y;=yand ¥; w;=w modT;

m msg; is consistent with (Xj,Sj,tj).




SOUNDNESS

THEOREM

Let
m Commit be a non-interactive commitment scheme,
m H be collision-resistant hash function,

m p be the combinatorial bound previously discussed.

SOUNDNESS



SOUNDNESS

THEOREM

Let
m Commit be a non-interactive commitment scheme,
m H be collision-resistant hash function,
m p be the combinatorial bound previously discussed.

Then our protocol is a gap honest-verifier zero-knowledge argument of knowledge for
the relation # such that

(H,y),x)e 2 if H-x=ymod 2 and x is a regular vector of weight w SoUNDNESS
The gap relation &' is such that

(H,y),x)e R if H-x=ymod 2 and x is an f-weakly valid witness



SOUNDNESS

THEOREM

Let
m Commit be a non-interactive commitment scheme,
m H be collision-resistant hash function,
m p be the combinatorial bound previously discussed.

Then our protocol is a gap honest-verifier zero-knowledge argument of knowledge for
the relation # such that

(H,y),x)e 2 if H-x=ymod 2 and x is a regular vector of weight w SoUNDNESS
The gap relation &' is such that
(H,y),x)e R if H-x=ymod 2 and x is an f-weakly valid witness

The soundness error of the proof is at most e =p+1/n—p/n.



COMMUNICATION COST

EXPECTED COMMUNICATION

2n—-1\T-1
A(logn+1)+( p )T(K—k)+(

n-1
AA+T-

T) Klog, T/2) bits

COMMUNICATIO
cosT



FROM AN INTERACTIVE PROTOCOL TO A NON-INTERACTIVE ONE

HOW DEFINE A SIGNATURE USING FIAT-SHAMIR TRANSORM?

The outputs of the first four round of our 5-round protocol are computed as follows:
m hy = H(m,salt, h),
m 7 — PRG(hy),
® hy = H(m,salt,h, i),
» d — PRG(hy).

HOW TO USE
FIAT SHAMIR?



FINAL RESULTS

f=12,K=1842, k = 1017, w =307, =128.

7=18, n=193. Signature size =12.52 KB. Runtime 2.7ms.

SETTING 2 — MEDIUM SIGNATURE 1 (RSD-M1)

7=13, n=1723. Signature size =9.69 KB. Runtime 17ms.

SETTING 3 — MEDIUM SIGNATURE 2 (RSD-M2)

T=12, n=3391. Signature size =9.13 KB. Runtime 31ms.

SETTING 4 — SHORT SIGNATURE (RSD-S)

Wi suLTs

T=11, n="7644. Signature size =8.55 KB. Runtime 65ms. 1A



Other developments in the paper:

Thank you for your attention!

e
Combinatorial Analysis of the Construction

Uniqueness Bound for Regular Syndrome Decoding

Relation between SD, RSD and almost RSD

Improvement of already known attacks against RSD

Definition of a new attack based on an approximate birthday paradox



COMPARISON

Scheme |sgn| |pkl fsgn Assumption
Wave 1.07 KB 3.2MB 300 large-weight SD over F3,
(U,U + V)-codes indist.

Durandal - | 397 KB 149 KB 4 Rank SD over Fym
Durandal - 11 490 KB 182 KB 5 Rank SD over Fom
LESS-FM - | 9.77 KB 152 KB - Linear Code Equivalence
LESS-FM - 11 206 KB 5.25 KB - Perm. Code Equivalence
LESS-FM - 111 11.57 KB 10.39 KB - Perm. Code Equivalence
GPS - 256 240 KB 0.11 KB - SD over [F256
GPS - 256 19.8 KB 0.12 KB - SD over Fi024
FJR (fast) 22.6 KB 0.00 KB 13 SD over Fp
FJR (short) 16.0 KB 0.00 KB 62 SD over [y
BGKM Sig1 23.7 KB 0.1 KB - SD over [y
BGKM Sig2 206 KB 02KB - (QC)SD over Fy
FJR - Varif 15.6 KB 0.09 KB - SD over Fy
FJR - Varls 10.9 KB 0.09 KB - SD over [y
FJR - Var2f 17.0 KB 0.00 KB 13 SD over Fp
FJR - Var2s 11.8 KB 0.09 KB 64 SD overl)
FJR - Var3f 11.5 KB 0.14KB 6 SD over Fs56
FJR - Var3s 8.26 KB 0.14 KB 30 SD over Fy5q4

* WHAT RESULTS
Our scheme - rsd-f 12,562 KB 0.09 KB 2.8 RSD over [y

8

Our scheme - rsd-m1  9.69 KB 0.09 KB 17" RSD over Fo
Our scheme - rsd-m2  9.13 KB 0.09 KB 31" RSD over Fo
Our scheme - rsd-s 8.55 KB 0090 KB 65 RSD over Fo

Our scheme - arsd-f  11.25 KB 0.00 KB 2.4° f-almost-RSD over Fy
Our scheme - arsd-m1 8.76 KB 0.09 KB 15  f-almost-RSD over Fp
Our scheme - arsd-m2 8.28 KB 0.09 KB 28  f-almost-RSD over Fp
Our scheme - arsd-s  7.77 KB 0.09 KB 57 f-almost-RSD overF)
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